
 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 5 –Nov 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page243

PMA-Chord: Peer Mobility Adaptable Lookup for Chord Protocol
Kola Vineel Babu
M.Tech in DECS
Dept of ECE, SGIT
MARKAPUR , AP,INDIA

Mr.P.Prasanna Murali Krishna
Associate professor
Head of Dept, ECE, SGIT
MARKAPUR, AP,INDIA

ABSTRACT
Structured Overlay Networks provide a promising system for high-performance applications because they
may be fault-tolerant, scalable and self managing. Organized overlays provide lookup services that guide keys
to nodes that may be employed as processing or storage assets. Consequently, it truly is non-trivial to provide
consistent data services on best of structured overlays which are built on key-based search. In this paper, we
analyze the regularity of incidence of inconsistent lookups. We demonstrate that the impact of look-up
inconsistencies may be lowered by assigning responsibility of important intervals to nodes. We present our
results as being a trade-off between availability and uniformity of tips. More, because so many distributed
applications apply quorum techniques at their core, we examine the likelihood that majority-based quorum
techniques will operate accurately in a structured overlay with inconsistent searches. Our investigation shows
the probability of majority-established algorithms to operate correctly despite lookup inconsistencies is high.

INTRODUCTION
Structured Overlay Networks, such as Chord [13] and
DKS [3], form a major group of peer-to-peer
systems. Structured overlays provide lookup services
for Internet-scale applications, where a lookup maps
a key to a node within the program. The node
mapped by the lookup can subsequently be utilized
for data storage or processing. Distributed Hash
Tables (DHTs) [3] use an overlay's lookup service to
save info and provide a set/get interface for
distributed systems. Since ordered overlays are
"besteffort", DHTs built on these overlays typically
guarantee ultimate consistency. These systems
generally count on services like atomic commit and
consensus.

DHTs are designed to deal with high rates of churn
(node joins and leaves). Due to consistent hashing [6]
in a DHT, existing nodes take over obligations of
inaccessible nodes, and just joined nodes take over a
segment of the obligations of existing nodes.
Similarly, DHTs tolerate partitions within the
underlying network by creating multiple independent
DHTs and supply accessibility for all keys.

It's been established it is difficult for an internet
service to supply these three guarantees at the exact
same time: partition, availability and uniformity -
tolerance [5]. These three qualities are also
demonstrated to be impossible to ensure with a DHT
operating in an asynchronous system including the
Internet [3]. Ergo, deciding to provide guarantees for
just two qualities will violate the warranty for the

third. In this work, we focus on availability and
uniformity while assuming there isn't any system
partition.

Sporadic information in DHTs mainly arises as a
result of inconsistent searches, even as we discuss in
section 3. In this paper, we study the reasons and
frequency of events of research in-consistencies
under various scenarios in a DHT. We discuss and
evaluate methods that can be utilized to decrease the
result of lookup inconsistencies. We demonstrate
how reducing the result of lookup inconsistencies
impacts accessibility. Based on our simulation
results, we provide an analytical model that provides
the likelihood under which a majority-based quorum
technique operates correctly. Using techniques to
reduce the effect of research inconsistency, we show
that we can reach consistency with high-probability.

Outline: First, we determine the DHT model which
our work relies on in Section 2. Section 3 introduces
lookup consistency and describes how it can be
broke. Section 4 explains techniques that may be
utilized to cut back consistency violation.
Simulations which analyze the chance of the
violation of lookup uniformity as well as the affect of
techniques to lessen inconsistency are presented in
Section 5. In Section 6 we discuss related work.
Finally, Section 7 presents the conclusion of our
function.

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 5 –Nov 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page244

BACKGROUND

Ring-based DHT: This identifier space is regarded
as a ring that wraps around at N--1. Every node
within the system, has an unique identifier from the
identifier space. Each node keeps a pointer succ to its
successor (first node met going clockwise) as well as
a pointer pred to its predecessor (first node met going
anti-clockwise) on the ring. Additional routing
pointers are also maintained by ring-based DHTs on
top of the ring to enhance routing.

We choose Chord [13] for our evaluation, which is
only one of the most famous ringbased overlay.
Chord handles joins and failures using a protocol
called periodic stabilization. The protocol operates
such that each node n should the very first node anti-
clockwise from n as pred as succ along with
eventually point to the first node clockwise from n.

Failure Detectors: DHTs provide a platform for
Internet- scale systems, targeted at operating on an
asynchronous web work. If there is no bound on
message delay informally, a community is
asynchronous. It is hard to discourage ~ mine if a
node has crashed or is really slow to respond, since
timing assumptions cannot be produced in
asynchronous networks. Thus giving rise to incorrect
intuition of node failure. Thus, failure detectors -
modules used by a node to discover if another node is
alive of dead - work probabilistically.

Failure detectors are defined based on two properties:
completeness and correctness [2]. In a crashstop
process model, completeness demands the failure
detector to eventually discover all crashed nodes.

CONSISTENCY VIOLATION
 Within this part, we show how lookup
inconsistencies may arise and discuss how lookup
inconsistencies can lead to data inconsistency.
Otherwise, we expressly say data consistency, unless
specified, the expression consistency means lookup
consistency. A setup of the DHT is really a group of
most nodes as well as their pointers to neighboring
nodes. A DHT evolves by either changing a pointer,
or adding/removing a node.

REDUCING INCONSISTENCIES
In this section, we discuss two techniques to

reduce lookup inconsistencies: (1) Local
responsibilities (2) Quorum-based algorithms.
These techniques can be used separately, or
together to get the best results.

Local Responsibilities
Definition 2. A node n is considered locally
responsible (n.pred, n] as for a particular key, if the
key is in the range between its predecessor and itself,
noted. We call a node internationally responsible for
a key, when it is the only node in the configuration
that's locally responsible for the key.

Whenever its predecessor is changed the duty of a
node changes. As may be observed, an arrangement
is consistent when there is a globally responsible
node for every key.

We change the lookup function of a lookup always
returns from the locally responsible node. If it is
locally in charge of the main element being looked up
thus, before returning the consequence of a lookup,
the node checks. Just in case the node isn't locally
responsible, it might either forward the request to its
predecessor or ask the initiator of the lookup to retry.

Yet it is consistent with respect to local duties, even
though the configuration is inconsistent. This is
because, in the place of responding, the search for e
at a peer N1 will be forwarded to peer N4. Since peer
N4 isn't locally in charge of k, it'll not reply. On the
other hand, the lookup at N2 will be sent to as it is
locally in charge of k N3 which will answer. Ergo,
improvements and reads for data items stored under
key k will give consistent results. In that case, you
will have multiple nodes responsible for your same
key leading to inconsistency. This situation may
occur while both peer N2 and peer N4 falsely suspect
peer N3 if peer N1 falsely suspects peer N2.

That is mainly because without local responsibility,
only one node doing inaccurate failure detections is
enough to introduce inconsistencies, while multiple
nodes need to do parallel inaccurate failure detections
to introduce responsibility inconsistencies

Key Availability
Unfortunately, as a side effect, local

responsibilities give rise to keys being unavailable.
Definition 3. In an arrangement, a vital k can be
obtained if there's a reachable node n so that n is
locally accountable for k.

Here, a node n is reachable in an arrangement if
there's a node m so that n could be the successor of
m, i.e. m.succ = n and n = m.

Availability of a key is suffering from both
inaccurate and churn failure detectors. When a node
joins the system, it changes the tasks of its successor.
This contributes to temporary unavailability of some
recommendations. When peer N2 joins the overlay.

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 5 –Nov 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page245

Peer N3 factors to peer N2 as its predecessor
therefore making k1 unavailable. Important k1
remains unavailable until N1 goes regular
stabilization and sets N 1.succ = N2 and N2 sets
N2.pred = N1.

Equally, failure of the node contributes to momentary
unavailability of keys before failure is detected.

Inaccuracy of failure detectors also leads to
unavailability of keys. This occurs when a node
falsely suspects its successor and removes its
pointer to the suspected node. Keys for which the
suspected node is responsible will temporarily
become unavailable. where peer N1 suspects peer
N2 leading to unavailability of k3 as N2 becomes
unreachable. Systems that implement atomic join
and graceful leaves such as DKS [3] will alleviate
the case but not cases.
Quorum-based Algorithms
 Similar to dispersed techniques, DHTs replicate
data on different nodes to increase accessibility and
prevent loss of data. A few examples of replication
in DHTs include successor record replication [13]
and key-based replication such as for example
symmetrical replication [3]. In below, we assume
key-based reproduction, where a product is stored
under various recommendations [3].
The basic notion of quorum-based algorithms is that
conflicting businesses acquire a sufficient number
of votes from different replicas such that they've at
least one intersection at one replica. Gifford
introduced a protocol for your maintenance of
replicated data that uses weighted votes [4]. In our
work, we consider majority-based algorithms which
are a particular case of quorum algorithms. The
reason for selecting majority-based quorum
algorithms (MBQAs) is the fact that they are trusted
and most robust form of quorum algorithms, e.g. in
group membership, concurrency control and non
blocking nuclear commit. In a MBQA, every replica
is assigned exactly one vote and every operation has
to gather at least a majority of votes (called a
majority set). Quorum techniques can be used
separately about the data-level aswell to reduce data
inconsistencies, however our emphasis would be to
show how to work with these techniques to reduce
the influence of redirecting inconsistencies which
will in-effect reduce data inconsistencies in DHTs.
As we discuss briefly, using replicas and majorities
distributes the issue of search inconsistency total
replicas.
Key-based Consistency with MBQAs
Look at a DHT with replication degree three. A data
object to be stored under key k is hence stored

under keys k1,k2,k3. Any update or read for k has
to work on many i.e. two nodes in this case.
Reliability in the case depends upon the way we
choose majorities. An instance where majorities for
multiple upgrades overlap, ergo just one update

succeeds and the info remains constant. On the other
hand instance where the majorities do not overlap,
hence updates may happen on different majority sets
thus creating data inconsistent. Since despite search
inconsistencies, multiple majorities exist that will
cause data consistency applying MBQAs in DHTs
increases the likelihood of consistency.
Probability product for disjoint majority sets: In this
section, we use the counting principle to analytically
derive the likelihood that two operations work with
disjoint/non¬ overlapping majority sets presented the
system configuration is the same for the two
operations. The chances of disjoint majority sets may
be the proportion between the number of most
mixtures of majority sets and the number of feasible
disjoint majority sets that two functions in one single
setting can include. We believe that for a responsibility
inconsistency in the configuration, only two nodes are
liable for the inconsistency.

min(,) min(,)

,
max(,0) max(2 2 ,0)

2
m i m i j

k j
i r

j m r i k m i r j

A

 i
j

r i
m j

 (1)

 2 i j
k

r m i j
m j

min(,)

2
,

max(,0)

(2)
i m

i j
i r j

j m r i

r i
T

m j

 (2)

,

,1

(1)
r ir

i ri
r

i ri

A
pi p p

T

 (3)

Consider a DHT with replication degree r
(where r > 0), a configuration with i number of
responsibility inconsistencies (where i > 0) and
size of the smallest majority set m (where

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 5 –Nov 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page246

1
2
rm

. ,i rT (eq. (2)) gives the number of all

possible combinations for two majority sets. Here,
j is the number

of inconsistencies j included in a majority set. Since
each inconsistency creates two possibilities to select
a node, we multiple with 2j.

,i rA (eq. (1)) gives the number of possible
combinations for two disjoint majority sets mset1

and mset2. We compute ,i rA by choosing mset1
and calculating every possible mset2 that is disjoint
to mset1. j denotes the number of inconsistencies
that are included by mset1. mset2 can share a subset
of these j inconsistencies and additionally include up
to i — j remaining inconsistencies. The derived
formula is similar to a hyper-geometric distribution.

Assuming inconsistencies are independent, rpi
calculates the probability that two subsequent
operations in one configuration work on disjoint
majority sets, where p is the probability of an
inconsistent responsibility.

plots the probability of having disjoint majority

sets pr for two operations as it is calculated by ,

,

i r

i r

A
T

.

It shows how pr depends on the system's replication
factor r and on the number of inconsistencies i in the
replica set. An important observation is that an even
replication degree reduces pr considerably. The
reason for such a behaviour is that for majority-based
quorums with even replication degree, any two
quorums overlap over at least two replicas (say r1
and r2). Due to lookup inconsistency, even if
quorums don’t overlap at r1, there is a significant
chance that they will overlap at r2. This reduces the
probability of getting disjoint majority sets.

As lookup consistency cannot be guaranteed in a
DHT, even with using local responsibilities and
quorum techniques, it is impossible to ensure data
consistency. However the violation of lookup
consistency when using the afore-mentioned
techniques is a result of a combination of very
infrequent events which is evaluated in the following
section.

EVALUATION
Within this section, we measure the frequency of
occurrence of research inconsistencies, overlapping
responsibilities and unavailability of
recommendations resulting from unreliable failure
detectors and turn. The measure of interest is the
fraction of nodes which can be proper, i.e. do not
contribute to inconsistencies and the proportion of

keys available. The evaluations are done for a
network size of 1,000 nodes in a stochastic discrete
event simulator where we implemented Chord [13].

Influence of local responsibilities: Next, we assess
the aftereffect of unreliable failure detectors and spin
on responsibility persistence. The outcomes of our
simulations (neglected because of space constraints)
demonstrate that responsibility consistency can be
perhaps not effected by spin. Our results for
unreliable failure Lookup inconsistencies: Figure 1
illustrates the increase in lookup inconsistencies with
inaccuracy of failure sensors and turn. As the figure
shows, churn does not effect look-up inconsistencies
much. Even with a perfect failure detector (fake
positive=0), you will have a non-zero though
extremely low number of search inconsistencies
given churn. If multiple nodes join between two old
nodes m,n (where m.succ = d) before m changes its
successor suggestion by running routine stabilization
an inconsistency in that situation happens.

For our simulations, we employ failure detectors
which can be full although not accurate. The level of
reliability of the detector is described by its
likelihood of working correctly. For the maps, the
probability of a false positive (discover a living node
as dead) is the probability of inaccuracy of failure
detectors. We applied failure sensors in two styles:
mutually-dependent and independent. For
independent failure sensors, two distinct nodes
wrongly imagine the same node as dead
independently. For mutually-dependent failure
detectors, if a node p is assumed dead, all nodes
doing discovery on p will detect p as dead with larger
probability, representing an optimistic correlation
between suspicions of different failure detectors. This
might be much like a realistic scenario where because
of p or the network connect to p being slow, nodes
don't obtain ping responses from p thus finding it as
dead. Unless given, we use separate failure detectors.
For the experiments, we varied the precision of the
failure detectors from 95% to hundreds of which
really is a reasonable range [14].

Critical availability: Next, we examined the
proportion of keys for sale in a system with turn and
incorrect failure alarms. Experimental studies [12]
show that time of nodes staying in the machine
ranges from hundreds of minutes to a lot more than
an hour or so. Further, experiments show that where
node’s mean lifetime is 1 hour, the perfect taste
threshold for occasional stabilization is all about 72s
[7]. Consequently, for our experiments, we pick a
stabilization charge of 1 minute and varied the
lifetime of nodes in tens of minutes. Also, despite

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 5 –Nov 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page247

having perfect failure alarms, spin leads to
unavailability of keys.

The affect of turn on availability could be reduced by
using atomic ring preservation algorithms [3] [11].

Figure 1: lookup inconsistency of PMA-

Chord over MR-Chord.

RELATED WORK
An important design goal for distributed systems is

to provide data consistency. Since DHTs are aimed
to work over asynchronous networks with high rate
of churn, providing consistency in DHTs becomes an
interesting and nontrivial problem. The problem at
hand can be attacked on two levels: routing level and
data level. We focus on the routing level by
providing techniques to reduce the affect of look-up
inconsistencies. Answers about the data level (e.g.
[9]) may have constraints or depend on the semantics
and application of data operations.

There has been work done on understanding research
inconsistencies under spin. Rhea et. al. Lookup
inconsistencies have been explored by [10] for
Chord. Their work overlooks the fact imperfect
failure detectors mainly cause inconsistent lookups.
Nuclear ring maintenance calculations [3, 8, 11] offer
research reliability under joins and leaves, ignoring
inaccurate failure detectors and problems. The key
contributors to research inconsistency are inaccurate
failure alarms, that are the focus of our work, even as
we demonstrate.

Bhagwan et. al. [1] attack the problem of availability
in peer-to-peer systems. Unlike our work, they give
attention to availability of hosts and therefore data
located in the hosts. Since we are working on the
routing level, we focus on availability of keys and
thus nodes responsible for keys.

CONCLUSIONS
 Hence, selection of a failure detection algorithm is of
crucial importance in DHTs. We show that using
accountability of keys may affect availability of keys,
while effects of lookup inconsistencies might be paid
down by using local obligations. It is a trade-off
between reliability and availability. Many data-
dependent purposes may prefer unavailability to
inconsistency.

These methods may still make progress even with
unavailability of some keys/nodes, because majority-
based quorum strategies demand a majority of the
reproductions to make progress. Hence, utilizing a
combination of local duties and quorum techniques
wil attract in applications.

Due to the dynamics and decentralization of DHTs,
it's difficult to construct abstractions with stronger
consistency guarantees on the top of DHTs. We
suggest using techniques around the level to diminish
data inconsistencies. These techniques can be used
with techniques in the data level to have best results.
Our results show that it's fair to construct reliable
services on top of a DHT. In our future work, we
intend to examine an execution of the transactional
storage company on top of a DHT using routing-level
methods described in this paper.

REFERENCES
[1] R. Bhagwan, S. Savage, and G. Voelker.

Understanding availability. In Proceedings of
the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS), 2003.

[2] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems.
Journal of the ACM, 43, 1996.

[3] A. Ghodsi. Distributed k-ary System: Algorithms
for Distributed Hash Tables. PhD thesis, KTH
— Royal Institute of Technology, Sweden, Dec.
2006.

[4] D. K. Gifford. Weighted voting for replicated
data. In SOSP ’79: Proceedings of the seventh
ACM symposium on Operating systems
principles, pages 150—162, New York, NY,
USA, 1979. ACM Press.

[5] S. Gilbert and N. Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-
tolerant web services.
SIGACT News, 33(2):51-59, 2002.

[6] D. Karger, E. Lehman, F. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing
and random trees:
Distributed caching protocols for relieving hot
spots on the world wide web. In Proceedings of
the 29th ACM Symposium on Theory of

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 5 –Nov 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page248

Computing, 1997.
[7] J. Li. Routing tradeoffs in dynamic peer-to-peer

networks.
PhD thesis, MIT — Massachusetts Institute of
Technology,
Nov. 2005.

[8] P. Linga, A. Crainiceanu, J. Gehrke, and J.
Shanmugasudaram. Guaranteeing correctness
and availability in p2p range indices. In
Proceedings of 2005 ACM SIGMOD, pages
323—334, 2005.

[9] N. A. Lynch, D. Malkhi, and D. Ratajczak.
Atomic data access in distributed hash tables. In
IPTPS ’01: Revised Papers from the First
International Workshop on Peer-to-Peer
Systems, pages 295—305, London, UK, 2002.
Springer-Verlag.

[10] S. Rhea, D. Geels, T. Roscoe, and J.

Kubiatowicz. Handling churn in a dht. Technical
report, EECS Department, University of
California, 2003.

[11] J. Risson, K. Robinson, and T. Moors. Fault
tolerant active rings for structured peer-to-peer
overlays. lcn, 0:18—25, 2005.

[12] S. Saroiu, P. Gummadi, and S. Gribble. A
measurement study of peer-to-peer file sharing
systems. In In Proc. of MMCN, 2002.

[13] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable Peer-To-
Peer lookup service for internet applications. In
Proc. of the ACM SIGCOMM, 2001.

[14] S. Zhuang, D. Geels, I. Stoica, and R.
Katz. On failure detection algorithms in
overlay networks. In Proc. of
INFOCOM, 2005.

