
 International Journal of Computer Trends and Technology (IJCTT) – Volume 5 Number 4–Nov 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 179

Block Floating Point Implementations for DSP
Computations in Reconfigurable Computing

Georgina Binoy Joseph

Associate Professor, KCG College of Technology, Chennai, India

Abstract—The IEEE-754 standard prescribes standards for

32 bit single precision and 64 bit double precision formats. For
DSP applications that require a large dynamic range floating
point implementations are more suitable than fixed point
representation. This advantage is offset by the cost of the
implementation. The block floating point (BFP) concept
combines the precision and cost effectiveness of fixed point
representations with the increased dynamic range of floating
point representations. BFP is of particular importance in FPGA
implementations of DSP algorithms. In this paper the embedded
multipliers available in present day reconfigurable devices
facilitate the implementation of efficient BFP architectures for
DSP applications.

Keywords—block floating point; dynamic range; fixed point;
reconfigurable computing; DSP applications

I. INTRODUCTION
Reconfigurable computing using FPGAs provide a platform

for efficient implementations of operations required in DSP
algorithms. The bit level granularity of FPGAs permits the
choice of standard and non-standard number of representations.
This allows the use of just the right number of bits and the right
number of operations on these bits [1]. The ratio of the largest
number to the smallest number in any number representation is
called the dynamic range. Certain DSP applications require an
extended dynamic range which requires the use of floating
point applications. Single precision and double precision
representations of the IEEE-754 standard can be used to
increase the dynamic range. This however comes at the cost of
increased complexity in the multiply and add operations due to
separate exponent and mantissa components in floating point
numbers. Block Floating Point (BFP) algorithm provides a
technique to reduce the complexity to that of fixed point
operations. Current day FPGAs provide embedded multipliers
The implementation of FFT using the concepts of block
floating point is used as an illustration to highlight the
advantages while performing the multiply, add and subtraction
operation intensive DSP algorithms.

A. Fixed and Floating Point Processors
DSP processors use fractional fixed point representations

for signal processing applications. Signed numbers between -1
and 1 can be represented with the binary point immediately
following the sign bit.
0 1 1 0 1 0 0 0

Sign2 -1 2 -2 2 -4

 = 0.5 + 0.25 + 0.0625 = 0.8125

 Fig 1. 8 bit Fixed point number

0 0 1 1 1 1 1 1 0

Sign Bit and 8 bit Exponent

0 0 0 0 0 1 1 0 0 0 1

1 1 1 1 1 0 0 0 1 0 1 0

 23 bit Mantissa

Single Precision Representation of decimal 0.5122
Fig 2. 32 bit Floating point number

B. Embedded Multipliers in FPGAs
DSP applications are multiplication rich and their

implementation in FPGAs is facilitated by the construction of
multipliers using different techniques. Xilinx provides – the
following implementations for efficient, low latency and high
performance multipliers – LUT based, DSP48 based or Hybrid
constructions. This is supported by the Virtex-5, Virtex-6 and
Spartan-6 families. These signed and unsigned fixed point
multipliers can support input data widths from 2-64 bits. The
embedded multipliers are optimized for 18 X 18 bit
multiplications and hybrid implementations can be used for
input data sizes larger than 18 bits [4].

The Altera Cyclone II FPGAs have around 150 18 X 18
multipliers. The Stratix V FPGA has a variable precision DSP
block optimized for 27 X 27 bit or 18 X 36 bit multiplication.
The availability of these multipliers combined with the
flexibility of FPGAs makes them suitable for multiply rich
DSP applications like the Fast Fourier Transform.

II. BLOCK FLOATING POINT
Fixed point representations have a higher precision than

floating point representations of the same word length. This is
because precision which is given by the size of the LSB of the
fraction depends upon the word length for fixed point numbers
and on length of mantissa for floating point numbers. However,
for the same word length, floating point numbers have greater
dynamic range than fixed point numbers. In addition,

 International Journal of Computer Trends and Technology (IJCTT) – Volume 5 Number 4–Nov 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 180

processors using floating point numbers automatically scale the
numbers to use the full range of the mantissa. DSP applications
requiring large dynamic range would benefit from the use of
floating point numbers. This however comes at increased cost
of complexity of the hardware required as well as increased
power dissipation.

Block Floating Point provides a technique to combine the
advantages of fixed point and floating point representations.
Block floating point was initially proposed for software
emulations of floating point operations but is now being used
in FPGAs. Arithmetic efficiency involves tailoring an operator
to the right size required for a particular application [1]. FPGAs
are ideal platforms to tailor operations and number
representations and operations to the particular application.

A. Concepts of Block Floating Point
In block floating point all numbers in the representation

share a common exponent value. The difference between the
numbers lies only in the mantissa. Hence the exponent can be
stored separately and all the operations can be considered as
being performed on the mantissa components. The operations
are then similar to those performed by fixed point processors
on fixed point numbers. This considerably simplifies the
hardware required and also leads to reduction in power
consumption [2].

 2 -2 1 bit integer and 23 bit fraction = 1

 2 -1 1 bit integer and 23 bit fraction = 2

 2 -1 2 -2 1 bit integer and 23 bit fraction = 3

 2 0 1 bit integer and 23 bit fraction = 4

0 0 1 1 1 1 1 1 0

Common exponent representing 2 129 – 127 = 2 2

Fig 4. Block Floating Point Representation

The value of the exponent used as the common exponent is
that of the largest in the block of numbers under consideration.
The exponents of the numbers in the final results can then be
adjusted so that the dynamic range is completely utilized. The
scaling of the numbers by shifting them so as to obtain a
common exponent increases the dynamic range and
computations on the mantissa emulate the precision of fixed
point numbers.

B. Radix 2 FFT
Radix 2 FFT is more suitable for maintaining precision

levels and therefore two Radix 2 stages are preferred over a
single Radix 4 stage. Figure 3 shows the butterfly diagram of a
single stage of Radix 2 Decimation in Time (DIT) FFT.

Fig 3. Radix 2 DIT FFT Butterfly Stage

 The input, output and twiddle factor values can be complex
valued. The real and imaginary parts of the input and twiddle
factor must be considered separately while determining bit
growth.

C = (Ar + jAi) + (Wn
Nr + j Wn

Ni) (Br + jBi)

 = (Ar + Wn
Nr Br - Wn

NiBi) + j(Ai + Wn
Nr Bi + Wn

NiBr) (1)

D = (Ar + jAi) - (Wn
Nr + j Wn

Ni) (Br + jBi)

 = (Ar - Wn
Nr Br + Wn

NiBi) + j(Ai - Wn
Nr Bi - Wn

NiBr) (2)

The Figure 4 below shows an 8 point DIT FFT which will
be used as the basic DSP computation to illustrate the block
floating point algorithm implementation using FPGAs.

Fig 5. 8 Point DIT FFT

C. Block Floating Point Algorithm
Block AGC (Automatic Gain Control) is a technique that

scales the values at the input stage of the DSP application like
the Fast Fourier Transform (FFT). This scaling is done to
increase the precision while at the same time providing an
extended dynamic range. This concept is extended to the inputs
of each stage of the FFT to predict the bit growth at each stage.
This predicted bit growth is used to scale the inputs so that the
full dynamic range can be used.

For an N point FFT where N is a power of 2, the twiddle
factors of the first stage, W0

N and WN
N have a value 1 + j0.

Equations (1) and (2) show that in this case the maximum bit
growth in this stage is 2 as the inputs A and B have real and
imaginary values less than 1.

0 0 1 0 0 0 0 0 0 . . 0 0

0 1 0 0 0 0 0 0 0 . . 0 0

0 1 1 0 0 0 0 0 0 . . 0 0

1 0 0 0 0 0 0 0 0 . . 0 0

 International Journal of Computer Trends and Technology (IJCTT) – Volume 5 Number 4–Nov 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 181

The second stage twiddle factors are W0
N, WN/4

N and WN
N

which have values 1 + j0, 0 – j, 1 + j0 respectively. This again
leads to a maximum growth factor for the second stage of 2.

In the rest of the stages the twiddle factors can have both
real and complex values, resulting in growth factors of more
than 2. The maximum growth factor is determined by finding
the maximum magnitudes of C and D. Equations (1) and (2)
can be rewritten as follows:

C = (Ar + Brcosφ - Bisinφ) + j(Ai + Bicosφ + Brsinφ) (3)

D = (Ar - Brcosφ + Bisinφ) + j(Ai - Bicosφ - Brsinφ) (4)

The maximum values for C and D are obtained when the real
and imaginary components of A and B are at their maximum
values of 1 or -1. In addition, the three components in the
brackets in equations (3) and (4) have to be of the same sign
and φ has a value that leads to a maximum.

 To determine the value of φ the derivative of (1 ± cosφ ±
sinφ) with respect to φ is set equal to 0, yielding values of

 φ = Π/4 + n Π/2, n = 0,1,2,….∞

The maximum growth factor is determined to be 2.4142 bits
(≈2bits).

 This analysis shows that to maintain precision by
preventing overflow, the input values to the first two stages
have to be scaled to allow a maximum bit growth of 1 and the
rest of the stages have to be scaled to allow a maximum bit
growth of 2. At each stage the maximum bit growth in the real
and imaginary parts of the output is determined and the
required scaling is applied if necessary. If there is no bit growth
no scaling is done. This allows maximizing of the dynamic
range while preventing overflow [2].

III. IMPLEMENTATION AND SIMULATION
The 8 point DIT FFT implementation was used to illustrate

the use of block floating point arithmetic in DSP computations.
Three hardware based designs for the Fast Fourier Transform
were implemented on the Virtex6 FPGA.

The first design implemented a fixed point FFT
computation using 32 bit fixed point numbers. The format of
the fixed point number with one sign bit, one integer bit and 30
fractional bits limits the range of numbers from -2 to +2. Fixed
point arithmetic adders and multipliers exploiting the DSP
blocks of the Virtex6 FPGA have been designed for
performing the required fixed point computations.

The second design is implemented using 32 bit IEEE 754
single precision floating point numbers having one sign bit,
eight exponent bits, 23 fractional bits for the mantissa and an
implied bit of value 1 for the integer part of the mantissa. This
gives a larger dynamic range of - 2 -126 to (2-2 -23)x2 127 for
normalized numbers. 32 bit floating point adder and multiplier
modules have been used for this implementation.

In the third design, the block floating point concept has
been implemented combining the increased dynamic range of

floating point representations and the reduced area requirement
of fixed point representations. The inputs are represented as 32
bit single precision floating point numbers. An align operation
is used to align the smaller exponents so that all numbers have
a common exponent which is the largest among the block of
inputs. The exponents are not considered further in the FFT
computations.

The de normalized mantissa of the numbers are used as
inputs to the FFT computation which is now performed on 25
bit numbers that includes a 1 bit sign, 1 bit integer part and 23
bit fractional part. The arithmetic units implementing addition
and multiplication perform 25 bit fixed point computation. A
constant scaling of 1 bit is performed on the outputs of the first
stage before applying them to the second stage. A similar
scaling of 2 bits is performed on the outputs of the second stage
to prevent overflow.

A final stage combines the fixed point FFT block outputs
and the exponent. It performs a normalizing operation so that
the outputs are in the IEEE 754 format for single precision
numbers.

A. Simulation and Implementation Results

The results of the FFT computation of the three
architectures are identical due to the use of scaling to prevent
overflow in the fixed point and block floating point
architectures.

A comparison of the hardware complexity of the
architectures is given in the table below:

TABLE I. RESOURCE UTILIZATION

Design
Resource Utilization (Target Device xc6vlx75t-3ff484)
No of Slice LUTs No of Slices No of DSP48E1s
Used Utilization Used Utilization Used Utilization

32bit
Fixed
Point

13243 28 % 4396 37 % 126 43 %

Single
Precision
Floating
Point

44986 96 % 11450 98 % 40 13 %

Block
Floating
Point

9652 20 % 2766 23 % 48 16 %

As operations are performed on 32 bit fixed point operands,
the first design shows increased resource utilization over the
Block floating point design in which computations are
performed on 23 bit operands. The precision is more for 32 bit
fixed point when compared with 23 bit operands. However, as
the design uses floating point numbers the dynamic range is
more. The use of scaling to prevent overflow preserves
accuracy in both architectures.

 International Journal of Computer Trends and Technology (IJCTT) – Volume 5 Number 4–Nov 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 182

 A comparison of the single precision floating point
architecture and the block floating point design reveals a large
resource requirement for the design that does not use the block
floating point concept. This can be attributed to the fact that
use of single precision floating modules for operation of
addition, subtraction and multiplication requires alignment of
the exponents of the operands and corresponding shifting of
the mantissa prior to the computation. Once the actual
computation has been performed the output of each
computation has to be normalized to the IEEE 754 single
precision format.

 This is the major advantage of the Block floating
point architecture as the alignment is performed only once for
all numbers to align the exponents to a common exponent at
the onset of the FFT computation. The rest of the
computations are performed on the mantissa of each number.
Only a single stage of normalization at the end of the FFT
computation has to be carried out to normalize the final FFT
outputs. This has resulted in a drastic reduction in resource
utilization while maintaining the dynamic range.

 Table II below compares the power-delay product of
the three architectures.

TABLE II. POWER-DELAY PRODUCT

Design Delay
(ns)

Power
(mW)

Power-Delay
Product

32bit Fixed Point 48.759 1156.21 56,375.643

Single Precision
Floating Point 166.519 1065.87 177,487.607

Block Floating Point 37.189 1279.44 47,581.094

The performance of the Block floating point
architecture is better than the other two architectures in terms
of the delay of the critical path. The power consumption of the
32 bit fixed point architecture is the least of the three designs.

The power-delay product of the Block floating point is
significantly lower than the other two designs.

IV. CONCLUSION

The implementation results of the 8 point Radix 2 DIT FFT
are used to highlight the application of the Block floating Point
(BFP) concept to computation of DSP algorithms on FPGAs.
Effort has also been taken to ensure the design utilizes the
embedded DSP resources like multipliers in present day
reconfigurable devices. The Block Floating Point architecture
requires significantly fewer resources and is thus cost effective
when compared to the designs implementing fixed point as
well as floating point computations. It also shows improvement
in the power-delay product. The BFP implementation can be
further improved by providing dynamic scaling between stages
rather than the static one used in this design. Also,
reconfigurable computing, particularly for real time
applications does not need to adhere to the standard formats for
operand representation. Operand size can be chosen as per the
requirements of the application which will further lead to more
efficient implementations.

REFERENCES

[1] Florent de Dinechin and Bogdan Pasca, “High-Performance Computing
using FPGAs,” Chapter, Reconfigurable Arithmetic for High
Performance Computing, Springer, 2013.

[2] David Elam and Cesar Iovescu, “A Block Floating Point Implementation
for an N-Point FFT on the TMS320C55x DSP,” TMS320C5000
Software Applications, Application Report SPRA948 − September 2003

[3] Shiro Kobayashi and Gerhard P. Fettweis, “A new approach for block-
floating-point arithmetic,” in proceedings of IEEE Conference on
Accoustic, Speech, and Signal processing, 1999, pp. 2009-2012.

[4] Xilinx Product Specification, “Virtex-6 Family Overview,” DS150
(v2.4) January 19, 2012

[5] Nicolas Brisebarre, Florent de Dinechin, Jean-Michel Muller, “Integer
and Floating-Point Constant Multipliers for FPGAs,” International
Conference on Application-Specific Systems, Architectures and
Processors, 2008, pp. 239 - 244.

