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Abstract— TCP provides reliability to data transferring in all 
end-to-end data stream services on the internet. This protocol is 
utilized by major internet applications. TCP was originally 
created to handle the problem of network congestion collapse. 
This paper is prepared on the performance of different TCP 
variants to identify the best protocol variant for network 
expansion. In such context, a full comprehensive simulation 
environment is created for evaluating the comparative 
performance of TCP variants like TCP Tahoe, Reno, NewReno 
and TCP Vegas. From the results, TCP Reno is the most 
aggressive (least fair one), and highest amount of throughput. In 
the TCP NewReno it follows Reno’s step by becoming the second 
most aggressive (second least fair), and second highest 
throughput. SACK is fair to Reno and NewReno, but it is 
competing with Vegas,   Finally TCP Vegas shows the highest 
degree of fairness, TCP Vegas can adapt the changing bandwidth 
very well and it is robust against the fluctuation 
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I. INTRODUCTION 

TCP was originally made for wired links. On 
wired links there are very less chances of high delay 
[1] and corruption of data due to external 
parameters. Congestion is the main cause of packet 
loss on wired links. So, TCP was designed by 
keeping in mind the above parameters. As wireless 
and heterogeneous networks came into the 
existence, due to the requirement of reliable 
protocol in TCP/IP model in internet, TCP was 
adopted as it was on wired links. Wireless links 
have severe problem of variable and high delay 
with high Bit Error Rate (BER). So initially, 
unmodified old TCP started to perform badly on 
wireless links. To deal with the problems of 
wireless links, a research started in the field of TCP 
and modifications were done according to the 
requirements to improve the performance. Variants 
named Tahoe, Reno, NewReno and SACK and 
many more came into existence. TCP Tahoe is the 
first TCP variant which includes the first congestion 
control algorithm. This algorithm is developed by 
Jacobson and Karels in 1986. Based on the same 

concept presented by Jacobson and Karels, many 
more algorithms are then introduced. Following that, 
many enhancements and modifications are 
conducted on Tahoe, and leads to design and 
development of new TCP variants with different 
congestion window algorithms (Mo et al., 1999). 
The performance of TCP variants are directly 
affected by its own congestion control mechanisms, 
where the packet amount transferred over network 
connections is based on the work and the behaviour 
of the congestion control and its role in exploiting 
the capacity of the network path (Sarolahti, 2002). 
RFC 793 standardized the first TCP version with its 
basic configuration based on a scheme of window-
based flow control. TCP Tahoe represents the 
second generation of TCP versions, which includes 
two new techniques, congestion avoidance and fast 
transmission. Reno is the third version of the first 
developed series, and it is standardized in RFC 
2011, where the congestion control mechanism is 
further extended by fast recovery algorithm. 
However, versions of TCP Tahoe and Reno (and 
their variants) are not perfect in terms of throughput 
and impartiality among connections. Therefore, 
active research on TCP has been done, and many 
improvement mechanisms have been proposed [1]-
[4]. Among them, a TCP Vegas version [5],[6] is 
one of the promising mechanisms because of its 
high performance. One important point is the 
underlying network assumed by TCP Vegas. When 
the original TCP Vegas was proposed [5], The RED 
(Random Early Detection) mechanism [8], was not 
consider in the operating network. TCP Vegas may 
or may not be effective when the router is equipped 
with the RED mechanism [8]. We therefore 
consider two packet scheduling mechanisms, the 
RED router as well as the conventional drop-tail 
router. One of the contributions in this paper is to 
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derive analysis results of the throughput of TCP 
Tahoe, Reno, NewReno and Vegas in such a 
situation where they share the link with TCP 
variants. The accuracy of our analysis is validated 
by comparing the simulation results. 

II. ANALYSIS OF TCP VARIANTS  

A. TCP Variants 

1)  TCP Tahoe:  A Tahoe [5] refers to the TCP 
congestion control algorithm which was suggested 
by Van Jacobson in his paper. TCP is based on a 
principle of conservation of packets, i.e. if the 
connection is running at the available bandwidth 
capacity then a packet is not injected into the 
network unless a packet is taken out as well. It 
implements this principle by using the 
acknowledgements to clock outgoing packets 
because an acknowledgement means that a packet 
was taken off the wire by the receiver. It also 
maintains a congestion window CWD to reflect the 
network capacity. It suggests that whenever a TCP 
connection starts or re-starts after a packet loss it 
should go through a procedure called slow-start. 
Reason for this procedure is that an initial burst 
might overwhelm the network and the connection 
might never get started. The congestion window 
size is multiplicatively increased that is it becomes 
double for each transmission until it encounters 
congestion. Slow start suggests that the sender set 
the congestion window to 1 and then for each ACK 
received it increase the CWD by 1. So in the first 
round trip time (RTT) we send 1 packet, in the 
second we send 2 and in the third we send 4. Thus 
we increase exponentially until we lose a packet 
which is a sign of congestion. When we encounter 
congestion we decrease our sending rate and we 
reduce congestion window to one, and start over 
again. The important thing is that Tahoe detects 
packet losses by timeouts. Sender is notified that 
congestion has occurred based on the packet loss. 

 
Fig. 1  Packet drop behavior for TCP Tahoe 

2)  TCP Reno:  This RENO retains the basic 
principle of Tahoe, such as slow starts and the 
coarse grain retransmit timer [8]. However it adds 
some intelligence over it so that lost packets are 
detected earlier and the pipeline is not emptied 
every time a packet is lost. Reno requires that we 
receive immediate acknowledgement whenever a 
segment is received. The logic behind this is that 
whenever we receive a duplicate acknowledgment, 
then this duplicate acknowledgment could have 
been received if the next segment in sequence 
expected, has been delayed in the network and the 
segments reached there out of order or else that the 
packet is lost. If we receive a number of duplicate 
acknowledgements then it means that sufficient 
time have passed and even if the segment had taken 
a longer path, it should have gotten to the receiver 
by now. There is a very high probability that it was 
lost. So Reno suggests fast Re-transmit. Whenever 
we receive 3 duplicate ACK‘s we take it as a sign 
that the segment was lost, so we re-transmit the 
segment without waiting for timeout. Thus we 
manage to re-transmit the segment with the pipe 
almost full. Another modification that RENO 
makes is in that after a packet loss, it does not 
reduce the congestion window to 1. Since this 
empties the pipe. It enters into an algorithm which 
we call Fast-Recovery. 

 
Fig. 2  Packet drop behaviour for TCP Reno 
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3)  TCP New Reno:  New RENO is a slight 
modification over TCP-RENO. It is able to detect 
multiple packet losses and thus is much more 
efficient that RENO in the event of multiple packet 
losses. Like RENO, New-RENO [7] also enters into 
fast retransmit when it receives multiple duplicate 
packets, however it differs from RENO in that it 
doesn‘t exit fast recovery until all the data which 
was out standing at the time it entered fast recovery 
is acknowledged. The fast recovery phase proceeds 
as in Reno, however when a fresh ACK is received 
then there are two cases If it ACK‘s all the 
segments which were outstanding when we entered 
fast recovery then it exits fast recovery and sets 
CWD to threshold value and continues congestion 
avoidance like Tahoe. If the ACK is a partial ACK 
then it deduces that the next segment in line was 
lost and it re-transmits that segment and sets the 
number of duplicate ACKS received to zero. It exits 
Fast recovery when all the data in the window is 
acknowledged. 

 
Fig. 3  Packet drop behaviour for TCP NewReno 

4)  TCP Vegas:  Vegas is a TCP implementation 
which is a modification of Reno. It builds on the 
fact that proactive measure to encounter congestion 
is much more efficient than reactive ones. It tried to 
get around the problem of coarse grain timeouts by 
suggesting an algorithm which checks for timeouts 
at a very efficient schedule. Also it overcomes the 
problem of requiring enough duplicate 
acknowledgements to detect a packet loss, and it 
also suggests a modified slow start algorithm which 
prevents it from congesting the network. It does not 
depend solely on packet loss as a sign of congestion. 
It detects congestion before the packet losses occur. 
However it still retains the other mechanism of 
Reno and Tahoe, and a packet loss can still be 

detected by the coarse grain timeout of the other 
mechanisms fail. 

 
Fig. 4  Packet drop behavior for TCP vegas 

III. PERFORMANCE EVALUATION 

A. Packet Vs Bandwidth 
Channel bandwidth has been varied each time 

and the number of packets was counted at 
destination during entire simulation period. As 
bandwidth of channel increases, number of packet 
received also increases by different magnitude for 
different variants. Highest number of packet is 
obtained for NewReno ASYM(NewReno in the 
asymmetry channel) because of its ‘Fast Recovery’ 
and ‘Open Loop’ congestion control mechanism. 
But TCP Tahoe, Reno, NewReno, sack1and Vegas 
behaves identically with bandwidth variation which 
generate a common curve. 

 
Fig. 5  Packet Vs bandwidth 

B. Packet Vs Propagation Delay 

Although number of packet received is inversely 
proportional to propagation delay, ‘Vegas’ has the 
best performance as depicted due to its improved 
retransmission technique. In Vegas, 
‘acknowledgment’ is merged with ‘data packet’ 
(which is called piggybacking) instead of separate 
transmission .It saves fifty percent (50%) time than 
normal TCP implementation since 
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‘acknowledgement’ passing does not take extra 
time for it. That is why it can transmit more data. 

 
Fig. 6  Packet Vs Propagation delay 

IV. ROUND TRIP TIME BEHAVIOR 

Round Trip Time is a very important metric for 
measuring network performance of particular 
protocol. RTT is the amount of time that is needed 
for a packet to be sent to the far most nodes and 
receiving the acknowledgment for that packet. By 
gathering the data for TCP variants we depict the 
following figure Fig. 7. from where we can say that 
TCP Vegas performs better because the required 
time to receive acknowledgment from the 
destination node is less compared to other TCP 
variants. 

 
Fig. 7  RTT for TCP variants 

We can say that TCP Vegas performs better 
because the required time to receive 
acknowledgment from the destination node is less 
compared to other TCP variants. 

V. QUEUES FOR TCP PACKETS 

TCP variants packets are waiting to the 
bottleneck node because of the narrow bottleneck 
bandwidth. We have shown queuing data behaviour 
according to transmission time. From the simulated 
data we plotted the following figure Fig. 8. For TCP 
Vegas a certain amount of data is waiting at the 
bottleneck link where as for TCP NewReno, the 

amount of data is waiting at the bottleneck link is 
near about 6000.As a result we can say that TCP 
Vegas provide the better performance compared to 
TCP Tahoe, TCP Reno and TCP NewReno.  

 
Fig. 8  Queue for TCP variants 

VI. CONCLUSION 

We have calculated the performance of four TCP 
variants; they are TCP Tahoe, TCP Reno, TCP New 
Reno and TCP Vegas. After analyzing the 
performance from simulated data. We have found 
that TCP Vegas is better than other TCP variants 
for sending data and information. In essence, TCP 
Vegas dynamically increases or decreases 
transmission of data according to the window size 
of sending packets of observed RTTs, whereas TCP 
Tahoe and Reno continue to increase their window 
size until packet loss is detected. Simulation, 
implementation and experimentation conclude that 
TCP Vegas can provide higher throughput than any 
other TCP variants. We conclude stating that the 
performance of TCP Vegas is much better than any 
other TCP variants where congestion is occurred in 
two point junction. Comparison of TCP variants 
with respect to other remaining network parameters 
would be an important future attempt. Such type of 
analysis is very helpful for selecting the appropriate 
TCP in a certain platform. 
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