
International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2962

A Comparative Study of Different TCP Variants in
Networks

Balveer Singh
Ph.D. Research Scholar, Computer Sc. Department.

NIMS University, Jaipur, India.

Abstract— TCP provides reliability to data transferring in all
end-to-end data stream services on the internet. This protocol is
utilized by major internet applications. TCP was originally
created to handle the problem of network congestion collapse.
This paper is prepared on the performance of different TCP
variants to identify the best protocol variant for network
expansion. In such context, a full comprehensive simulation
environment is created for evaluating the comparative
performance of TCP variants like TCP Tahoe, Reno, NewReno
and TCP Vegas. From the results, TCP Reno is the most
aggressive (least fair one), and highest amount of throughput. In
the TCP NewReno it follows Reno’s step by becoming the second
most aggressive (second least fair), and second highest
throughput. SACK is fair to Reno and NewReno, but it is
competing with Vegas, Finally TCP Vegas shows the highest
degree of fairness, TCP Vegas can adapt the changing bandwidth
very well and it is robust against the fluctuation

Keywords— TCP Tahoe, Reno, NewReno, SCAK, TCP Vegas.

I. INTRODUCTION

TCP was originally made for wired links. On
wired links there are very less chances of high delay
[1] and corruption of data due to external
parameters. Congestion is the main cause of packet
loss on wired links. So, TCP was designed by
keeping in mind the above parameters. As wireless
and heterogeneous networks came into the
existence, due to the requirement of reliable
protocol in TCP/IP model in internet, TCP was
adopted as it was on wired links. Wireless links
have severe problem of variable and high delay
with high Bit Error Rate (BER). So initially,
unmodified old TCP started to perform badly on
wireless links. To deal with the problems of
wireless links, a research started in the field of TCP
and modifications were done according to the
requirements to improve the performance. Variants
named Tahoe, Reno, NewReno and SACK and
many more came into existence. TCP Tahoe is the
first TCP variant which includes the first congestion
control algorithm. This algorithm is developed by
Jacobson and Karels in 1986. Based on the same

concept presented by Jacobson and Karels, many
more algorithms are then introduced. Following that,
many enhancements and modifications are
conducted on Tahoe, and leads to design and
development of new TCP variants with different
congestion window algorithms (Mo et al., 1999).
The performance of TCP variants are directly
affected by its own congestion control mechanisms,
where the packet amount transferred over network
connections is based on the work and the behaviour
of the congestion control and its role in exploiting
the capacity of the network path (Sarolahti, 2002).
RFC 793 standardized the first TCP version with its
basic configuration based on a scheme of window-
based flow control. TCP Tahoe represents the
second generation of TCP versions, which includes
two new techniques, congestion avoidance and fast
transmission. Reno is the third version of the first
developed series, and it is standardized in RFC
2011, where the congestion control mechanism is
further extended by fast recovery algorithm.
However, versions of TCP Tahoe and Reno (and
their variants) are not perfect in terms of throughput
and impartiality among connections. Therefore,
active research on TCP has been done, and many
improvement mechanisms have been proposed [1]-
[4]. Among them, a TCP Vegas version [5],[6] is
one of the promising mechanisms because of its
high performance. One important point is the
underlying network assumed by TCP Vegas. When
the original TCP Vegas was proposed [5], The RED
(Random Early Detection) mechanism [8], was not
consider in the operating network. TCP Vegas may
or may not be effective when the router is equipped
with the RED mechanism [8]. We therefore
consider two packet scheduling mechanisms, the
RED router as well as the conventional drop-tail
router. One of the contributions in this paper is to

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2963

derive analysis results of the throughput of TCP
Tahoe, Reno, NewReno and Vegas in such a
situation where they share the link with TCP
variants. The accuracy of our analysis is validated
by comparing the simulation results.

II. ANALYSIS OF TCP VARIANTS

A. TCP Variants

1) TCP Tahoe: A Tahoe [5] refers to the TCP
congestion control algorithm which was suggested
by Van Jacobson in his paper. TCP is based on a
principle of conservation of packets, i.e. if the
connection is running at the available bandwidth
capacity then a packet is not injected into the
network unless a packet is taken out as well. It
implements this principle by using the
acknowledgements to clock outgoing packets
because an acknowledgement means that a packet
was taken off the wire by the receiver. It also
maintains a congestion window CWD to reflect the
network capacity. It suggests that whenever a TCP
connection starts or re-starts after a packet loss it
should go through a procedure called slow-start.
Reason for this procedure is that an initial burst
might overwhelm the network and the connection
might never get started. The congestion window
size is multiplicatively increased that is it becomes
double for each transmission until it encounters
congestion. Slow start suggests that the sender set
the congestion window to 1 and then for each ACK
received it increase the CWD by 1. So in the first
round trip time (RTT) we send 1 packet, in the
second we send 2 and in the third we send 4. Thus
we increase exponentially until we lose a packet
which is a sign of congestion. When we encounter
congestion we decrease our sending rate and we
reduce congestion window to one, and start over
again. The important thing is that Tahoe detects
packet losses by timeouts. Sender is notified that
congestion has occurred based on the packet loss.

Fig. 1 Packet drop behavior for TCP Tahoe

2) TCP Reno: This RENO retains the basic
principle of Tahoe, such as slow starts and the
coarse grain retransmit timer [8]. However it adds
some intelligence over it so that lost packets are
detected earlier and the pipeline is not emptied
every time a packet is lost. Reno requires that we
receive immediate acknowledgement whenever a
segment is received. The logic behind this is that
whenever we receive a duplicate acknowledgment,
then this duplicate acknowledgment could have
been received if the next segment in sequence
expected, has been delayed in the network and the
segments reached there out of order or else that the
packet is lost. If we receive a number of duplicate
acknowledgements then it means that sufficient
time have passed and even if the segment had taken
a longer path, it should have gotten to the receiver
by now. There is a very high probability that it was
lost. So Reno suggests fast Re-transmit. Whenever
we receive 3 duplicate ACK‘s we take it as a sign
that the segment was lost, so we re-transmit the
segment without waiting for timeout. Thus we
manage to re-transmit the segment with the pipe
almost full. Another modification that RENO
makes is in that after a packet loss, it does not
reduce the congestion window to 1. Since this
empties the pipe. It enters into an algorithm which
we call Fast-Recovery.

Fig. 2 Packet drop behaviour for TCP Reno

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2964

3) TCP New Reno: New RENO is a slight
modification over TCP-RENO. It is able to detect
multiple packet losses and thus is much more
efficient that RENO in the event of multiple packet
losses. Like RENO, New-RENO [7] also enters into
fast retransmit when it receives multiple duplicate
packets, however it differs from RENO in that it
doesn‘t exit fast recovery until all the data which
was out standing at the time it entered fast recovery
is acknowledged. The fast recovery phase proceeds
as in Reno, however when a fresh ACK is received
then there are two cases If it ACK‘s all the
segments which were outstanding when we entered
fast recovery then it exits fast recovery and sets
CWD to threshold value and continues congestion
avoidance like Tahoe. If the ACK is a partial ACK
then it deduces that the next segment in line was
lost and it re-transmits that segment and sets the
number of duplicate ACKS received to zero. It exits
Fast recovery when all the data in the window is
acknowledged.

Fig. 3 Packet drop behaviour for TCP NewReno

4) TCP Vegas: Vegas is a TCP implementation
which is a modification of Reno. It builds on the
fact that proactive measure to encounter congestion
is much more efficient than reactive ones. It tried to
get around the problem of coarse grain timeouts by
suggesting an algorithm which checks for timeouts
at a very efficient schedule. Also it overcomes the
problem of requiring enough duplicate
acknowledgements to detect a packet loss, and it
also suggests a modified slow start algorithm which
prevents it from congesting the network. It does not
depend solely on packet loss as a sign of congestion.
It detects congestion before the packet losses occur.
However it still retains the other mechanism of
Reno and Tahoe, and a packet loss can still be

detected by the coarse grain timeout of the other
mechanisms fail.

Fig. 4 Packet drop behavior for TCP vegas

III. PERFORMANCE EVALUATION

A. Packet Vs Bandwidth
Channel bandwidth has been varied each time

and the number of packets was counted at
destination during entire simulation period. As
bandwidth of channel increases, number of packet
received also increases by different magnitude for
different variants. Highest number of packet is
obtained for NewReno ASYM(NewReno in the
asymmetry channel) because of its ‘Fast Recovery’
and ‘Open Loop’ congestion control mechanism.
But TCP Tahoe, Reno, NewReno, sack1and Vegas
behaves identically with bandwidth variation which
generate a common curve.

Fig. 5 Packet Vs bandwidth

B. Packet Vs Propagation Delay

Although number of packet received is inversely
proportional to propagation delay, ‘Vegas’ has the
best performance as depicted due to its improved
retransmission technique. In Vegas,
‘acknowledgment’ is merged with ‘data packet’
(which is called piggybacking) instead of separate
transmission .It saves fifty percent (50%) time than
normal TCP implementation since

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2965

‘acknowledgement’ passing does not take extra
time for it. That is why it can transmit more data.

Fig. 6 Packet Vs Propagation delay

IV. ROUND TRIP TIME BEHAVIOR

Round Trip Time is a very important metric for
measuring network performance of particular
protocol. RTT is the amount of time that is needed
for a packet to be sent to the far most nodes and
receiving the acknowledgment for that packet. By
gathering the data for TCP variants we depict the
following figure Fig. 7. from where we can say that
TCP Vegas performs better because the required
time to receive acknowledgment from the
destination node is less compared to other TCP
variants.

Fig. 7 RTT for TCP variants

We can say that TCP Vegas performs better
because the required time to receive
acknowledgment from the destination node is less
compared to other TCP variants.

V. QUEUES FOR TCP PACKETS

TCP variants packets are waiting to the
bottleneck node because of the narrow bottleneck
bandwidth. We have shown queuing data behaviour
according to transmission time. From the simulated
data we plotted the following figure Fig. 8. For TCP
Vegas a certain amount of data is waiting at the
bottleneck link where as for TCP NewReno, the

amount of data is waiting at the bottleneck link is
near about 6000.As a result we can say that TCP
Vegas provide the better performance compared to
TCP Tahoe, TCP Reno and TCP NewReno.

Fig. 8 Queue for TCP variants

VI. CONCLUSION

We have calculated the performance of four TCP
variants; they are TCP Tahoe, TCP Reno, TCP New
Reno and TCP Vegas. After analyzing the
performance from simulated data. We have found
that TCP Vegas is better than other TCP variants
for sending data and information. In essence, TCP
Vegas dynamically increases or decreases
transmission of data according to the window size
of sending packets of observed RTTs, whereas TCP
Tahoe and Reno continue to increase their window
size until packet loss is detected. Simulation,
implementation and experimentation conclude that
TCP Vegas can provide higher throughput than any
other TCP variants. We conclude stating that the
performance of TCP Vegas is much better than any
other TCP variants where congestion is occurred in
two point junction. Comparison of TCP variants
with respect to other remaining network parameters
would be an important future attempt. Such type of
analysis is very helpful for selecting the appropriate
TCP in a certain platform.

REFERENCES
[1] C.E. Perkins and E.M. Royer, “Ad-hoc On-Demand distance vector

routing”, Proceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications, New Orleans, LA, pp. 90-100,
February 1999.

[2] D. Johnson, D. Maltz and Y. Hu., “The dynamic source routing
protocol for mobile ad hoc networks”, IETF MANET Working Group,
Internet Draft, 2003.

[3] M.K.J. Kumar and R.S. Rajesh, “Performance analysis of MANET
routing protocols in different mobility models”, IJCSNS International
Journal of Computer Science and Network Security, vol. 9 No.2, pp
22-29, Feb 2009

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2966

[4] K.Kathiravan, Dr. S. Thamarai Selvi, A.Selvam “Tcp Performance
Analysis For Mobile Ad Hoc Network Using Ondemand Routing
Protocols”.

[5] JACOBSON, V. Congestion avoidance and control. In Proceedings of
SIGCOMM ’88 (Stanford, CA, Aug. 1988), ACM.

[6] Laxmi Subedi, Mohamadreza Najiminaini, and Ljiljana Trajkovi
Performance Evaluation of TCP Tahoe, Reno, Reno with SACK, and
NewReno using OPNET Modeler.

[7] S.Floyd, T.Henderson “The New- Reno Modification to TCP’s Fast
Recovery Algorithm” RFC 2582, Apr 1999.

[8] O. Ait-Hellal, E.Altman “Analysis of TCP Reno and TCP Vegas”.
[9] Suhas Waghmare et. al “Comparative Analysis of different TCP

variants in a wireless environment”, 978-1-4244-8679-3/11 ©2011
IEEE

[10] Z.Wang and J. Crowcroft, "Eliminating Periodic Packet Losses in 4.3--
Tahoe BSD TCP congestion control," ACM Computer Communication
Review, vol.22, pp. 9-16, April 1992.

[11] Michel Perloff and Kurt Reiss, "Improvements to TCP performance,"
Communications of ACM, vol.38, pp. 90-100, February 1995.

[12] Matthew Mathis and Jamshid Mahdavi, "Forward acknowledgment:
Refining TCP congestion control," ACM SIGCOMM Computer
Communication Review, vol.26, pp. 281-291, October 1996.

[13] Go Hasegawa and Masayuki Murata and Hideo Miyahara, "Fairness
and stability of congestion control mechanisms of TCP," in
Proceedings of IEEE INFOCOM'99, pp. 1329-1336, March 1999.

[14] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson TCP
Vegas: New Techniques for Congestion Detection and Avoidance,
SIGCOMM’ 94, 1994.

