
International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1502

Towards Achieving Secured and Decentralized Accountability

in Cloud Computing

Drishya S G #1, Kavitha Murugeshan*2

#Student, MTech Computer science and Engineering, Vedavyasa Institute of Technology, Malappuram , Kerala, India

*Head of the Department of Computer Science and Engineering, Vedavyasa institute of technology, Malappuram , Kerala,India

Abstract:-Cloud computing is an internet-based service where
you can acquire networked storage space and computer
resources as per your demand. An underlined feature in cloud
computing is that users’ data are usually processed in a remote
computer which they cannot access. This creates a fear of losing
data in users which is a major obstacle in wide range use of cloud
services. To attend to this problem, we propose an object
oriented concept to protect a user data in a cloud network and
also after delivery of a data to a client. Here we also provide
security to cloud users by rendering JAR authentication.

Keywords: Cloud Computing, JAR(Java Archive), Java Running

Environment, Accountability, cloud Service Provider.

I.INTRODUCTION

 Several trends are opening up the epoch of
Cloud Computing, which is an Internet-based
development using computer technology. The
powerful processors which is cheaper together with
the software as a service (SaaS) computing
architecture, are metamorphosing data centres into
pools of computing service on a huge scale. The
broadening network bandwidth and impeccable yet
flexible network connections make it even possible
that users can now endorse high quality services
from data and software that reside solely on remote
data centers. Storing data into the cloud offers great
convenience to users since they don’t have to care
about the complexities of direct hardware
management.

 Users may be unaware of the machines
which actually process and host their data. So even
when enjoying the convenience brought by this new

technology, the users have worry about losing
control of their own data. The data processed and

stored on clouds are often outsourced, which
leading to a number of issues related to security of
data, including the handling of bank details and
personal health details. Such fears are becoming a
significant barrier to the wide embracement of
cloud services. To avert these problems it is
essential to provide an effective mechanism for
users to monitor the usage of their data stored in the
cloud. For example, users want to be able to ensure
that their data that are stored in cloud are
manipulated according to the service level
agreements made at the time they sign on for
services in the cloud.
 Basic approach we use to look upon these
issues is by using JAR (Java Archives) files to
automatically log the usage of the users’ data by
any entity in the cloud. Users will send their data
via any policies such as access control policies and
logging policies they want to enforce, to cloud
service providers. Cloud service provider encloses
data in JAR files. Any access to the data will trigger
an automated and authenticated logging mechanism
local to the JARs. Since the policies and the logging
mechanism travel with the data we refer to this type
of enforcement as “strong binding”. This type of
strong binding exists even when copies of the JARs
are created; thus, the users will have control over
their data at any location we provide the JARs with
a central point of contact which forms a link
between them and the users. When a user copy the
data from downloaded system to another then the
JAR automatically create a log file which shows
that the system is changed by tracking the IP
address of the system. It records the error correction
information sent by the JARs, which allows it to

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1503

track the loss of any logs from any of the JARs.
Moreover, if the JAR is not able to contact its
central point, access to the enclosed data will be
denied.

The platform-independent Java Archive
(JAR) file format allows you to compress and
bundle multiple files associated with a Java
application, Web Start application, or Applet into a
single file. JAR is based on the ZIP algorithm. All
files in a Java package can be placed in a single file
to aid distribution. Furthermore, transfer of one big
file over the network instead of many small files is
faster and more efficient as it involves less
overhead. Since we use JAR file, to provide
security to client who access the data enclosed in it
the authentication of jar file is substantial. This is
needed because some malicious entity produces
some JAR files which include programs capable of
retrieving all the information stored in the client
system. Here JAR file can be signed digitally by its
author to provide JAR authentication.

 II RELATED WORKS

Cloud computing has raised a range of

important privacy and security issues [13], [15].
Main reasons of these issues are, in the cloud,
users’ data and applications reside—at least for a
certain amount of time—on the cloud cluster which
is maintained by a third party. To date, some work
has been done in this area, in particular with respect
to accountability. Pearson et al. [15] have proposed
accountability mechanisms to address privacy
concerns of end users and then develop a privacy
manager [16]. Their proposed idea is that the user’s
private data are sent to the cloud using encryption
technique, and the processing is done on the
encrypted data. The result of the processing is
deobfuscated by the privacy manager to get the
correct result. However, privacy manager provides
only limited features where it does not guarantee
protection once the data are being disclosed. In [3],
B. Chun and A.C. Bavier present a layered
architecture for addressing the end-to-end trust
management and accountability problem in
federated systems. The authors’ view is very

different from ours, in that they mainly focus trust
relationships for accountability, along with anomaly
detection and authentication. Moreover, their
proposed solution requires third-party services to
complete the monitoring and focuses on lower level
monitoring of system resources.
 Smith Sundareswaran et al[2]. propose a
novel highly decentralized information
accountability framework to keep track of the actual
usage of the users’ data in the cloud using JAR
concept. We follow the same concept as a base and
extend the concept to track the cloud data even after
copying using any device like pen drive. And also
we extend to provide security to client by providing
JAR authentication.
 Researchers have investigated
accountability mostly as a provable property
through cryptographic mechanisms, [6], [10]
particularly in the context of electronic commerce.
In [5] authors propose the usage of policies attached
to the data and present logic for accountability data
in distributed settings. Similarly, Jagadeesan et al. ,
in [9], recently proposed a logic for designing
accountability-based distributed systems. Crispo
and Ruffo ,in [6], proposed an approach related to
accountability in case of delegation.
 Lee and colleagues [11] proposed an agent-
based system for grid computing where static
software agents used are track the distributed jobs,
with the resource consumption at each local
machines. Here the notion of accountability policies
is mainly focused on resource consumption and on
tracking of sub jobs processed at multiple
computing nodes, rather than access control. In [12]
authors describe a Method for Authenticating a Java
Archive (jar) for Portable Devices.
 We are using a Java-based techniques for
security, where our methods are related to self-
defending objects (SDO) [8]. Self-defending
objects are an extension of the object-oriented
programming paradigm, where software objects
that are offer sensitive functions or hold sensitive
data for protecting those function/data. Another
work is by Mont et al., in [14] ,who proposed an
approach for access control, using Identity-Based
Encryption (IBE) .

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1504

 we use integrity checks and oblivious
hashing (OH) technique in our system in order to
strengthen the dependability of our system in case
of compromised JRE[19]

.

III. PROPOSED SYSTEM
The Cloud Accountability technique

proposed in this work controls automated logging
and distributed auditing of relevant access
performed by any different entities, carried out at
any cloud service provider at any point of time, any
system, at any location. It contains major
components: logger and log harmonizer.

The logger handles a particular instance or
copy of the user’s data and is responsible for
logging access to that instance or copy. It is the
component which is strongly coupled (either single
or multiple data items) with the user data, so that it
copied whenever the data are copied and
downloaded when the data are accessed.. The
responsibility of logger includes automatically
providing logging access to data items that it
contains, ensure that access and usage control
policies associated with the data are
honored ,encrypting the log record using the public
key of the content owner(here we use AES
algorithm), and periodically sending them to the log
harmonizer. For example, a data owner can specify
that user X is only allowed to view but not to write
into the data. The logger will control the data access
even after it is downloaded by user X.
 The log harmonizer is the central
component which allows the user access to the log
files. The logger sends log files to logger
harmonizer. The responsibility of logger
harmonizer is auditing. Being the trusted
component, the log harmonizer generates the master
key. It holds on to the decryption key for the IBE
key pair, as it is responsible for decrypting the logs.
If the path between log harmonizer and the client is
not trusted one, a decryption can be carried out
between them wherein, the harmonizer sends the
key to the client in a secure key exchange.
 It supports two auditing strategies: push and
pull. The push strategy is an automated approach
where the log file is pushed back to the data owner

periodically in an automated fashion. The pull
mode works in an on-demand way. Here the log file
obtained by the data owner as often as required. In
case, if multiple users log for the same set of data
items, the log harmonizer will merge the log
records from them before sending back to the data
owner. The log harmonizer is responsible for
handling log file corruption. Additionally, the log
harmonizer itself can carry out logging in addition
to auditing. To improve the performance, separation
of logging and auditing functions are advised. Both
the logger and the log harmonizer are implemented
as lightweight and portable JAR files.

A. Data Flow
 At the beginning, users are to create their own
pair of public and private keys based on AES
algorithm. Main factor that we are select AES is its
speed. Using the generated key, the user encrypt
the data , whether and how the cloud servers and
other data stake holders are authorized to access the
content is abided by the access control rules
specified by the data owner. Both key and the
access control rules are then send to the cloud
service provider that he subscribes to. CSP creates a
logger component which is a JAR file, to store its
data items. The JAR file contains a set of simple
access control rules provided by the data owner. A
digital signature is also put by the CSP in the JAR
file for JAR authentication .We employ SAML-
based authentication when the user requests the
access. A trusted identity provider is employed to
issue certificates verifying the user’s identity based
on his username.
 Once the authentication is done, the service
provider (or the user) will be allowed to access the
data enclosed in the JAR. JAR is responsible for
providing usage control associated with the logging,
or will provide only logging functionality which
depends on the configuration settings defined at the
time of creation. At the time of logging, each time
there is an access to the data; the JAR will
automatically generate a log record, encrypt it using
the public key provided by the data owner, and
store it along with the data. This prevents
unauthorized changes to the file by intruders. In
addition, to handle possible log file corruption some

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1505

error correction information will be sent to the log
harmonizer. To guarantee trustworthiness of the
logs, each record is signed by the entity which
accesses the content. Further, to quickly detect
possible errors or missing records, individual
records are hashed together to create a chain
structure. The encrypted log files can later be
decrypted and their integrity is verified. They can
be accessed by the data owner or any authorized
stakeholders at any time for auditing purposes with
the help of the log harmonizer .Our proposed
framework prevents attacks like detecting illegal
copies of users’ data. With only encryption, their
logging mechanisms are neither distributed nor
automatic. They require the data to stay within the
boundaries of the centralized system for the logging
to be possible, though it is not suitable in the cloud.
Here the logging mechanism also moves with data,
thus we will be able to control data at any location.
The log file created is attached with the JAR file.
And once it is connected to the network it send the
log file to data owner through centre component.

B. The Logger Structure

We drag the programmable capability of
JARs to conduct automated logging. A logger
component is a nested JAR file which stores a
user’s data items and corresponding log files. Our
proposed JAR file consists of one outer JAR and
one or more inner JARs.

The responsibility of outer JAR is handling
the authentication of entities which want to access
the data stored in the JAR file. In our context, the
data owners may be unaware of the exact CSPs that
are going to handle the data. Hence, authentication
specified according to the functionality of server,
not by the server’s URL or identity. Outer JAR is
also responsible for selecting the correct inner JAR
as per the identity of the entity who requests the
data.

Each inner JAR contains the encrypted data ,
class files to facilitate display enclosed data in a
suitable format and retrieval of log files , a log file
for each encrypted item. We support two options:

 PureLog :The main task of PureLog is to
record every access to the data. This log
files are used for auditing purpose.

 AccessLog: Performs two functions:
enforcing and access control logging
actions. If an access request is denied, ie, no
connection to network or unauthorized
access, the JAR will record the time when
the request is made. If the access requested
is granted, the JAR will additionally record
the access information along with the
duration for which the access is allowed.

Above explained two kinds of logging modules

allow the data owner to enforce certain access
conditions either reactively (in case of PureLogs) or
proactively (in case of AccessLogs). The inner JAR
contains class file which corresponds with the log
harmonizer, another class file for writing the log
records, another for the encrypted data, a fourth
class file for displaying or downloading the data ,
and the public key of the AES key pair that is
necessary for encrypting the log records. The outer
JAR may contain one or more inner JARs. One
class file for authenticating the servers or the users,
another for finding the correct inner JAR, one class
file for JAR authentication, a fourth class file which
checks the JVM’s validity using oblivious hashing.
Also, a class file is used for managing the GUI for
user authentication.

C. Log Record Generation

Log records are generated by the logger

component. Logging occurs when any access to the
data in the JAR, and nlog entries are appended
sequentially, in order of creation LR ¼ hr1; . . . ; rki.
Each record ri is encrypted individually and
appended to the log file. Generally, a log record
takes the following form:
ri = <ID, Act, T, Loc, h((ID, Act, T, Loc)| ri -1| . . .|
r1), sig>
 Here, ri indicates that an entity identified by I D

has performed an action Act on the user’s data at
time T at location Loc. The component
corresponds h((ID, Act, T, Loc) |ri - 1| . . .| r1) to
the checksum of the records preceding the newly

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1506

inserted record, concatenated with the main
content of the record itself (we use I to denote
concatenation). Collision-free hash function used
to compute the checksum. The component sig
denotes the signature of the record created by the
server. If same logger component handle more
than one file, then an additional ObjIDfield is
added to each record. To ensure the correctness of
the log records, we verify the locations, access
time, as well as actions. In particular, to avoid
suppression of the correct time by a malicious
entity we use Network Time Protocol (NTP). The
location of the cloud service provider can be track
using IP address. The JAR can perform an IP
lookup to locate CSP. More advanced techniques
for determining location can also be used.
Similarly, if a trusted time stamp management
infrastructure can be used to record the time
stamp in the accountability log.

IV SECURITY ANALYSIS

 Here we analyze possible attacks to our
framework. Assume that attackers may have
sufficient Java programming skills to disassemble a
JAR file.

A Copying Attack
 One of the most intuitive attacks possible in cloud
is that attacker copies the entire JAR file. It is
possible from the network or from the end users
(cloud users) system. But it is not possible in our
system to copy the JAR without notice by data
owner because the JAR file is required to send log
records to log harmonizer periodically. Log
harmonizer checks the log IP address. If the log
component not send log record (not connect to
network) then the access is denied.

B Disassembling Attack
 Attacker also tries to extract the log files and data
enclosed in the JAR files by disassembling the JAR
file. But here we have strength of cryptographic
schemes. The log files are encrypted using public
key algorithm whose private key stored in log
harmonizer. Even if the attackers extract log file
from JAR they cannot modify the log record

because integrity checks, added to log record at the
time of creation, revealing error at the time of
verification. Furthermore attackers will not able to
attach fake record to log file all log records are
hashed together.
 Attackers also try to extract the data
attached in the JAR. This type of attach is
prevented by sealing technique offered by java.
Seale is a property of java which creates a signature
that does not allow the data or code inside JAR files
to change. Here also the data is in encrypted form
which makes more security.

C. Pharming attack:
 Pharming attack is one of the intuitive attacks in
network where attackers redirect the website into
other bogus site. In the case of cloud redirect to
some malicious CSPs. But in our proposed system
we use openSSL certificate to verify the CSP.

D. Gifar-Based Attack

Gifar–based attack combining images or any
other file types with Jar files. The modified file is
used to carry the payloads of various attacks. These
JAR file is send to our system by pretending from
malicious server. Since we use JAR authentication
JAR file is verified first.

V. CONCLUSION AND FUTURE WORKS

 We proposed an approach for cloud data
accountability by using the object-oriented concept
for automatically logging any access to the data in
the cloud together with an auditing mechanism.
One of the main features of our work is that it
enables the data owner to audit even those copies of
its data that were made without his knowledge. So
the data owner can control his data at any location.
It is also determine the unauthorized access to the
data by malicious entity. We also provide JAR
authentication to provide security to cloud users.
 In future we are plan to extend the above
concept to other network like wireless sensor
network for providing security to the data.

REFERENCES

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1507

[1] P. Ammann and S. Jajodia, “Distributed Timestamp
Generation in Planar Lattice Networks,” ACM Trans.
Computer Systems, vol. 11,pp. 205-225, Aug. 1993.

[2] Smitha Sundareswaran, Anna C. Squicciarini, Member,
IEEE, and Dan Lin “Ensuring Distributed Accountability for
Data Sharing in the Cloud” Proc IEEE transactions on
dependable and secure computing vol.9 no.4 year 2012

[3] B. Chun and A.C. Bavier, “Decentralized Trust
Management and Accountability in Federated Systems,” Proc.
Ann. Hawaii Int’l Conf. System Sciences (HICSS), 2004.

[4] OASIS Security Services Technical Committee, “Security
Assertion Markup Language (saml) 2.0,” http://www.oasis-
open.org/ committees/tc home.php?wg abbrev=security, 2012.

[5] R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and I.
Staicu, “A Logic for Auditing Accountability in Decentralized
Systems,” Proc. IFIP TC1 WG1.7 Workshop Formal Aspects
in Security and Trust, pp. 187-201, 2005.

[6] B. Crispo and G. Ruffo, “Reasoning about Accountability
within Delegation,” Proc. Third Int’l Conf. Information and
Comm. Security (ICICS), pp. 251-260, 2001.

 [7] J. Hightower and G. Borriello, “Location Systems for
Ubiquitous Computing,” Computer, vol. 34, no. 8, pp. 57-66,
Aug. 2001.

[8] J.W. Holford, W.J. Caelli, and A.W. Rhodes, “Using Self-
Defending Objects to Develop Security Aware Applications in
Java,” Proc. 27th Australasian Conf. Computer Science, vol.
26,
pp. 341-349, 2004.
.
[9] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely,
“Towards a Theory of Accountability and Audit,” Proc. 14th
European Conf. Research in Computer Security (ESORICS),
pp. 152-167, 2009.

[10] R. Kailar, “Accountability in Electronic Commerce
Protocols,” IEEE Trans. Software Eng., vol. 22, no. 5, pp.
313-328, May 1996.

[11] W. Lee, A. Cinzia Squicciarini, and E. Bertino, “The
Design and Evaluation of Accountable Grid Computing
System,” Proc. 29th IEEE Int’l Conf. Distributed Computing
Systems (ICDCS ’09), pp. 145-154, 2009.

[12] J.H. Lin, R.L. Geiger, R.R. Smith, A.W. Chan, and S.
Wanchoo, Method for Authenticating a Java Archive (jar) for
Portable Devices, US Patent 6,766,353, July 2004.

[13] T. Mather, S. Kumaraswamy, and S. Latif, Cloud
Security and Privacy: An Enterprise Perspective on Risks and
Compliance (Theory in Practice), first ed. O’ Reilly, 2009.

 [14] M.C. Mont, S. Pearson, and P. Bramhall, “Towards
Accountable Management of Identity and Privacy: Sticky
Policies and Enforceable Tracing Services,” Proc. Int’l
Workshop Database and Expert Systems Applications
(DEXA), pp. 377-382, 2003.

[15] S. Pearson and A. Charlesworth, “Accountability as a
Way Forward for Privacy Protection in the Cloud,” Proc. First
Int’l Conf. Cloud Computing, 2009.

[16] S. Pearson, Y. Shen, and M. Mowbray, “A Privacy
Manager for Cloud Computing,” Proc. Int’l Conf. Cloud
Computing (CloudCom), pp. 90-106, 2009.

 [17] NTP: The Network Time Protocol, http://www.ntp.org/,
2012.

[18] B. Schneier, Applied Cryptography: Protocols,
Algorithms, and Source Code in C. John Wiley & Sons, 1993.

[19] Y. Chen et al., “Oblivious Hashing: A Stealthy Software
Integrity Verification Primitive,” Proc. Int’l Workshop
Information Hiding, F. Petitcolas, ed., pp. 400-414, 2003.

