
International Journal of Computer Trends and Technology- volume4Issue2- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 183

A COMPARATIVE STUDY OF VARIOUS PARALLEL
LONGEST COMMON SUBSEQUENCE (LCS)

ALGORITHMS

M.V.Ramakrishnan#1, Prof.Mrs.Sumathy Eswaran#2
(1)M.Tech student in Computer Science and Engineering

(2) Professor in Computer Science and Engineering

Dr.MGR Educational and Research Institute, Chennai, TamilNadu, INDIA

Abstract— Sequence alignment is one of the most important
tasks in bio-informatics or computational biology field. It helps
identifying the similarity between the biological sequences.
Longest Common Subsequence is the fundamental problem for
sequence alignment techniques. Due to the emerging growth in
bio-informatics applications, new biological sequences with
longer length have been used for processing. Sequential
algorithmic implementations take more time to find Longest
Common Subsequence. Sequential implementations sometimes
become intractable for longer biological sequences. To compute
Longest Common Subsequence of longer biological sequences
more efficiently and quickly, parallel algorithms are used. This
paper presents a comparative study of three parallel LCS
algorithms.

Keywords— Dynamic Programming, EFP_LCS, FAST LCS,
Parallel Algorithms, Parallel LCS.

I. INTRODUCTION

 Sequence alignment is the method of arranging the
biological sequences like DNA, protein, etc. Sequence
alignment can be carried out by variety of methods like pair
wise alignment, multiple sequence alignment. The main
purpose of sequence alignment is to identify functional and
structural relationship among biological sequences.
 The longest common subsequence (LCS) identification of
biological sequences is an essential step in sequence
alignment. A subsequence is a sequence that appears in the
same relative order, but not necessarily contiguous. This
makes the subsequence different from the substring as a
substring should appear in a contiguous relative order. A
common subsequence is maximal or is a longer subsequence
if it is of length maximal. For example, sequences {B,C,B,A}
and {B,D,A,B} are the longest common subsequences of

{A,B,C,B,D,A,B}and of {B,D,C,A,B,A}. The performance of
LCS identification depends on three factors: Efficiency of
algorithm, Dissimilarity between sequences and Length of
sequences. Since sequence properties and databases increase
in size drastically, the resource needed to compute the result
also increases. It is very difficult to calculate LCS of longer
sequences using sequential algorithmic implementations. For
efficient computation of LCS, Parallel algorithms and
heuristic algorithms are used.

II. RELATED WORK

 The Needleman–Wunsch algorithm [1] was the first
application of dynamic programming which provides a global
alignment between two sequences. This algorithm leads to the
evolution of various efficient LCS algorithms. It is only
suitable if the two sequences are of similar length. The Smith-
Waterman algorithm [2] evolved from Needleman- Wunsch
algorithm provides a local alignment of biological sequences.

 Various parallel algorithms like CREW PRAm model,
Systolic arrays have been proposed in the earlier days to
reduce the computation time. In the recent time Wan, Liu,
Chen proposed Fast LCS algorithm [3] with time complexity
|LCS(X, Y). Fast LCS’s efficiency has been further improved
by EFP_LCS [4] by 40% to 60%. A parallel LCS algorithm
[5] based on dynamic programming has also been proposed.

III. ALGORITHMS UNDER STUDY

International Journal of Computer Trends and Technology- volume4Issue2- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 184

 In this paper the performances of Parallel algorithms like
FAST LCS, EFP_LCS and Parallel LCS have been tested on
various datasets ranges from 50 to 900.

Fast LCS

 Let X={x1,x2,…,xn} and Y={y1,y2,…,yn} be two
biological sequences where xi,yi ∈{A,C,G,T}. An array CH of
4 characters is defined such that CH (1) =’A’, CH (2) =’C’,
CH (3) =’G’, CH (4) =’T’. To compute LCS, successor table
need to be built for two strings. The successor tables are
denoted as TX and TY. The successor table entries are defined
as follows:

T (i, j) = min {k | k є S (i, j)} when S (i, j) ≠ Ø

- Otherwise
 S(i, j) = {k | xk = CH(i), k>j} where i= 1,2,3,4 and j =
0,1,2,….,n. Let X = "T C A G A T" and Y = "A G T C G T
A". Their successor tables TX and TY are shown in Table 1.

TABLE I. SUCCESSOR TABLES TX AND TY
TX:

I Ch(i) 0 1 2 3 4 5 6

1 A 3 3 3 5 5 - -

2 C 2 2 - - - - -

3 G 4 4 4 4 - - -

4 T 1 6 6 6 6 -

TY:

 For sequences X and Y, if xi = yj = CH (k), then (i, j) is an
identical pair of CH (k). The set of all identical character pairs
of X and Y is denoted as S(X, Y).The level of an identical pair
is defined as follows:

Level (i, j) = 1 if (i, j) is an identical character
 Pair
 Max {level (k, l) + 1 | (k, l) < (i, j)} Otherwise

 Where (i, j) and (k, l) be two identical pairs of X and Y. In
this case these are (3, 1), (2, 4), (4, 5), (1, 3). The Initial
Identical Pairs (IIDPs) are eligible to get entry into level 1 of
Pair Table. Remaining IDPs get their level entry according to
their case. After finding all the initial identical pairs, the next

step would be producing all the direct successors of them. For
each identical pair, the operation of producing all its direct
successors is as follows:
 (i, j) -> {(TX (k, i), TY (k, j)) | k = 1,2,3,4, TX (k, i) ≠ ‘-‘and
TY (k, j) ≠ ‘-‘}.
 For example, the successors of the identical character pair
(3, 1) in example can be obtained by combining the elements
of the 3rd column of TX and 1st column of TY. They are (5, 7),
(-, 4), (4, 5), (6, 3).Here (-. 4) don’t represent identical
character pairs. Hence after discarding (-, 4), the successors
are (5, 7), (4, 5), (6, 3). In successor generating process,
pruning techniques can be introduced to eliminate identical
pairs which cannot produce LCS. These pruning techniques
reduce the time complexity and improve the efficiency of the
algorithm.
 In Pruning Operation 1, if two identical pairs (i, j) and (k, l)
are on the same level satisfying (k, l) > (i, j), then (k, l) can be
pruned. For example (4, 5) and (6, 3) in example 1 are
successors of identical pair (3, 1). Since both of them are not
on the same level and (4, 5) > (6, 3), (6, 3) can be pruned. In
Pruning Operation 2, If two identical character pairs (i1, j) and
(i2, j) are on the same level satisfying i1 < i2, then (i2, j) can
be pruned. In Pruning Operation 3, if there are identical pairs
(i1, j), (i2, j), (ir, j) and i1< i2< … <ir, then (i2, j), (ir, j) can
be pruned. All these pruning operations are carried out
without affecting the correctness of the algorithm. After
performing the pruning operations, the tracing back of LCS
starts from the identical pairs with the maximum level and
ends when it reaches an initial identical pair, and the trail
indicates the LCS. If more than one identical pairs with the
maximum level are present in the table, the tracing process
can be carried out in parallel to obtain LCS concurrently.

Efficient Fast Pruned LCS (EFP_LCS)

 EFP_LCS algorithm takes Fast LCS as its base algorithm
and increases its efficiency by extending it. EFP_LCS
algorithm also starts with successor table generation, finding
all the successors of identical pairs and performing three
pruning operations to increase the efficiency of the algorithm.
EFP_LCS extends the first pruning operation of Fast LCS by
identifying non-redundant IIDPs which results in the
reduction of computation time. In addition to the three pruning
operations of Fast LCS, EFP_LCS adds two more pruning
operations to make the algorithm more efficient. In Pruning
Operation 4, while finding successor for a pair (i, j), if either
the members of column i of the TX table or members of
column j of TY table are all having no entry then the pair (i, j)
is redundant in the next level. Hence the pair (i, j) can be
pruned in this level. In Pruning Operation 5, LCS is identified
by starting with first eligible IIDP character. This Process is
repeated with next IIDP. The length of 2nd LCS is compared
with the previous one. Discard the lesser length one and retain
only the longer one. This process is continued until all the
IIDPs are over. This pruning is useful in sequential
implementation of the algorithm.

I Ch(i) 0 1 2 3 4 5 6 7

1 A 1 7 7 7 7 7 7 -

2 C 4 4 4 4 - - - -

3 G 5 5 5 5 5 - - -

4 T 3 3 3 6 6 - -

International Journal of Computer Trends and Technology- volume4Issue2- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 185

Parallel LCS based on Dynamic Programming

 This algorithm is based on the filling of a score matrix
through a scoring mechanism. The best score is the length of
the LCS and the subsequence can be found by tracing back the
table. Let m and n be the lengths of two sequences to be
compared. The length of a maximal common subsequence in
A = {a1, a2 ... an} and B = {b1, b2 ... bm} is determined as
follows:
 0 i f i = 0 or j = 0
 L (i, j) = L (i−1, j−1) +1 if ai = bj
 Max (L (i, j−1), L (i−1, j)) else.
 The above scoring function is used to fill the scoring matrix
row by row. The highest calculated score in the score matrix is
the length of the LCS.

Fig 1. Example of scoring matrix

 For example, in the Fig.1 the length is 4. In the scoring
matrix, the LCS is traced back from the highest score point 4
to the score 1. In the scoring matrix L [i, j] totally depends on
the data in the same row and the same column. Hence the
value in the same column or same row cannot be computed in
parallel. Hence first L1, 1 is computed then L1, 2 and L2, 1 in
the same time, after that L1, 3, L2, 2 and L3, 1. This process is
continued until the matrix is filled. To parallelize the dynamic
programming algorithm, the score matrix is computed in the
anti-diagonal direction as shown in Fig.2.

Fig 2. Anti-Diagonal Approach

IV. EXPERIMENTAL RESULTS

All the three algorithms are tested on various datasets

whose length ranges from 50 to 900 on two systems: 2 core
and 4 core processors with 2GB memory and processor speed
up to 2.20GHz. The data used in implementation has been
taken from EBI [6] and EBI ftp server [7]. For LCS
computation, length of sequence 1 is kept as constant (50)
whereas length of sequence 2 varies from 50 to 900.

Table II and Table III summarizes the computation time

for LCS of two sequences in 2-Core and 4-Core systems.

TABLE II. COMPARISON OF COMPUTATION TIME FOR LCS OF 2
SEQUENCES IN 2-CORE PROCESSOR

TABLE III. COMPARISON OF COMPUTATION TIME FOR LCS OF 2

SEQUENCES IN 4-CORE PROCESSOR

 Fast
LCS

EFP LCS
(Sequential)

EFP
LCS
(Parallel)

Parallel
LCS(Dynamic
Programming)

Xlen Y
len

Elapsed
time in
secs

Elapsed
time in secs

Elapsed
time in
secs

Elapsed time
in secs

XLen: 50 50 2.838 2.629 2.45 5.32
XLen: 50 100 2.894 2.791 2.56 5.68
XLen: 50 150 3.181 2.98 2.69 5.97
XLen: 50 200 3.275 3 3 6
XLen: 50 250 3.346 3.143 3.01 6
XLen: 50 300 3.453 3.288 3.12 6
XLen: 50 350 4.250 3.984 3.406 6
XLen: 50 400 4.360 4.231 4.065 7
XLen: 50 450 4.516 4.45 4.23 8
XLen: 50 500 4.985 4.828 4.484 8
XLen: 50 700 5.922 5.015 4.75 10
XLen: 50 900 6.078 5.437 4.859 13

International Journal of Computer Trends and Technology- volume4Issue2- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 186

On comparison between FAST LCS and EFP_LCS, the

latter one proved to be more efficient in terms of memory
efficiency as well as resource utilization. EFP_LCS speeds up
the computation by over 40% to 60% when compared to
FAST LCS. When comparing all the three algorithms, a
different criterion had to be used. FAST LCS and EFP_LCS
were capable of computing LCS of multiple sequences and
more than one LCS between them whereas algorithm based on
dynamic programming can compute LCS for only two
sequences. Hence all three algorithms were tested for
performance only based on two sequences.

V. CONCLUSION

As a result, EFP_LCS proves to be the most efficient

parallel algorithm which can compute LCS in a faster and
more efficient way when compared to other two algorithms.
Although LCS algorithm based on dynamic programming is
parallel, it takes more time because it utilizes lot of resources.
All the three algorithms can also be tested on longer
sequences.

REFERENCES

[1]Smith TF, Waterman MS: Identification of common molecular
Subsequence, Journal of Molecular Biology 1990, 215:403-410.
[2]Needleman SB, Wunsch CD: A general method applicable to the
 search for similarities in the amino acid sequence of two
Proteins, J Mol Biol 1970, 48(3):443-453.
[3]Yixi Chen, Andrew Wan and Wei Liu , A fast Parallel Algorithm for
finding the Longest Common Subsequence of multiple biosequences , BMC
Bioinformatics 2006, 7 (suppl 4): 54, ©2006 Chen et al; licensee BioMed
Central Ltd.
[4]An Efficient Fast Pruned Parallel Algorithm for finding LCS in
Biosequences, Anale Seria Informatica. Vol. VIII fasc. 1 – 2010.
[5]Parallel Computing the Longest Common Subsequence (LCS) on GPUs:
Efficiency and Language Suitability, INFOCOMP 2011: The First
International Conference on Advanced Communications and Computation.
[6]ftp://ftp.ebi.ac.uk/pub/databases/fastafiles/asd/
[7]ftp://ftp.ebi.ac.uk/pub/databases/pdb_seq/
[8] http://www.pdb.org
[9] www.ebi.ac.uk

AUTHORS PROFILE

(1)Author M.V.Ramakrishnan is an M.Tech student in
Computer science & engineering, Dr.MGR University,
Chennai, Tamil Nadu, India.

(2)Author, Mrs.Sumathy Eswaran, is a Professor in Computer
Science & Engineering Department, Dr. MGR University,
Chennai, Tamil Nadu, and India. She has published 2 papers
in National Conference, 1 paper in International Conference
and 7 papers in International Journals.

 Fast
LCS

EFP LCS
(Sequential)

EFP
LCS
(Parallel)

Parallel
LCS(Dynamic
Programming)

Xlen Y
len

Elapsed
time in
secs

Elapsed
time in secs

Elapsed
time in
secs

Elapsed time
in secs

XLen: 50 50 1.875 1.703 1.628 5.062
XLen: 50 100 1.875 1.781 1.643 5.187
XLen: 50 150 1.875 1.781 1.644 5.281
XLen: 50 200 1.906 1.828 1.675 5.421
XLen: 50 250 1.937 1.875 1.698 5.437
XLen: 50 300 2.062 1.89 1.762 5.515
XLen: 50 350 2.125 1.922 1.794 5.625
XLen: 50 400 2.140 1.953 1.871 5.64
XLen: 50 450 2.141 2 1.972 5.687
XLen: 50 500 2.203 2 1.997 5.718
XLen: 50 700 2.328 2.047 2 5.8
XLen: 50 900 2.500 2.125 2.06 8.5

