
 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3476

Execution Planning for Continuous
Queries over Dissemination Network of Data

Aggregator

 M .Naresh Kumar R.Sailaja

 Sri Sai Aditya Institute of Science & Technology, Sri Sai Aditya Institute of Science & Technology,

 Surampalem, India Surampalem, India

ABSTRACT

Normally continuous queries are those used, to
observe the dynamically changing data and to
give results helpful for Online decision making.
Generally a user wants to achieve the value of
few aggregation functions over shared data items,
for example, to regulate when the value of a
stock portfolio exceeds a threshold. We focus on
approaches and techniques to assign such
dynamically changing data to a large number of
users with high accuracy, efficiency, and
scalability. In these queries a client maintains
a consistency requirement as part of the
query. We come up with a minimal –cost based
approach to answer continuous aggregation
queries using a network of aggregators of
dynamic data items. In that network of data
aggregators, each data aggregator handles a set
of data items at definite coherencies. Our
technique is splitting a client query into sub-
queries and executing sub-queries on properly
chosen data aggregators with their respective
sub-query incoherency bounds. We give a
mechanism for collecting the optimal set of sub-
queries with their inconsistency bounds which

satisfies client query’s coherency requirement
with minimum number of update messages
issued from aggregators to the client. We layout
a cost based model which can be used to
evaluating the number of messages prescribed
to satisfy the client specified incoherency
bound .

Key Words— Coherency, Continuous queries,
Cost, Distributed query processing, Data
dissemination, Performance.

1. INTRODUCTION
Web applications demand is increasing rapidly

for Data Engineering in presently. Data (i.e.,

Information) is fundamental thing in dynamically

changing Web applications. While Keep tracking

of data, we figure out the problem of intensifying

and executing multiple continuous queries, where

each query is a combination of filters and each

filter may appear in various queries. When filters

are expensive, significant performance gains are

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3477

achieved by sharing filter evaluations across

queries.

Data Aggregators can be consider as alternate

servers in the computation of results from

detailed database .For performing online analysis

dynamic data is prominent thing. Data aggregator

collects the information from designated

databases and giving the data to the user.

The comprehensive use of sensor networks in

scientific and engineering applications leads to

increased demand on the efficient computation of

the collected sensor data. Recent research in

sensor and stream data systems adopts the notion

of sliding windows to process continuous queries

over infinite sensor readings. Ordered processing

of input data is essential during query execution

for many application scenarios. In this paper we

discuss three approaches for ordered execution of

continuous sliding window queries over sensor

data. The first approach implements ordered

processing at the input side of the query

execution plan. In the second approach we utilize

the advantage of out-of-order execution to

optimize query operators and enforce an ordered

release of the output results. The third approach

is adaptive and switches between the first and

second approaches to achieve the best overall

performance with current input arrival rates and

level of multiprogramming. We study the

performance of the proposed approaches

analytically and experimentally and under a

variety of conditions such as the asynchronous

arrival of input data, and various levels of

multiprogramming. Our performance study is

based on an extensive set of experiments using a

realization of the proposed approaches in a

prototype stream query processing system.

Content dissemination networks (CDNs)

approach figure out the problem for static content

applying caches at the networks of edge nodes.

CDNs continue to appear to handle more and

more dynamic applications. A dynamically

generated web page is normally assembled

applying a number of static or dynamically

generated fragments. The static fragments are

served from the regional caches whereas dynamic

fragments are generated either by accepting the

cached information or by retrieving the data

items from the origin data sources. One essential

question for satisfying client requests through a

network of nodes is a way to choose the

impressive node(s) to satisfy the client request. In

dynamic CDNs, while choosing the node(s) as

per the client demand, the central application

(top-level CDN node) to make sure that

page/data served meets client’s coherency

essentials too. Techniques to efficiently serve

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3478

rapid changing data items with guaranteed

incoherency bounds have been proposed in the

literature. That dynamic data dissemination

networks will help to distributed information like

stock quotes, temperature data from sensors. In

this paper we propose a method to efficiently

answer aggregation queries involving such data

items.

2. PROPSED SYSTEM

In this paper our focus is, to present a low-cost,

scalable technique to answer continuous

aggregation queries using a network of

aggregators of dynamic data items. In that

network of data aggregators, each data

aggregator handles a set of data items at specific

coherencies. Our approach involves disintegrate a

client query into multiple sub-queries and

executing sub-queries on relevantly chosen data

aggregators with their individual sub query

incoherency bounds.

We address a method for getting the optimal set

of sub-queries with their incoherency bounds,

which satisfies client query’s coherency

requirement with less number of refresh

messages sent from aggregators to the client. .

We design a cost based model which can be

used to evaluating the number of messages

prescribed to satisfy the client specified

incoherency bound .

Our objective is to satisfy the client’s query

requirements while minimizing the query

execution cost in terms of number of

dissemination messages. Towards that end, we

have attained the following:

1. Developed techniques for estimating the cost

of disseminating a data item, at specified

incoherency bound.

2. Using the estimated data dissemination cost,

we developed query cost model for estimating

the cost of executing an incoherency bounded

continuously.

3. Used the query cost model for assigning a

client query to one or more data aggregators so

that the query can be executed with the least

number of messages.

3. OPTIMAL QUERY PLAN

We determine that the issue of selecting sub

queries while decreasing query execution cost is

an NP hard problem. Optimal Query Plan is NP-

hard for proving that the problem is NP-hard, For

a given client query and DA, let us first define

maximal sub-query as the largest part of the

query which can be disseminated by the DA (i.e.,

the maximal sub-query has all the query data

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3479

items which the DA can disseminate at the

required incoherency bound). For example, for a

client query 30S1 +45S2+75S3 with incoherency

bound 150; let the pre-decided incoherency

bound for each data item be 1. For the data

aggregators D1 and D2 given in Example 1, the

maximal sub-query for D1 will be q1=30S1

+75S3, whereas for D2 it will be q2=30 S1 +

45S2.

Executing queries using sub queries:

For executing an incoherency bounded

continuous query, a query plan is required which

includes the set of sub-queries, their individual

incoherency bounds and data aggregators which

can execute these sub-queries. We need to find

the optimal query execution plan which satisfies

client coherency requirement with the least

number of refreshes. What we need is a

mechanism to:

Task 1: Split the aggregation query into sub

queries; and

Task 2: Allocate the query incoherency bound

among them. While satisfying the following

conditions.

Condition 1. Query incoherency bound is

satisfied.

Condition 2. The chosen DA should be able to

provide all the data items appearing in the sub

query assigned to it.

Condition 3. Data incoherency bounds at the

chosen DA should be such that the sub-query

incoherency bound can be satisfied at the chosen

DA.

Objective: Number of refreshes should be

minimized.

Data Incoherency

The objective of incoherency bound model is for

estimating dependency of data dissemination cost

over the desired incoherency bound.

Data accuracy can be specified in terms of

incoherency of a data item, defined as the

absolute difference in value of the data item at

the data source and the value known to a client of

the data.

Network of data aggregators

Data aggregators are one kind of secondary

server it serves as data sources (data items). Data

refreshes can be done using two

mechanisms.(a)Push based mechanism data

source send update messages to client on their

own.(b)Pull based mechanism data sources send

messages to the client only when client makes a

request.

Security Model

This model is used to help the user to

provide the security of access. Because once

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3480

the user to logout or leave our account

automatically user password is changed and

server to send the password in our mail ID.

Whenever the user to logout the account

automatically the security key is changed based

on the random function.

Data synopsis Model

The Data synopsis model is used for

estimating the effect of data dynamics

on number of data Refreshes. We define

a data dynamics measure called, sum

diff, to obtain a synopsis of the data for

predicting the dissemination cost. The

number of update messages for a data

item is likely to be higher if the data

item changes more in a given time

window.

Client/Server Module

This model is used to help the client and

server interaction to the database. It is used to

dynamically create the table based on the

server entering value. These values are assigning

to the chat x and y position and display the client.

These values are changed in dynamically based

on the server entering values.

4. ALGORITHM USED
The greedy method is the most advisable method.

It is prominent for achieving the optimized

solutions.

Figure 1 provides the outline of greedy algorithm

for extracting sub queries.

 Fig 1: Greedy Algorithm for Query Plan Selection

5.OPTIMAZATION

CHALLENGES

We address the problem of finding the optimal

shared execution strategy for any given collection

of queries that share expensive filters. Finding

 Solve the n sizing sub problems

 if the solution found is better than current lower bound

 then update the current lower bound and let cont = 0 ;

 else let cont = cont +1;

 Calculate the Subgradient

 if the solution obtained is suitable

 then update the upper bound

 if the solution obtained is optimum then STOP

 else

 if the current solution is suitable

 then apply the improvement heuristic

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3481

the optimal shared execution strategy poses the

following major challenges:

1. Filter placement. The decision whether a

filter should be evaluated earlier or later in a

shared strategy should be made by taking all of

the following factors into account:

• Cost: Filters with low cost should preferably be

evaluated early, since they might resolve queries

at lower cost.

• Selectivity: The average fraction of incoming

data items that satisfy a filter is referred to as the

selectivity of that filter. Filters with lower

selectivity should preferably be evaluated early,

since they are more likely to resolve queries by

evaluating to false.

• Participation: The number of queries that

contain a given filter is referred to as the

participation of that filter. Filters with higher

participation should preferably be evaluated

early, since they can decide the results of a larger

number of queries. For a given filter, these three

factors may give contradictory suggestions for its

placement, so we must devise a placement

method that takes all the factors into account.

2. Execution Overhead. Executing a shared

strategy incurs some amount of overhead, e.g.,

keeping track of which filters have been

evaluated, and which queries have been resolved.

This overhead is in addition to the cost of the

filters evaluated by the strategy. Thus the overall

choice of the optimal strategy must take into

account the expected total cost of filters

evaluated by a strategy as well as its execution

overhead.
5.1 Delay Factors of query

The following factors are used to determine the

preference factor of a node:

1. Data Availability Factor: The number of data

items at a parent can serve Q with its current data

and coherency requirement.

2. Computational delay Factor: The larger the

computational delay incurred at a parent P to

disseminate a data change to its dependents, the

less preferred it is. We approximate this delay by

the number of dependents P has: On average, the

more dependents P has, the greater will be the

computational delays encountered by Q to get a

data update from P

3. Communication delay Factor: Parents which

have a large communication delay with Q are less

preferred.

5.2 Solve Query and Sub Queries

1 We should be selecting the plan with lesser

number of sub-queries. But that is not guaranteed

to be the plan with the least number of messages.

Further, we should select the sub-queries such

that updates to various data items appearing in a

sub-query have more chances of canceling each

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3482

other as that will reduce the need for refresh to

the client (Equation 2). In the above example, if

updates to S1 and S3 are such that when S1

increases, S3 decreases, and vice-versa, then

selecting plan1 may be beneficial. We give an

algorithm to select the query plan based on these

observations. While solving the above problem

of selecting the optimal plan we ensure that each

data item for a client query is disseminated by

one and only one data aggregator. Although a

query can be divided in such a way that a single

data item is served by multiple DAs (e.g., 30 S1

+ 45 S2 + 75 S3 is divided into two sub-queries

30 S1 + 75 S3 and 30 S1 + 45 S2); but in doing so

the same data item needs to be processed at

multiple aggregators, increasing the unnecessary

processing load. By dividing the client query into

disjoint sub-queries we ensure that a data item

update is processed only once for each query (For

example, in case of paid data subscriptions it is

not prudent to get the same data item from

multiple sources).

3. The query incoherency bound needs to be

divided among sub query incoherency bounds

such that, besides satisfying the client coherency

requirements, the chosen DA (where the sub

query is to be executed) is capable of satisfying

the allocated sub-query incoherency bound. For

example, in plan1 allocated incoherency bound

to the sub-query 30S1 + 75S3 should be greater

than 55 as that is the tightest incoherency bound

which the aggregator D1 can satisfy. We prove

that the number of refreshes depends on the

division of the query incoherency bounds among

sub-query incoherency bounds.

6. RELATED WORK

Distinct mechanisms for efficiently maintain

incoherency bounded aggregation queries over

continuously changing data items are proposed in

the literature [6, 8, 11]. In [9] authors predict that

each client’s data specifications are satisfied by

single data aggregator. In such case, data

aggregators may need to disseminate a extensive

data items which will lead to huge number of

refresh messages, so increase in delay. Hence

every client getting complete their data item from

a single data aggregator is optimal in view of

number of messages. Hence by our work, one can

frame anticipated number of messages for the

client query. So, by this work can complete the

optimizing Fidelity of data items. In [6] authors

addressed push based fetch applying data filters

at the sources. Based on that, for an aggregation

query, the number of refresh messages will be

reduced by achieving incoherency bound

allocation to respective data items such that the

number of messages from different data sources

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3483

is similar. Alternately we execute more dynamic

data items as part of bigger sub quires while

optimally assigning incoherency bounds. In [8]

authors proposed pull based data dissemination

methods, where clients or data aggregators

 Pull data items such that query specifications are

satisfied. In [17] author presented cost-based

methods to create network aggregation tree.

7. CONCLUSION
In this paper, we presented query optimization

using cost based technique, to reduce the number

of refresh messages required to execute an

incoherency bounded continuous query. For

optimal execution we divide the query into no of

sub queries and estimate each sub-query at a

chosen aggregator. Our query cost model can

also be used for other purposes such as load

balancing various aggregators, optimal query

execution plan at an aggregator node, etc. Our

future work is changing a query plan as data

dynamics changes and developing the cost model

for more complex queries.

REFERENCES
 [1] Rajeev Gupta, Kirthi Ramamrithm, “Query Planning for Continuous
Aggregation Queries
 Over a Network of data Aggregators “, IEEE 2012 Transactions on
Knowledge and Data
 Engineering, Vol .24, Issue: 6

 [2] A. Davis, J.Praikh and W.Weihl, “Edge Computing Extending
Enterprise Applications to
 The Edge Of the Internet”, WWW 2004.

 [3] D.VanderMeer, A.Datta, K.Dutta, H.Thomas and Ramamritham,
 Proxy –Based Acceleration of Dynamically Generated Content on
the World Wide Web”,
 ACM Transactions on Database Systems (TODS) Vol.29, June
2004.

 [4] S.Rangarajan, S.Mukerjee and P.Rodriguez, “User Specific Request
Redirection in a
 Content Delivery network “, 8 Intl .Workshop on Web Content
Caching and
 Distribution (IWCW), 2003.

[5] S.Shah, K.Ramamritham, and P.Shenoy, “Maintaining Coherency of
Dynamic Data in
 Cooperating Repositories “, VLDB 2002.

 [6] C.Olston, J.Jiang and J.Widom ,”Adaptive Filter for Continuous
Queries Over Distributed
 Data Streams”.SIGMOD2003

[7] S Shah, K .Ramamritham, and C.Ravishankar “Client Assignment in
Content
 Dissemination Networks for Dynamic Data “ , VLDB 2005.

[8] R Gupta , A Puri , and K.Ramamritham , “ Executing Incoherency
Bounded
 Continuous Queries at Web Data Aggregators”, WWW 2005.

[9] Y.Zhou, B. Chin Ooi and Kian-Lean Tan, “Disseminating
Streaming Data in a Dynamic
 Environment: An Adaptive and Cost Based Approach “, The
VLDB Journal, Issue 17,
 Pg.1465- 1483, 2008

[10] S.Madden, M.J.Franklin, J.Hellerstein and W.Hong, “TAG: a
Tiny Aggregation Service
 for Ad-Hoc Sensor Networks “, Proc. Of 5th Symposium on
Operating Systems Design
 and Implementation,2002.

[11] S. Agrawal, K. Ramamritham and S. Shah, “Construction of a
Temporal Coherency
 Preserving Dynamic Data Dissemination Network “, RTSS 2004.

[12] A.Iyenger and J.Challenger , “Improving Web server
Performance by Caching
 Dynamic Data” . Proceedings of the USENIX Symposium on
Internet Technologies and
 System (USEITS) 1997.

[13] R. Srinivasan, C .Liang, K. Ramamritham, “Maintaining temporal
coherency of Virtual
 Datawarehouses. “, Proceedings of the IEEE –Real time Systems
Symposium P.60,
 December 02-04,1998.

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3484

[14] A Deshpande, C. Guestrin, S .R. Madden, J. M. Hellerstein; and W.
Hong , “Model-Driven
 Data Acquisition in Sensor Networks “, VLDB 2004.

[15] R.Gupta and K.Ramamritham, “Optimized Query Planning of
Continuous Aggregation
 Queries in Dynamic Data Dissemination Networks “, WWW 2007.

[16] N .Jain, D. Kit , P.Mahajan ,P.Yalagandula , M .Dahlin and
Y.Zhang ,” STAR : Self –
 Tuning Aggregation for Scalable Monitoring “, VLDB 2007.

 [17] P. Edara, A.Limaye and K.Ramamritham, “Asynchronous In-
network Prediction 4 ,
 :Efficient Aggregation in Sensor Networks “, ACM Transactions
on Sensor Networks,
 Volume Number 4 , August 2008.

.

