
International Journal of Computer Trends and Technology- volume3Issue2- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 273

Implementation and Comparative Analysis
between Different Precision Interval

Arithmetic based Multiplication using
 Modified Array Method

Krutika Ranjankumar Bhagwat#1 , Dr. Tejas V. Shah*2 , Prof. Deepali H. Shah#3

#Instrumentation & Control Engineering Department
L. D. College of Engineering

Ahmedabad-380015, Gujarat, India
*S.S College of Engineering

Bhavnagar - 364060, Gujarat, India

Abstract— This paper presents the design of different
precision modified array multipliers, which performs interval
multiplication. Modified array multiplier requires carry save
adders instead of full adders that reduces the delay in respect
of conventional array multiplier. The double precision
multiplication , single precision multiplication, and half
precision multiplication are require 53 x 53, 24 x 24 , 11 x 11
multiplication respectively, which are done by array
multiplier. Multipliers are based on interval arithmetic which
provides the better accuracy, by avoiding rounding off error
over conventional floating point multiplier. There is
performance improvement as increasing precision, but it
requires slightly more area and delay.
Keywords— Double Precision, Single Precision, Half
Precision , Interval Multiplication , Significand Multiplier ,
Array Multiplier, Modified Array Multiplier.

I. INTRODUCTION

IEEE 754 standard defines half, single and

double precision they have 1 sign bit and 5,8,11
bits for exponent respectively and 11,24, 53 bits
for mantissa .The typical precision of the basic
binary formats is one bit more than the width of
its mantissa. The extra bit of precision comes
from an implied (hidden) 1 bit . [4]

 Total Precisions are therefore 53 bits
(approximately 3 decimal digits, 11 log10 (2) ≈
3.31) , 11 bits (approximately 7 decimal digits,
24 log10 (2) ≈ 7.22) 24 bits (approximately 16
decimal digits, 53 log10 (2) ≈ 15.955)
respectively . [4] The Bias and other detail of
different precision has been depicted in table 1.

Table I. Different Precision Formats

 Sign Exponent Mantissa BIAS

Half
Precision 1[15] 5[14-10] 10[9-00] 15

Single
Precision 1 [31] 8 [30-23] 23 [22-00] 127

Double
Precision 1 [63] 11 [62-52] 52 [51-00] 1023

II. INTERVAL MULTIPLICATION

Multiplication of the intervals x = [xl , xu] and

y = [yl ,yu] is defined as:
Z = x *y
 = [min(xlyl, xlyu ,xuyl , xuyu),max(xlyl, xlyu, xuyl,
xuyu)]

The interval multiplier shown in figure 1
has input and output registers, sign logic, an
exponent adder and a significand multiplier with
rounding and normalization logic. The input and
output registers are each 16 bits,32 bits, 64 bits
respectively and two multiplexer with control
signal tx ,ty are used .[10]The sign logic computes
the sign of the result by performing the
exclusive-or of the sign bits of the input operands.
For half , single and double precision the
exponent adder performs an 5,8 and 11 bit

International Journal of Computer Trends and Technology- volume3Issue2- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 274

addition of the two exponents and subtracts the
exponent bias of 15, 127 and 1023 respectively.
The significand multiplier performs a 11 bit by
11 bit , 24 bit by 24 bit and 53 bit by 53 bit
array multiplication for half , single and double
precision respectively. If the most signicant bit of
the product is one, the normalization logic shifts
the product right one bit and increments the
exponent. The rounding logic rounds the product
to 11,24 and 53 bits based on a rounding to
nearest even mode for all the three precision
formats.[10]

Fig 1. Interval multiplier

A. sign and toggle bits

fp + le ∙ (ylS + yuS ∙ Sxl) + le ∙ (Syu + Sxl ∙ Syl)

fp + le (xlS + xuS ∙ Syl) + el ∙ (Sxu +Sxl ∙Syl)

pf ∙ Sxl ∙ xuS ∙ Syl ∙ yuS

Table 2 is given for Setting of sign and
toggle bits for interval multiplication and Figure
2 is given for all 9 cases for interval
multiplication for lower interval . In this figure 2
indicator indicates case 9 for that output zc
becomes 1. Where Z= {mn, mx} for condition xl
< 0 < xu , yl < 0< yu. That gives lower interval
mx. Figure 3 is given for all 9 cases for interval
multiplication for upper interval . In this figure 3
indicator indicates case 9 for that output zc
becomes 1. Where Z= {mn, mx}for condition xl
< 0 < xu , yl < 0< yu. That gives upper interval
mn.[10]

B. Rounding Mode

 rm 0 = fp_rm0 ∙ fp + le ∙ fp
 rm1 = fp_rm1 + fp

To specify the operation performed by the
multiplier a control bit fp is used. This bit
is set to one for floating multiplication and
zero for interval multiplication. Figure 4 is given
for Rounding Mode Waveforms for fp=0 and
fp=1 . Table 3 gives value for Rounding mode
bits.

TABLE II

 Setting of sign and toggle bits for interval multiplication

 le = 1 le = 0

Case Condition sxl syl sxu syu Z tx ty tx ty zc

1 xl >0,yl > 0 0 0 0 0 {xlyl , xuyu}
1 1 0 0 0

2 xl>0,yu< 0 0 0 1 1 {xuyl , xlyu} 0 1 1 0 0

3 xu<0,yl>0 1 1 0 0 {xlyu , xuyl} 1 0 0 1 0

4 xu<0,yu<0 1 1 1 1 {xuyu , xlyl} 0 0 1 1 0

5 xl<0<xu ,yl>0 1 0 0 0 {xlyu , xuyu} 1 0 0 0 0

6 xl<0<xu ,yl <0 1 0 1 1 {xuyl , xlyl} 0 1 1 1 0

7 xl>0,yl<0<yu 0 0 1 0 {xuyl , xuyu} 0 1 0 0 0

8 xu<0,yl<0<yu 1 1 1 0 {xlyu , xlyl} 1 0 1 1 0

9 xl<0<xu ,yl<0<yu 1 0 1 0 {xuyu , xlyu} x x x x 1

International Journal of Computer Trends and Technology- volume3Issue2- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 275

C. le=1(lower interval)

Fig 2 Sign and Toggle Bits Waveforms for le=1(lower interval)

D. le=0(upper interval)

Fig 3:- Sign and Toggle Bits Waveforms for le=0(upper interval)

 fp=0 fp=1

Fig4:- Rounding Mode Waveforms for fp=0 and fp=1

International Journal of Computer Trends and Technology- volume3Issue2- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 276

Table III. Rounding mode bits

Rounding mode fp_rm1 fp_rm0

Round to nearest even 0 0

Round toward 0 0 1

Round toward + ∞ 1 0

Round toward - ∞ 1 1

III. SIGNIFICAND MULTIPLIER (ARRAY

MULTIPLIER USING CSA)

Fig 5. Array multiplier

Fig 6. Modified FA to CSA

m x n bit multiplication can be viewed as

forming n partial products of m bits each and then
summing the appropriately shifted partial products
to produce an m+n bit result p. Therefore,

generating partial products consist of the logical
ANDing of the appropriate bits of the multiplier
and multiplicand. Then, each column of partial
products must be added and if necessary, any carry
values passed to the Next column. Simple array
multiplication using full adder is shown in figure 5.
[4] Partial products are added using carry save
adder instead of full adder which reduces delay.
Full adder is replaced with CSA given in figure
6.[13]

Multiplication requires n*(n-1) csas, where

n=53, 24,11 respectively. So , n*(n-1) = 53 *52=
2756, n*(n-1) = 24 *23= 552, n*(n-1) = 11
*10= 110 csas are used respectively . Arrangement
of 2756 , 552and 110 csas are used to add partial
products of multiplier respectively

0

50000

100000

150000

200000

250000

300000

350000

400000

Total memory usage in kilobytes

half precision

single precision

Double precision

Fig 7 comparative area

analysis

0

100

200

300

400

500

Critical path delay

half precision

single precision

Double
precision

Fig 8. comparative critical path delay analysis

International Journal of Computer Trends and Technology- volume3Issue2- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 277

TABLE IV. ANALYSIS REPORT

IV COMPARATIVE ANALYSIS

From the analysis report , number of MULT 18X18S

IOs are 4,16 and 32 for half , single and double precision
respectively. The memory required is 145056,
164640 ,334140 kilobytes for half , single and double
precision respectively . The critical path delay is
58.57,182.122, 421.563 ns for half , single and double
precision interval arithmetic array multiplier respectively. the
detail comparison has been provided in table 4.

Figure 7 gives comparative area analysis of half ,

single and double precision modified array multiplication
using interval arithmetic. Figure 8 gives comparative critical
path delay analysis of half , single and double precision
modified array multiplication using interval arithmetic.

V. CONCLUSION

Interval arithmetic provides reliability and accuracy

by computing a lower and upper bound in which result is
guaranteed to reside. Concept of carry look ahead for
exponent adder is used which reduces the delay.

Concept of carry save adder in array multiplication is

used instead of half adders and full adders which reduces the
number of gates and delay.

For interval arithmetic array multiplier double

precision requires more real time delay compared to single
precision. And single precision requires more real time delay

compared to half precision interval arithmetic array multiplier.
So speed of interval arithmetic array multiplier decreases and
area increases as precision increases.

REFERENCES

[1] Josh Milthorpe and Alistair Rendell “Learning to live with errors: A
fresh look at floating-point computation”, Australian National
University, Computing Conference 2005

[2] Gupte, ruchir “Interval arithmetic logic unit for dsp and control
applications”, Electrical and Computer Engineering, Raleigh 2006

[3] Samir Palniker, “ Verilog HDL: A Guide to Digital Design and
Synthesis”, ISBN 81-297-0092-1, @2003 SUN MICROSYSTEMS

[4] “ IEEE Standard 754 for Binary Floating Point Arithmetic ” ,
ANSI/IEEE Standard No. 754, American National Standards Institute,
Washington DC , 1985.

[5] Behrooz Parhami , “Computer Arithmetic, Algorithms and Hardware
Designs” , 2nd Edn, OXFORD, Mar. 2011

[6] Alexandru Amaricai Mircea Vladuaiu Lucian Prodan Mihai Udrescu
Oana Boncalo “Design of Addition and Multiplication Units for High
Performance Interval Arithmetic Processor”, Computer Science and
Engineering Department, ©2007 IEEE

[7] Michael J. Schulte and Earl E. Swartzlander Jr., “A Performance
Comparison Study on Multiplier Designs” ,IEEE Transaction On
Computers, May 2000

[8] Yong Dou S. Vassiliadis G. K. Kuzmanov G. N. Gaydadjiev , “64-bit
Floating-Point FPGA Matrix Multiplication” , National Laboratory for
Computer Engineering, FPGA’05, Monterey, California, USA,
February , 2005

[9] Anane Nadjia, Anane Mohamed, Bessalah Hamid, Issad Mohamed &
Messaoudi khadidja, “Hardware Algorithm for Variable Precision
Multiplication on FPGA” © 2009 IEEE

[10] James E. Stine and Michael J. Schulte “A Combined Interval and
Floating Point Multiplier”, Computer Architecture and Arithmetic
Laboratory ,Electrical Engineering and Computer Science Department,
Lehigh University, Bethlehem, PA 18015

[11] Sparc Architecture Manual
[12] Prof. LohCS3220- Processor Design “Carry-Save Addition” - Spring

2005, February , 2005
[13] “Carry Save Adder Trees in Multipliers” ecen 6 2 6 3 advanced vl sI

design november 3, 1999
[14] .N. Marimuthu1, P. Thangaraj “Low Power High Performance

Multiplier”, Anna University, Tamil nadu , India
[15] Steve Kilts, “Advanced FPGA Design Architecture,

Implementation, and Optimization”, Wiley – Interscience, A John
Wiley & Sons, ISBN 978-0-470-05437-6, @ 2007 IEEE.

Device : XC351600E & Family: SPARTAN 3E
Device utilization summary for interval arithmetic based modified array multiplication

Area analysis Half precision Single precision Double precision
Number of Slices 359 837 8603
Number of 4 input LUTs 637 1455 14967
Number of Ios 127 97 499
Number of bonded IOBs 127 97 499
Real time delay 18.00 ns 62.00 ns 358 ns
Number of
MULT18X18SIOs 4 16 32
Critical path delay 58.57 ns 182.122 ns 421.563 ns
Total memory usage 145056 KB 164640 KB 334140 KB

