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Abstract— This paper presents the design of different 
precision modified array multipliers, which performs interval 
multiplication. Modified array multiplier requires carry save 
adders instead of full adders that reduces the delay in respect 
of conventional array multiplier. The double precision 
multiplication , single precision  multiplication,  and half 
precision  multiplication are  require  53 x 53, 24 x 24 , 11 x 11 
multiplication respectively, which are  done by array 
multiplier. Multipliers are based on interval arithmetic which 
provides the better accuracy, by avoiding rounding off error 
over conventional floating point multiplier. There is 
performance improvement as increasing precision, but it 
requires slightly more area and delay. 
Keywords— Double Precision, Single Precision, Half 
Precision , Interval Multiplication , Significand Multiplier ,   
Array Multiplier, Modified Array Multiplier. 

I. INTRODUCTION 

 
IEEE 754 standard defines half, single and  

double precision they have 1 sign bit and 5,8,11 
bits for exponent respectively and 11,24, 53 bits 
for mantissa  .The typical precision of the basic 
binary formats is one bit more than the width of 
its mantissa. The extra bit of precision comes 
from an implied (hidden) 1  bit . [4] 

 
  Total Precisions  are  therefore 53 bits 
(approximately 3 decimal digits, 11 log10 (2) ≈ 
3.31 ) , 11 bits (approximately 7 decimal digits, 
24 log10 (2) ≈ 7.22 )  24 bits (approximately 16 
decimal digits, 53 log10 (2) ≈ 15.955 ) 
respectively . [4] The Bias and other detail of 
different precision has been depicted in table 1.   

 
Table I.  Different Precision Formats 

 
  Sign Exponent Mantissa BIAS 

Half  
Precision 1[15]  5[14-10] 10[9-00]  15 

Single 
Precision 1 [31] 8 [30-23] 23 [22-00] 127 

Double 
Precision 1 [63] 11 [62-52] 52 [51-00] 1023 
 

II. INTERVAL MULTIPLICATION 

 
Multiplication of the intervals x = [xl , xu] and 

y = [yl ,yu] is defined as: 
Z = x *y 
   = [min(xlyl, xlyu ,xuyl , xuyu),max(xlyl, xlyu, xuyl, 
xuyu)] 

The interval multiplier shown in figure 1 
has input and output registers, sign logic, an 
exponent adder and a significand multiplier with 
rounding and normalization logic. The input and 
output registers are each 16 bits,32 bits, 64 bits  
respectively and two multiplexer with control 
signal tx ,ty are used .[10]The sign logic computes 
the sign of the result by performing the 
exclusive-or of the sign bits of the input operands. 
For half , single and double precision the 
exponent adder performs an 5,8 and 11 bit 
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addition of the two exponents and subtracts the 
exponent bias of 15, 127 and 1023 respectively. 
The significand multiplier performs a 11 bit by 
11 bit , 24  bit by 24 bit and 53  bit by 53 bit 
array multiplication for half , single and double 
precision respectively. If the most signicant bit of 
the product is one, the normalization logic shifts 
the product right one bit and increments the 
exponent. The rounding  logic rounds the product 
to 11,24 and 53 bits based on a rounding to 
nearest even mode for all the three precision 
formats.[10] 

 
Fig  1.  Interval multiplier 

A. sign and toggle bits  

fp +  le ∙ ( ylS  + yuS ∙ Sxl ) +  le  ∙ ( Syu +  Sxl ∙ Syl  ) 

fp +   le ( xlS + xuS ∙  Syl  )  + el ∙  (  Sxu  +Sxl  ∙Syl  ) 

pf  ∙   Sxl ∙  xuS   ∙ Syl  ∙ yuS                 

Table 2 is given for Setting   of sign and 
toggle bits for interval multiplication and Figure 
2 is given for all 9 cases for interval 
multiplication for lower interval . In this figure 2 
indicator indicates case 9   for that output zc 
becomes 1. Where  Z= {mn, mx} for condition xl 
< 0 < xu , yl < 0< yu.  That gives lower interval  
mx. Figure 3 is given for all 9 cases for interval 
multiplication for upper interval . In this figure 3 
indicator indicates case 9 for that output zc 
becomes 1. Where  Z= {mn, mx}for condition xl 
< 0 < xu , yl < 0< yu. That gives upper interval 
mn.[10] 

 
B. Rounding  Mode  
 

    rm 0  =  fp_rm0  ∙ fp +  le ∙ fp   
             rm1  =  fp_rm1 + fp    
 
To specify the operation performed  by  the  
multiplier  a  control  bit  fp  is  used.  This  bit  
is  set  to  one  for  floating multiplication and 
zero for interval multiplication. Figure 4 is given 
for Rounding Mode Waveforms for   fp=0  and   
fp=1 . Table 3 gives value for Rounding mode 
bits. 

 
TABLE II 

 Setting  of  sign and toggle bits for interval multiplication 
 

  le = 1  le = 0   

Case Condition sxl syl sxu syu           Z tx ty tx ty zc 

1 xl >0,yl > 0 0 0 0 0  {xlyl  ,  xuyu} 
1 1 0 0 0 

2 xl>0,yu< 0 0 0 1 1 {xuyl , xlyu} 0 1 1 0 0 

3 xu<0,yl>0 1 1 0 0 {xlyu ,  xuyl} 1 0 0 1 0 

4 xu<0,yu<0 1 1 1 1 {xuyu ,  xlyl} 0 0 1 1 0 

5 xl<0<xu ,yl>0 1 0 0 0 {xlyu  , xuyu} 1 0 0 0 0 

6 xl<0<xu ,yl <0 1 0 1 1 {xuyl  ,  xlyl} 0 1 1 1 0 

7 xl>0,yl<0<yu 0 0 1 0 {xuyl ,  xuyu} 0 1 0 0 0 

8 xu<0,yl<0<yu 1 1 1 0 {xlyu  , xlyl} 1 0 1 1 0 

9 xl<0<xu ,yl<0<yu 1 0 1 0 {xuyu , xlyu} x x x x 1 

 



International Journal of Computer Trends and Technology- volume3Issue2- 2012 
 

ISSN: 2231-2803  http://www.internationaljournalssrg.org  Page 275 
 

 
  

 
 
 

C. le=1(lower interval) 

 
 

Fig  2 Sign and Toggle Bits Waveforms for  le=1(lower interval) 

 
D. le=0(upper interval) 

 
 

Fig 3:-  Sign and Toggle Bits Waveforms for le=0(upper interval) 

 

 
                                     fp=0                                  fp=1 

 
Fig4:- Rounding Mode Waveforms for   fp=0  and   fp=1 
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Table III. Rounding mode bits 

Rounding mode fp_rm1 fp_rm0 

Round to nearest even 0 0 

Round  toward 0 0 1 

Round  toward + ∞ 1 0 

Round  toward - ∞ 1 1 
 

 
III. SIGNIFICAND MULTIPLIER (ARRAY 

MULTIPLIER USING CSA) 
 

 
 

Fig 5.  Array multiplier 

 
Fig  6. Modified  FA to CSA 

 
m x n bit multiplication can be viewed as 

forming n partial products of m bits each and then 
summing the appropriately shifted partial products 
to produce an m+n bit result p. Therefore,  

generating partial products consist of the logical 
ANDing of the appropriate bits of the multiplier 
and multiplicand. Then, each column of partial 
products must  be added and if necessary, any carry 
values passed to the Next column. Simple array 
multiplication using full adder is shown in figure 5. 
[4] Partial products are added using carry save 
adder instead of full adder which reduces delay. 
Full adder is replaced with CSA given in figure 
6.[13]  

 
Multiplication requires  n*(n-1) csas, where 

n=53, 24,11 respectively. So ,  n*(n-1) = 53 *52= 
2756,  n*(n-1) = 24 *23= 552,  n*(n-1) =     11 
*10= 110 csas are used respectively . Arrangement 
of 2756 , 552and 110 csas are used to add partial 
products of multiplier respectively  
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TABLE IV. ANALYSIS REPORT 

 
 

      
IV   COMPARATIVE  ANALYSIS 

 
From the analysis report , number of MULT 18X18S 

IOs are 4,16 and 32 for half , single and double precision 
respectively. The memory required is 145056, 
164640 ,334140 kilobytes for half , single and double 
precision respectively . The critical path delay is 
58.57,182.122, 421.563 ns for half , single and double 
precision interval arithmetic array multiplier  respectively. the 
detail comparison has been provided in table 4.   

 
Figure 7 gives comparative area analysis of half , 

single and double precision modified array multiplication 
using interval arithmetic.  Figure 8 gives comparative critical 
path delay analysis of half , single and double precision 
modified array multiplication using interval arithmetic.  

 
V. CONCLUSION 

 
Interval arithmetic provides reliability and accuracy 

by computing a lower and upper bound in which result is 
guaranteed to reside. Concept of carry look ahead for  
exponent adder is used which reduces the delay.  

 
Concept of carry save adder in array multiplication is 

used instead of half adders and full adders which reduces the 
number of gates and delay.  

 
For interval arithmetic array multiplier double 

precision requires more real time delay compared to single 
precision. And single precision requires more real time delay 

compared to half precision interval arithmetic array multiplier.  
So speed of interval arithmetic array multiplier decreases and 
area increases as precision increases. 
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Device : XC351600E  &   Family:  SPARTAN 3E  
Device utilization summary  for interval arithmetic   based  modified  array  multiplication  

Area analysis Half  precision Single  precision Double precision 
Number of Slices 359 837 8603 
Number of 4 input LUTs 637 1455 14967 
Number of Ios 127 97 499 
Number of bonded IOBs 127 97 499 
Real time delay  18.00  ns 62.00  ns 358  ns 
Number of 
MULT18X18SIOs 4 16 32 
Critical path delay 58.57 ns 182.122 ns 421.563 ns 
Total memory usage 145056 KB 164640 KB 334140 KB 


