
International Journal of Computer Trends and Technology- volume3Issue2- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 268

FPGA Based Area And Throughput Implementation
of JH And BLAKE Hash Function

Vaibhav Doshi
Amity School of Engineering and

Technology
Amity University Rajasthan, Jaipur

Richa Arya
Amity School of Engineering and

Technology
Amity University Rajasthan, Jaipur

Rajesh Kumar Yadav
Amity School of Engineering and

Technology
Amity University Rajasthan, Jaipur

Abstract--Implementation of area and throughput of the main
building block (compression function) for two SHA-3 candidates
BLAKE and JH hash function. The National Institute of
Standards and Technology (NIST) has started a competition for
a new secure hash standard. A significant comparison between
the submitted candidates is only possible, if third party
implementations of all proposed hash functions are provided[5].
The BLAKE family contains the four hash function BLAKE-28,
BLAKE-32, BLAKE-48, BLAKE-64 with the bit length of their
digests being 224,256,384 and 512 , respectively and JH contains
JH-224, JH-256, JH-384, JH-512.We use the proposed block
diagram of JH and BLAKE compression function and find fixed
size message digest from binary string of arbitrary length. The
compression function of BLAKE-256 takes as the input four
values chain value(h) , message block(m), salt(s) and counter(t).
AES design methodology is used in JH design and the BLAKE
hash function HAIFA iteration mode[7]. In this paper FPGA
implementation is based on two cryptographic hash function
candidates BLAKE[6] and JH. and also compare the functions
which is used in JH and BLAKE and then extract the important
advantages, limitations, algorithms and design principals of
both candidates.

Keyword: SHA-3, JH , BLAKE , Hash, Compression Function.

 I INTRODUCTION
Hash functions are an essential type of cryptography, which is
generally used in protocols and security mechanisms. It is
defined as computationally efficient function, which maps
binary strings of arbitrary length to binary strings of fixed
length and finally the outputs of a hash computation ,called
hash values. NIST has selected the Second Round Candidates
of the SHA-3 Competition[5]. In the present paper, we focus
on the new SHA-3 competition, started by the National
Institute of Standards and Technology (NIST), which searches
for a new hash function in response to security concerns
regarding the previous hash functions SHA-1[10] and the
SHA-2[11] family. This competition requires third party
software and hardware implementations of all proposed
candidates to evaluate the overall performance and resource

requirements. The Second SHA-3 Candidate Conference will
be held at the University of California, Santa Barbara, on

August 23-24, 2010. The purpose of this conference is to
discuss the 14 second round candidates[6] , and to obtain
valuable feedback for the selection of the finalists. Techniques
are used in the design of JH [2]. We proposed a new
compression function structure to construct a compression
function from a block cipher with constant key. JH
compression function is constructed from a permutations ,
round function and bijective function (a block cipher with
constant key). The block size of the block cipher is 2m bits,
2m-bit hash value H(i−1) and the m-bit message block M(i) are
compressed into the 2m-bit H(i). Message digest size is at most
m bits. The resulting digest is the first 224, 256, 384 or 512
bits from the 1024-bit final value[14]. The BLAKE family
contains the four hash function BLAKE-28, BLAKE-32,
BLAKE-48, BLAKE-64 with the bit length of their digests
being 224,256,384 and 512 , respectively The compression
function of BLAKE-256 takes as the input four values chain
value(h), message block(m) , salt(s) and counter(t).These
functions are basically different in word length they use for
the data transformation, in the applied message block, the
produced message digest, as well as in the used salt. The
former to operate on 32-bit words, used for computing hashes
up to 256 bits long , while the latter two work with 64-bit
words , used for computing hashes up to 512 bits long.
The rest of this work is organized as follows: a review of
functions which are used in compression function of JH and
BLAKE , general design approach and summary of hash
algorithm of both candidates in Section II to Section III.
Section IV contains a comparison between the common
features of both candidates and Section V contains simulation
work, some concluding remarks are discussed in Section VI.

 II JH HASH ALGORITHM
Hongjun Wu has proposed the JH algorithm [4]. The
compression process starts by exclusive-oring the input
message to the first part of the previous hash. After
regrouping the bits, there exist 42 rounds of the round

International Journal of Computer Trends and Technology- volume3Issue2- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 269

function. The round function uses the generalized AES design
methodology and is made of three separate layers: S-Box,
Linear transformation (L), and Permutation (P). There exist
two different S-boxes inside the S-box layer. The parameter
round constant (Cr) determines which of the S-boxes is used
for each round. The linear transformation layer uses
multiplication over the finite field GF(24) using the irreducible
polynomial x4 + x + 1. The permutation layer is similar to the
row rotation in the AES. The next steps in compression are
one layer of S-Box and a de-grouping module. At the end, the
msb part of the state variable is exclusive-ored with the input
to create the output hash. The general block diagram used for
the hardware implementation of JH-256 is shown in Fig. 1.
The message M is expanded to a multiple of 512 bits, where
the message M is padded with at least 512 bits. The round
constant vector Cr is loaded and is used later in the round
function Rd. Next the bijective function Ed is executed, which
consists of a grouping function, the round function Rd, a
trailing substitution layer St, as well as a de-grouping function.
The round function Rd is executed 42 times and contains two
substitution-permutation networks and two linear
transformations (L, LCr) that implement a (4, 2, 3) maximum
distance separable (MDS) code over GF(24). The substitution
layer S within Rd as well as the trailing substitution layer St
contain two 4-bit S-boxes(S1,S2).

 Figure 1:Proposed structure of JH-256
The round constant vector Cr selects which S-boxes are used
in the substitution steps and is updated in every round of Rd.
After each invocation of Rd , the value of Cr it updated by
passing it through the substitution-permutation network , and
the linear transformation LCr. The last step in Fd is an XOR
operation of Mi with the second half of H. The remaining 512-
bit message blocks run through the same compression
procedure to iteratively generate the hash value. After all
message blocks have been processed, the n-bit message digest
of M is composed of the last n bits of H.
 IMPLEMENTATION of JH

Our implementation of JH-256 works with 320 instances of a
combinational implementation of the S-Boxes; 256 S-boxes
work on the H and 64 S-boxes work on the round constant
vector Cr in every round of Rd. This way, one round of Rd can
be executed in only one clock cycle. The data path of our
implementation is illustrated in Figure 2.

 Figure 2: Proposed structure of data path of JH

In our implementation of JH the registers for the 1024-bit
internal state H, the 512-bit message block Mi, and the 256-bit
round constant Cr occupy approximately one quarter of the
whole area. The 320 combinational S-boxes occupy another
quarter of the area.

 III BLAKE HASH ALGORITHM
The BLAKE family of hash functions has been designed by
Aumasson et al. [6] and follows the concept of the HAsh
Iterative FrAmework" (HAIFA) [17]. Two versions of
BLAKE are available: a 32-bit version (BLAKE-32) for
message digests of 224 bits and 256 bits, and a 64-bit version
(BLAKE-64) for message digests of 384 bits and 512 bits.
BLAKE uses the local wide-pipe strategy and operates on a
large inner state v that is represented as a 4X4 matrix shown..

Basically, the compression function consists of three steps:
initialization, round updates, and finalization shown in
diagram..

Figure 3: The local wide-pipe construction of BLAKE’s

compression function

International Journal of Computer Trends and Technology- volume3Issue2- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 270

During the first step, the inner state v is initialized from hi , s
and t. Afterwards, v is updated several times by using a
message-dependent round function. In the last step, v is
compressed and the next chaining value hi+1 is computed. The
round function is based on the stream cipher ChaCha [16] and
consists of the eight round-dependent transformations G0 ,..,G7 .
G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13) G2(v2 , v6 , v10, v14)
G3(v3 , v7 , v11, v15) G4(v0 , v5 , v10, v15) G5(v1 , v6 , v11, v12)
G6(v2 , v7 , v8 , v13) G7(v3 , v4 , v9 , v14)

All Gis are derived from a single transformation operation G
which is parameterized by a permutation table σ shown
below..

Each Gi processes four words of the inner state v and is
composed of modular additions, XOR, and shift operations.
First, G0,...,G3 are applied in parallel on the four vertical
columns of v. Consecutively, G4,....,G7 are applied in parallel on
the four disjoint diagonals of v. BLAKE-32 uses 10 iterations
of the round function and BLAKE-64 uses 14 iterations.

 IMPLEMENTATION of BLAKE

We have implemented various design approaches of BLAKE-
32 and evaluated them with respect to the maximum
achievable throughput. Results have shown that the best
performance is obtained by implementing four parallel
instances of the transformation operation G. Hence, two clock
cycles are required for computing one round of BLAKE-
32.The finalization step, which produces the next chaining
value, by one clock cycle additionally increases the
performance.

 Figure 4:Proposed generic structure of BLAKE

The efficiency of this approach in terms of throughput per
area can be further improved by splitting the functionality of
each G operation into two equal parts and implementing only
one of them in hardware. After ten rounds of transformation,
the next chain value (hi) is extracted from the state value in the
finalization stage.

IV COMPARATIVE RESULT OF COMMON FEATURES
OF BOTH CANDIDATES

 Table 1: Common features of both candidates

 V SIMULATION WORK

The proposed architectures have been used for the
implementation of both hash functions and different
architecture of BLAKE. All of them, have been captured by
using VHDL, Stratix III FPGA family from Altera. The
analytical synthesis results for the introduced integrations are

International Journal of Computer Trends and Technology- volume3Issue2- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 271

presented in the next Table 2. Throughput is calculated as
follows:

 Throughput = (# Bits of Message Block X Frequency) /
 (# Clock Cycles / Message Block)
 Table 2:

Furthermore, the proposed FPGA integrations are compared in
the terms of frequency (MHz), throughput (Mbps) and area-
delay product (slices x MHz), order to provide more detailed
and fair comparison for each functions of BLAKE family fig.5

.

 Figure 5: BLAKE Family Comparisons Graph
 Table 3:

Table 3 contains the area and throughput of the BLAKE and
JH with different architecture. The area is given in terms of
gate equivalents (GEs)[18]. The reported clock frequency is
the maximum value under typical conditions[19]. The
throughput column indicates the peak throughput at the stated
clock frequency. The [8G] and [4G]-BLAKE architectures
maximize the throughput, so they were synthesized with speed
optimization options at the maximal clock frequency. The
target applications of [1G] and [1/2G]-BLAKE are resource-
restricted environments, where a compact chip size is the main
constraint.

 Figure 6: Both candidates comparisons graph

 VI CONCLUSION
We have presented FPGA implementation of the compression
function for two candidates of the SHA-3 competition.
Implementations have been carried out using the Stratix III
FPGA family from Altera. Results have also been compared
with the implementation results of some other candidates
using the same platform.

 REFERANCES
[1] A. H. Namin and M. A. Hasan, Waterloo, Ontario N2L
3G1 Canada. Compression Function for Selected SHA-3
Candidates.
[2] Hongjun Wu, “The Hash Function JH”, The First SHA-3
Candidate Conference, 2009, available on line at

 http://ehash.iaik.tugraz.at/wiki/JH
 [3] J. P. Aumasson , L. Henzen , W. Meier, and R.C.W. Phan,
“SHA-3 Proposal BLAKE”, Online:
http://www.131002.net/blake 2010.
[4] Wu, H., SHA-3 proposal JH, Website: http://icsd.i2r.astar.
edu.sg/staff/hongjun/jh/.
[5] National Institute of Standard and Technology (NIST):
Cryptographic Hash Algorithm Competition Website:
http://csrc.nist.gov/groups/ST/hash/sha-3/.
[6] J.P. Aumasson, L. Henzen, W. Meier, R.C.W. Phan,
“SHA-3 proposal BLAKE”. Submission to the SHA-3
Competition, 2008.
[7] E. Biham, O. Dunkelman, “A framework for iterative hash
functions- HAIFA”.Cryptology ePrint Archive, Report
2007/278.
[8] Mao Ming,He Qiang ,Shaokun Zeng Xidian University
Xi’an , Shanxi, China BLAKE-32 based on differential
properties, 2010 International Conference on Computational
and Information Sciences.
[9] George Provelengios,Nikolaos S. Voros,Paris Kitsos
Greece, 2011 14th Euromicro Conference on Digital
System Design
[10] SHA-1 Standard, National Institute of Standards and
Technology (NIST), Secure Hash Standard, FIPS PUB 180-1,

International Journal of Computer Trends and Technology- volume3Issue2- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 272

1995, available on line at www.itl.nist.gov/fipspubs/ fip180-
1.htm
[11] Secure Hash Standard (SHS), National Institute of
Standards and Technology (NIST), FIPS PUB 180-3, 2008,
available on line at
http://csrc.nist.gov/publications/fips/fips180-3/fips180-
3_final.pdf
 [12] IEEE Annual Symposium Nicolas Sklavos 2010,ZIP
27100,GREECE,Paris Kitsos, Computer Science Hellenic
Open University, GREEC
[13] J.-L. Beuchat, E. Okamoto, and T. Yamazaki, “Compact
implementations of BLAKE-32 and BLAKE-64 on FPGA,” in
FPT, 2010, pp. 170–177.
[14] H. Wu. SHA-3 proposal JH, version January 15, 2009.
JH
[15]Bernhard Jungk and J¨urgen Apfelbeck,Hochschule
RheinMain, Wiesbaden, Germany 2011 International
Conference on Reconfigurable Computing
[16] D. J. Bernstein. ChaCha, a variant of Salsa20. Available
online at http://cr.yp. to/chacha/chacha-20080128.pdf, January
2008.
[17] E. Biham and O. Dunkelman. A Framework for Iterative
Hash Functions - HAIFA. In Second NIST Cryptographic
Hash Workshop, Santa Barbara, California, USA, August 24-
25, 2006, August 2006.
[18]Cadence Design Systems. The Cadence Design Systems
Website. http://www.cadence.com/.
[19].C. D. Canni_ere, H. Sato, and D. Watanabe. Hash
Function Lufia, Specification Ver. 2.0. Available online at
http://www.sdl.hitachi.co.jp/crypto/luffa/
Luffa_v2_Specification_20090915.pdf, September 2009.

