
International Journal of Computer Trends and Technology- volume3Issue1- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 185

PREDICTING SOFTWARE BUGS USING WEB
LOG ANALYSIS TECHNIQUES AND NAÏVE

BAYESIAN TECHNIQUE

 D.PADMABHUSHANA1, D.SRIKANTH2

DEPARTMENT OF CSE,

Gudlavalleru Engineering College, Gudlavalleru

Abstract - With the continued growth and proliferation of
Web services, software as a services and Web based
information systems, the volumes of user data have reached
astronomical proportions. As the World Wide Web is
continuously and rapidly growing, it is necessary for the web
miners to utilize intelligent tools in order to find, extract,
filter and evaluate the bugs information. The data pre-
processing stage is the most important phase for investigation
of the web bugs behavior. To do this one must extract the only
human user accesses from weblog data which is critical and
complex. Hence an extensive learning algorithm is required
in order to get the desired information. Software defect (bug)
repositories are great source of knowledge. Data mining can
be applied on bug repositories to explore useful interesting
patterns. Complexity of a bug helps the development team to
plan future software build and releases. This paper
introduces an extensive research frame work capable of pre
processing web log bug data completely and efficiently. The
framework reduces the error rate and improves significant
learning performance of the algorithm. This framework helps
to investigate the software bug behavior efficiently. For this
Naïve Bayesian classifier is applied to predict for the future
depending on the current analysis outcomes. Our system is
intended to provide for Web Site Maintainers, Web Site
Developers, Personalization Systems, Pre-fetched Systems,
Recommender Systems and Web Site Analysts as well as
software developers to analyze the bugs in the software code.

Keywords - Web server log, Web usage mining, Data mining,
User access patterns.

 I. INTRODUCTION

World Wide Web (WWW) is very popular and
interactive. It has become an important source of information
and services. The web is huge, diverse and dynamic.
Extraction of interesting information from Web data has
become more popular and as a result of that web mining has
attracted lot of attention in recent time [1]. Web mining is an
application of data mining to large web data repositories [2].It
can be divided in to three categories namely web structure
mining, web content mining and web usage mining. Web

mining is the automatic discovery of user access patterns from
web servers. Web usage mining is an important technology
for understanding user’s behaviors on the web and is one of
the favorite area of many researchers in the recent time.
Obtained user access patterns can be used in variety of
applications, for example, one can keep track of previously
accessed pages of a user. These pages can be used to identify
the typical behavior of the user and to make prediction about
desired pages [4]. Thus personalization for a user can be
achieved through web usage mining. Mass customization and
personalization performed by dynamic.

Many commercial web log analyzer tools are
available in the market that analyzes the web server log data
to produce different kinds of statistics. In this study, web log
expert program has been used to analyze server log data of a
website. Program generated different types of reports on
server log data that can be useful from the point view of
system administrator or web designer to increase
effectiveness of the site. It is important to note that
preprocessing is a necessary step in web usage mining before
applying any technique on usage data to discover user access
patterns. As far as mining of knowledge from the data is
concerned, quality of data is a key issue. Nearly 80% of
mining efforts often spend to improve the quality of data . The
data which is obtained from the logs may be incomplete,
noisy and inconsistent. The attributes that for in quality data
includes accuracy, completeness, consistency, timeliness,
believability, interpretability and accessibility. So
preprocessing of data is required to make it have the above
mentioned attributes and to make it easier for mining.

A bug is defect in sofware. Bug indicates the
unexpected behavior of some of the given requirement during
software development. During software testing the
unexpected behavior of requirements are identified by
software testers or quality engineers and they are marked as a
Bug. In this paper both defect and bug are used as synonyms.
Bugs are managed and tracked using number of available
tools like Bugzilla, Perforce, JIRA etc. Most of the open
source projects and large projects manages their software
development related data using some of the project

International Journal of Computer Trends and Technology- volume3Issue1- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 186

management tools. For managing the bugs associated with the
software bug tracking tools are used. These bug tracking
systems provides online interfaces to various users associated
with the projects. These tools internally manages the bug
repositories where all the bugs and related data are stored. For
example for the Mozilla project, the bugs are tracked using
bugzilla tool [10]. Bugzilla provides all the mozilla bugs in
the form of online repository. By specifying the bug id in the
Mozilla’ online repository, any user can fetch the required
bug information. The url for Mozilla’s bug repository
is“https://bugzilla.mozilla.org/show_bug.cgi?id=”. A software
bug enters into the various state for its resolution. Figure-1
depicts a general bug state diagram. The boxes indicates
various bug states and arrow indicates the tranisition between
the states. The most common and simple path which a bug
follow is Open → In-Progress → Resolved → Closed. When
a bug is identified by a tester or by a quality engineer its
summary, description and related informations are entered
into the bug tracking system and during this action item every
bug gets one uniqe id number. As soon as the bug is created it
enteres into the “Open” state. And it is assigned to one of the
developer for fixation. Once it is assigned to a developer and
he or she start working for the resolution, the bug enteres into
the “In-Progress” state, after fixation of the bug developer
mark that bug as “Resolved”, which is the “Resolved” state
and it is assigned back to the tester or quality engineer for
verification. Once the bug is verified by tester or quality
engineer and found ok then it is marked as “Closed”.

 II. RELATED WORK

A software bug is what software engineers commonly use to
describe the occurrence of a fault in a software system. A
fault is then defined as a mistake which causes the software to
behave differently from its specifications. Nowadays, users of
software systems are encouraged to report the bugs they
encounter, using bug tracking systems such as Jira
[www.atlassian.com/software/jira] or Bugzilla [www.
bugzilla.org]. Subsequently, the development is able to make
an effort to resolve these issues in future releases of their
applications. Bug reports exchange information between the
users of a software project experiencing bugs and the
developers correcting these faults. Such a report includes a
one-line summary of the observed malfunction and a longer

more profound description, which may for instance include a
stack trace. Typically the reporter also adds information about
the particular product and component of the faulty software
system: e.g., in the GNOME project, “Mailer” and “Calendar”
are components of the product “Evolution” which is an
application integrating mail, address-book and calendaring
functionality to the users of GNOME. Researchers examined
bug reports closely looking for the typical characteristics of
“good” reports, i.e., the ones providing sufficient information
for the developers to be considered useful. This would in turn
lead to an earlier fix of the reported bugs [8]. In this study,
they concluded that developers consider information like
“stack traces” and “steps to reproduce” most useful. Since this
is fairly technical information to provide, there is
unfortunately little knowledge on whether users submitting
bug reports are capable to do so. Nevertheless, we can make
some educated assumptions. Users of technical software such
as Eclipse and GNOME typically have more knowledge about
software development, hence they are more likely to provide
the necessary technical detail. Also, a user base which is
heavily attached to the software system is more likely to help
the developers by writing detailed bug reports.

III. PROPOSED APPROACH

The primary steps involved in performing change
classification on a single project are outlined as follows:
Creating a corpus:
1. File level changes are extracted from the revision history of
a project, as stored in its SCM repository.
2. The bug fix changes for each file are identified by
examining keywords in SCM change log messages
3. The bug-introducing and clean changes at the file level are
identified by tracing backward in the revision history from
bug fix changes 4. Features are extracted from all changes,
both buggy and clean. Features include all terms in the
complete source code, the lines modified in each change
(delta), and change metadata such as author and change time.
Complexity metrics, if available, are used at this step. The
following step is the new contribution in this paper.
Feature Selection:
5. Perform a feature selection process that employs Gain
Ratio to compute a reduced set of features. For each iteration
of feature selection, classifier performance is optimized for a
metric (typically F-measure or accuracy). Feature selection is
iteratively performed until optimum points are reached. At the
end of Step 5, there is a reduced feature set that performs
optimally for the chosen classifier metric.
Classification:
6. Using the reduced feature set, a classification model is
trained. Although many classification techniques could be
employed, this paper focuses on the use of Na ı̈ve Bayes .
7. Once a classifier has been trained, it is ready to use. New
changes can now be fed to the classifier, which determines
whether a new change is more similar to a buggy change or a
clean change.
A. Finding Buggy and Clean Changes

International Journal of Computer Trends and Technology- volume3Issue1- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 187

In order to find bug-introducing changes, bug fixes must first
be identified by mining change log messages. We use two
approaches: searching for keywords in log messages such as
“Fixed”, “Bug”, or other keywords likely to appear in a bug
fix and searching for references to bug reports like “#42233”.
This allows us to identify whether an entire code change
transaction contains a bug fix. If it does, we then need to
identify the specific file change that introduced the bug. For
the systems studied in this paper, we manually verified that
the identified fix commits were, indeed, bug fixes. For JCP,
all bug fixes were identified using a source code to bug
tracking system hook. As a result, we did not have to rely on
change log messages for JCP.

Feature Extraction
A file change involves two source code revisions (an old
revision and a new revision) and a change delta that records
the added code (added delta) and the deleted code (deleted
delta) between the two revisions. A file change has associated
metadata, including the change log, author, and commit date.
Every term in the source code, change delta, and change log
texts is used as a feature. We gather eight features from
change metadata: author, commit hour, commit day,
cumulative change count, cumulative bug count, length of
change log, changed LOC (added delta LOC + deleted delta
LOC), and new revision source code LOC. We compute a
range of traditional complexity metrics of the source code by
using the Understand C/C++ and Java tools [6].
Preprocessing of Web Bug Data
In this step, we remove parts of the original web log data that
are not relevant in our mining process. After that we get the
web log data as 192.168.0.161 7/3/2008/12:00:05 http://
www.google.com/
 192.168.0.161 is the IP address (client) that can be

used to mind personal usage and the result can be applied
in Personalized Systems, Recommender Systems and
Pre-fetched System.

 7/3/2008 12:00:05 is the date time data that is intended to
support the Web Site Maintainers, .Web Site Developers
and Web Site Analyzer to know the most usage and the
least usage date time. http://www.google.com/ is the
domain name. Our analyzer is to know which IP
frequently uses which sites for which purposes.

D. Web Usage based Mining
Mining Specific Site – to support for Web Site Maintainers,
Web Site Developers and Web Site Analysts (Statisticians).
�Mining Specific Client – to know the clients’ frequent usage
behavior, site and purposes. This mining result can be
especially applied in Personalized Systems. Mining Specific
Purpose – Our system can analyze the most usage site for a
particular purpose. From the Web Site Maintainers’ and Web
Site Developers’ point of view, they can prepare to attract
more and more clients for their sites. Mining Specific Day –
to report which day is the peak usage day of the week. The
result is most suitable for Web Site Analysts to view the
statistics of web usage data. Web Site Developers and

Maintainers can prepare/modified their Web Site structure to
persuade more and more clients. Mining Frequent Item Set –
Discovering, extracting and comparing the clients’ usage,
percentage of different search engines’ usage, usage rate
among date , day etc.

To fulfill our purposes, we propose our own procedures
that may be useful for various domain areas.
Procedure 1: PPR. Mining Specific Client’s Bug Usage
Input: Database D of transactions, Specific IP address
Output: Sites (S) used by individual user
Method
1. Accept input_IP (Specific IP Address)
2. for (int i=0; i<= D.size; i++)
3. if (input_IP = = D_IP)
4. extract sites from database
5. return S
For the Web Site Maintainers, they should know the users’
interest rate on their sites. Depending on the users’ interest
rate decreasing or increasing through the time, they can
modify their site structure to attract more users from the
aspect of economic benefits. On the other hand, the
statistician can view from the analysis perspective. We
proposed the procedure AM especially for maintainers and
developers as a result of Web usage over a specific period of
time.
Procedure 2: Find the users’ daily bug usage
Input: Database D of transactions, Specific Date for
Web Sites usage
Output: total number of users in one day
1. Method
2. Accept date to count the daily Web usage
3. count= 0; temp[] =null; // initialization
4. while (accept_date= = D_date)
5. if(temp[] = =null)
6. temp[] = D_IP
7. count ++
8. else
9. while (temp [])
10. if (temp []== D_IP)
11. do nothing
12. else temp[] = = D_IP
13. count ++
14. return count // total number of
15. internet users in one day

Procedure 3: Find the multi-users Software bug usage upon a
specific period
Input: Database D of transactions, start_date and
end_date to count the total number of usage during a
specific period
Output: total number of users for a particular period
Method
1. Accept start_date and end_date
2. count = 0; temp [] = null;
3. while (D_date>= start_date &&
D_date<= end_date)

International Journal of Computer Trends and Technology- volume3Issue1- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 188

4. if (temp [] = = null)
5. temp[] = D_IP
6. count ++
7. else
8. while (temp [])
9. if(temp [] = = D_IP)
10. do nothing
11. else temp[]= D_IP
12. count ++
13. return count // total number of internet users
for a specific period

Procedure 4: Comparison of Open source software Bug Usage
Input: Database D of transactions, predefined rule table (T)
Output: Usage comparison and Percentage among search
engine
Method
1. Extract keys from T where purpose= = ‘Search’
2. initialize keys to zero, count =0;
3. for(int i=0; i<=D.size; i++)
4. if (D[i].domain= = key1)
5.key1++;. …..
6. else key n++;
7. count ++;
8. key1=key1/count*100;
9. …
10. key n=key n/count*100;
11. Return the usage percentage of search engine

2. BAYESIAN CLASSIFICATION

 Bayesian classifiers are statistical classifiers.
They can predict class membership probabilities, such
as the probability that a given tuple belongs to a
particular class. Bayesian classification is based on
Bayes theorem. Naïve Bayesian classifiers assume that
the effect of an attribute value on a given class is
independent of the values of the other attributes. This
assumption is called class conditional independence. It
is made to simplify the computations involved and, in
this sense, is considered “naïve.” Bayesian belief
networks are graphical models, which unlike naïve
Bayesian classifiers, allow the representation of
dependencies among subsets of attributes. Bayesian
belief networks can also be used for classification.

Bayes’ Theorem

 Bayes’ theorem is named after Thomas Bayes, a
nonconformist English clergyman who did early work
in probability and decision theory during the 18th
century. Let X be a data tuple. In Bayesian terms, X is
considered “evidence.” As usual, it is described by
measurements made on a set of n attributes. Let H be
some hypothesis, such as that the data tuple X belongs
to a specified class C. For classification problems, we
want to determine P(H/X), the probability that the

hypothesis H holds given the “evidence” or observed
data tuple X. In other words, we are looking for the
probability that tuple X belongs to class C, given that
we know the attribute description of X. P(H/X) is the
posterior probability, or a posteriori probability, of H
conditioned on X. For example, suppose our world of
data tuples is confined to customers described by the
attributes age and income, respectively, and that X is a
35-year-old customer with an income of $40,000.
Suppose that H is the hypothesis that our customer will
buy a computer. Then P(H/X) reflects the probability
that customer X will buy a computer given that we
know the customer’s age and income. In contrast, P(H)
is the prior probability, or a priori probability, of H.
For our example, this is the probability that any given
customer will buy a computer, regardless of age,
income, or any other information, for that matter. The
posterior probability, P(H/X), is based on more
information (e.g., customer information) than the prior
probability, P(H), which is independent of X.
Similarly, P(X/H) is the posterior probability of X
conditioned on H. That is, it is the probability that a
customer, X, is 35 years old and earns $40,000, given
that we know the customer will buy a computer. P(X)
is the prior probability ofX.Using our example, it is the
probability that a person from our set of customers is
35 years old and earns $40,000. P(X/H), and P(X) may
be estimated from the given data, as we shall see
below. Bayes’ theorem is useful in that it provides a
way of calculating the posterior probability, P(H/X),
from P(H), P(X/H), and P(X). Bayes’ theorem is

Naïve Bayesian Classification

The naïve Bayesian classi fier, or simple Bayesian
classi fier, works as follows:
1. Let D be a training set of tuples and their associated
class labels. As usual, each tuple is represented by an
n-dimensional attribute vector, X = (x1, x2, : : : , xn),
depicting n measurements made on the tuple from n
attributes, respectively, A1, A2, : : : , An.
2. Suppose that there are m classes, C1, C2, : : : , Cm.
Given a tuple, X, the classifier will predict that X
belongs to the class having the highest posterior
probability, conditioned on X. That is, the naïve
Bayesian classifier predicts that tuple X belongs to the
class Ci if and only if P(Ci/X) > P(Cj/X). Thus we
maximize P(Ci/X). The classCi for which P(Ci/X) is
maximized is called the maximum posteriori
hypothesis. By Bayes’ theorem

International Journal of Computer Trends and Technology- volume3Issue1- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 189

3. As P(X) is constant for all classes, only
P(X/Ci)P(Ci) need be maximized. If the class prior
probabilities are not known, then it is commonly
assumed that the classes are equally likely, that is,
P(C1) = P(C2) = …….. = P(Cm). Given data sets with
many attributes, it would be extremely computationally
expensive to compute P(X/Ci). In order to reduce
computation in evaluating P(X/Ci), the naive
assumption of class conditional independence is made.
This presumes that the values of the attributes are
conditionally independent of one another, given the
class label of the tuple (i.e., that there are no
dependence relationships among the attributes). Thus,

We can easily estimate the probabilities P(x1/Ci),
P(x2/Ci), : : : , P(xn/Ci) fromthe training tuples. Recall
that here xk refers to the value of attribute Ak for tuple
X. For each attribute, we look at whether the attribute
is categorical or continuous-valued.

IV. EXPERIMENTAL RESULTS

Online open source software bug usage Statistics

about hits, page views, visitors and bandwidth are shown in
table 1. Figure 2 shows the daily errors types. Different types
of errors are shown in Table 2. It is clear from the table that
404 (Table 3) is most frequently occurred error. Some other
types of client and server errors are shown in Table 4.

HITS

Total Hits 30,474
Visitor Hits 29,191
Spider Hits 1,283
Average Hits Per Day 3,809
Average Hits Per Visitor 8.16
Cached Requests 3,979
Failed Requests 233
Page views
Total Page Views 4,435
Average Page Views Per
Day

554

Average Page Views Per
Visitor

1.24

Visitors
Total Visitors 3,576
Average Visitors Per Day 447
Total Unique IPs 3,038

Bandwidth
Total Bandwidth 567.48 MB
Visitor Bandwidth 548.81 MB
Spider Bandwidth 18.67MB
Average Bandwidth Per Day 70.94MB
Average Bandwidth Per Hit 19.07KB
Average Bandwidth Per
Visitor

157,15 KB

International Journal of Computer Trends and Technology- volume3Issue1- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 190

The following sections present results obtained when
exploring the three research questions.

A. Classifier performance comparison

The two main variables affecting bug prediction performance
that are explored in this paper are: (1) type of classifier (Naive
Bayes), and (2) which metric (accuracy, F-measure) the
classifier is optimized on. The four permutations of these
variables are explored across all 11 projects in the data set.
For SVMs, a linear kernel with standard values for slack is
used. For each project, feature selection is performed,
followed by computation of per-project accuracy, buggy
precision, buggy recall, and buggy F-measure. Once all
projects are complete, average values across all projects are
computed. Results are reported in Table II.
B. Effect of feature selection
In the previous section, aggregate average performance of
different classifiers and optimization combinations is
compared across all projects. In actual practice, change
classification would be trained and employed on a specific
project. As a result, it is useful to understand the range of
performance

achieved using change classification with a reduced feature
set. Table III reports, for each project, overall prediction
accuracy, buggy precision, recall, F-measure, and ROC area
under curve (AUC) for the Na ı̈ve Bayes classifier using
Fmeasure optimized feature selection. Observing these two
tables, a striking result is that three projects with the Na¨ıve
Bayes classifier achieve a buggy precision of 1, indicating
that all buggy predictions are correct (no buggy false
positives). While the buggy recall figures (ranging from 0.54
to 0.83, with a average buggy recall of 0.69 for projects with a
precision of 1) indicate that not all bugs are predicted, still, on
average, more than half of all project bugs are successfully
predicted. Figures 1 and 2 summarize the relative
performance of the two classifiers and compare against the
prior work by Kim etal. Examining these figures, it is clear
that feature selection significantly improves both accuracy
and buggy F-measure of bug prediction using change
classification. As precision can often be increased at the cost
of recall and vice-versa, we compared classifiers using buggy
F-measure. Good Fmeasure’s indicate overall result quality.

V. CONCLUSION

In this paper a new data mining model is proposed to predict
the software bug estimation. The proposed model is
implemented using open source technologies and applied over
the open source MySql, Apache,Ecilipse bug repository. For
the proposed work only two attribute of the bug summary and
description are taken for similarity measurement based on
which estimation prediction is done for the software bugs.
Future scope for the related work could be analyzing the
impact of other bug attributes for the software bug estimation
and incorporating them for the prediction calculation to
achieve more accurate results. Also semantic similarities
between the software bugs can be measured and applied for
meaningful bug estimation.

International Journal of Computer Trends and Technology- volume3Issue1- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 191

The obtained results of the study can be used by system
administrator or web designer and can arrange their system by
determining occurred system errors, corrupted and broken
links. In this study, analysis of web server log files of smart
sync software has done by using web log expert program.
Other web sites can be used for similar kind of studies to
increase their effectiveness. With the growth of web-based
applications web usage and data mining to find access
patterns is a growing area of research.

In the future, when software developers have
advanced bug prediction technology integrated into their
software development environment, the use of classifiers with
feature selection will permit fast, precise, accurate bug
predictions. With widespread use of integrated bug prediction,
future software engineers can increase overall project quality
in reduced time, by catching errors as they occur.

REFERENCES

[1] F. Masseglia, P. Poncelet, and M.Teisseire,”Using data
mining techniques on Web access logs to dynamically improve
Hypertext structure”, 1999.
[2] Gabriek. Web usage mining and discovery of association
rules from HTTP server logs.
[3] David A. Grossman, and Ophir Frieder, Information Retrieval:
Algorithms and Heuristics (The Information Retrieval Series) (2nd
Edition) (Paperback - Dec 20, 2004)
[4]http://www.w3.org/Daemon/User/Config/ Logging.htm#common-
log file-format
[5] James Rubarth-Lay, “Optimizing Web Performance”, 1996.
[6] Sunghun Kim, Kai Pan, E. James Whitehead, Jr., "Memories of
Bug Fixes", SIGSOFT'06/FSE-14, November 5–11, 2006, Portland,
Oregon, USA, 2006.
[7] Java, the open source object oriented programming API : http://
java.sun.com
[8] MySql, the open database management system : http://
www.mysql.com
[9] Xapian, the open source stemmer for text data cleaning:
http://xapian.org/docs/stemming.html
[10] H. Zeng and D. Rine, Sept. 2004, Estimation of software defects
fix effort using neural networks. In Proc. of the Annual International
Computer Software And Applications Conference (COMPSAC ’04),
Hong Kong, IEEE.
[11] G. Canfora and L. Cerulo, April 2006, Supporting change
request assignment in open source development. In Proc. of ACM
Symposium on Applied Computing, pages 1767– 1772, Dijon,
France.
[12] D. Cˇ ubranic´ and G. C. Murphy, 2004, Automatic bug triage
using text categorization. In Proc. International Conference on
Software Engineering & Knowledge Engineering (SEKE), pages 92–
97.

