
International Journal of Computer Trends and Technology- volume2Issue1- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 98

Online Testing of Word-oriented RAMs by an
Accumulator-based Compaction Scheme in

Symmetric Transparent Built-In Self Test (BIST)
Sharvani Yedulapuram#1, Chakradhar Adupa*2

#Electronics and Communication Engineering
Jayamukhi Institute of Technology and Sciences

Narsampet, Andhra Pradesh, India

Abstract—The paper presents a new approach to symmetric
transparent Built-in self test (BIST) for word-oriented RAMs.
Transparent built-in self test (BIST) schemes for RAM modules
assure the preservation of the memory contents during periodic
testing. The proposed concept allows to Skip the signature
prediction phase required in traditional transparent BIST
schemes, achieving considerable reduction in test time. In this
paper the utilization of accumulator modules for output data
compaction in symmetric transparent BIST for RAMs is
proposed. It has been simulated & synthesized with Xilinx
Spartan 3E based xc3s500e FPGA device. It is shown that in this
way the hardware overhead, the complexity of the controller and
the aliasing probability are considerably reduced.

Keywords—Online testing, random access memories (RAMs),
self testing, march algorithms.

I. INTRODUCTION

The ASIC industry, driven by ever-increasing demands for
miniaturization, higher reliability, and greater speeds,
continuously introduce new product innovations to the micro
electronics market place. In large ASICs the fault density is
highest in RAM areas, and in many cases the RAM blocks
which need to be tested are not directly accessible. Thus in
order to build reliable and competitive products, it is essential
that the testing strategy provide high fault coverage, without
increasing a significant area overhead degrading the
performance.

Memory is an important part of a computer system. Defects
in memory arrays are generally due to shorts and opens in
memory cells, address decoder and read/write logic.
Memories are more likely to fail than random logic and
therefore three classes of memory tests have been proposed to
detect the memory faults. Application of test sequences to
embedded memories using off-chip testers results in a high
test time and test cost due to the large size of embedded
memories. To overcome this problem, the computed test
sequences are generated on-chip using a memory Built-In Self
Test (BIST) unit. A number of theoretical and practical built-

in self test (BIST) approaches, which have been proposed in
the past, offer the basis to overcome the problem in present-
day systems-on-a-chip [1], [3], [4]. RAMs are typically
discerned into bit- and word-organized. For the testing of
embedded RAMs, March algorithms outperform competitive
schemes, since they result in simple, yet effective, testing
scenarios. A March algorithm comprises a series of March
elements that perform a predetermined sequence of operations
(read and/or write) in every cell (for the case of bit-organized
RAMs) or word (for the case of word-organized RAMs).

For deterministic memory BIST March tests have been
widely accepted, because they combine a high fault coverage
with a test time of order n, where n denotes the size of the
memory [2], [13]. Furthermore, classical march tests can
easily be extended to transparent tests which leave the
Memory contents unchanged and therefore are especially
suitable for periodic maintenance testing [3], [5]. The basic
idea is to complement the memory contents an even number
of times such that the memory state can be resumed while
fault coverage can be maintained. A new signature prediction
concept is used to verify the correctness of test responses,
though extra test time must be invested to the signature
prediction phase. However, since March tests scan the
complete memory several times, test time becomes an issue of
growing importance with increasing memory densities. In
particular, transparent BIST for maintenance purposes may
become infeasible, because it requires a considerable amount
of extra time to compute a reference result each time before it
is applied.

To eliminate the signature prediction phase in [3] and [5], a
symmetric transparent BIST method is proposed by Yarmolik
[6], [7]. In symmetric transparent BIST, the signature
prediction phase is skipped and the March series is modified
in such a way that the final signature is equal to the all-zero
state, irrespectively of the RAM initial contents. For response
compaction of bit organized RAMs, in [6] a single-input shift
register [SISR] was utilized, whose characteristic polynomial
toggles between a primitive polynomial and its reciprocal one
during the different march elements of the March series. For
the case of word-organized RAMs, it was proven in [7] that a

International Journal of Computer Trends and Technology- volume2Issue1- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 99

multiple-input shift register (MISR) whose characteristic
polynomial is altered in a similar fashion could serve as
response compactor for symmetric transparent BIST, resulting
in a predetermined (all-zero) state. The concept of symmetric
transparent BIST is analyzed and exemplified in section III.

It is widely accepted by the test community that utilization
of modules that typically exist in the circuit, e.g.,
accumulators [8] or arithmetic logic units (ALUs) [9], for
BIST test pattern generation and/or response verification
possesses advantages, such as lower hardware overhead and
elimination of the need for multiplexers in the circuit path.

In this paper, we propose the use of accumulator-based
compaction in symmetric transparent RAM BIST (ASTRA)
by using March X algorithm. In modules that contain
accumulators, the output of the RAM is either directly driven
to the accumulator inputs or can be driven using processor
instructions. It is shown that the proposed scheme imposes
lower hardware overhead and less complexity in the control
circuitry than previously proposed schemes.

This paper is organized as follows, in section II, describes
the fault model for word-oriented RAMs. In section III, a
review of March algorithms. In section IV, the proposed
accumulator-based compaction scheme for symmetric
transparent BIST (ASTRA) is introduced and exemplified for
the case of word-organized RAMs. Next, in section V, the
proposed scheme is compared to previously proposed schemes
for response compaction in symmetric transparent BIST. In
section VI, describes about Simulation results. Finally, in
section VII, we conclude the paper.

II. FAULT MODEL FOR WORD-ORIENTED RAMs

Several innovative test algorithms for Random Access
Memories have been reported in the recent years. In this paper,
March X algorithm is used as a basis of test method. With this
algorithm, the test complexity is reduced as shown in the
Table I, where n denotes the size of the memory. The fault
models for word-oriented memories can be divided into the
following classes [12]:

A. Single-cell faults
 This can be included as the following faults:

1) Stuck-at faults: cell or line s-a-0 or s-a-1

2) Transition faults: cell fails to transit

3) Data retention faults: cell fails to retain its logic value after
some specified time due to, e.g., leakage, resistor opens, or
feedback path opens

B. Fault between memory cells

This class of faults consists of coupling faults. Coupling
faults are of three types:

1) Inversion coupling fault (CFin): a transition in one cell
(aggressor) inverts the content of another cell (victim).

TABLE I
COMPARISON OF TEST COMPLEXITIES FOR CONVENTIONAL

TRANSPARENT AND SYMMETRIC TRANSPARENT MARCH TESTS

2) Idempotent coupling fault (CFid): a transition in one cell
forces a fixed logic value into another cell.

3) State coupling fault (CFst): a cell/line is forced to a fixed
state only if the coupling cell/line is in a given state (a.k.a.
pattern sensitivity fault (PSF)).

March tests for bit-oriented memories can be converted to
march tests for word-oriented memories by taking into
account that in the bit-oriented memory tests, the ‘Rd0’, ‘Rd1’,
‘Wr0’ and ‘Wr1’ operations are applied to a single bit. Word-
oriented memories contain more than one bit per word; i.e.,
B2, that B represents the number of bits per word and
usually is a power of two [11]. Read operations read the B bits
simultaneously and write operations write data into the B bits
of memory. Many different data backgrounds are used for
testing of word-oriented memories [12].

III. MARCH ALGORITHMS

A. Traditional March Algorithms
A March algorithm consists of n march elements, denoted

by Mi, with (0 i n). Each march element comprises zero
(or more) write operations, denoted by w0/w1, meaning that
0/1 is written to the RAM cell, and zero (or more) read
operations denoted by r0/r1, meaning that 0/1 is expected to be
read from the memory cell. For example, the March X
algorithm [Fig. 1(a)] consists of four March elements denoted
by M0 to M3. In Fig. 1, denotes an increasing addressing
order (which can be any arbitrary addressing order) and
denotes a decreasing addressing order (which is the inverse
addressing order of).

Algorithm Transparent Symmetric
 BIST Transparent
 BIST

 Time for Time Overall Total Time
 Signature for Transparent Time
 Prediction Test

MATS+ 2n 4n 6n 4n

March X 5n 9n 14n 10n

March Y 4n 14n 18n 16n

March C- 5n 9n 14n 10n

March A 4n 14n 18n 16n

March B 6n 16n 22n 18n

International Journal of Computer Trends and Technology- volume2Issue1- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 100

B. Transparent BIST Algorithms
Traditional march algorithms erase the memory contents

prior to testing, therefore, they do not serve as good platforms
for periodic BIST, Nikolaidis [5] proposed the concept of
transparent BIST where the initial w0 phase is bypassed, and a
signature prediction phase is used instead. The signature
prediction phase consists of read operations equivalent to all
read operations of the March algorithm and it is utilized in
order to calculate a signature that will be compared against the
compacted signature calculated during the (remaining) March
test. The Transparent version of the March X algorithm is
shown in Fig. 1(b).

The notation for the transparent versions of the algorithms
differs slightly from the one used in traditional march
algorithms. Instead of r0, r1, w0, w1, the notations ra, ra

c, wa, wa
c,

and (ra)c are utilized. Their meanings are as follows:

ra Read the contents of a word of the RAM,

expecting to read the initial contents of the RAM
word (i.e., before the beginning of the test).

ra
c Read the contents of a word of the RAM, expecting

to read the compliment of the initial contents of the
RAM word.

(ra)c Read the contents of a word of the RAM expecting to
read the initial word contents and feed the
compliment value to the compactor.

wa Write to the memory word, the value that was stored
in this memory word at the beginning of the test is
(assumed to be) written to the word

wa
c Write to the memory word; the inverse of the value

that was stored in this memory word at the beginning
of the test is (assumed to be) written to the word).

By default, the data driven to the compactor with the (ra)c
operation are identical to the data driven by the ra

c. The
importance of the (ra)c operation is the following: during the
signature prediction phase the contents of the RAM are equal
to the initial contents (since no write operation has been
performed); therefore, in order to simulate the ra

c operation
we invert these contents prior to driving them to the
compactor.

It has been shown in [5] that with transparent BIST
algorithms the contents of the memory at the end of the test
are identical to those before the test. Also, since the read
elements of the signature prediction phase (M0) are identical
to the read elements of the testing phase (M1-M3), then if we
store the result of the compaction of M0 and compare it to the
result of the compaction of M1-M3, then we can detect faults
that occur due to the write operations of the March algorithm.

Traditional transparent BIST has the disadvantage that the
signature prediction phase adds up to the total testing time
with a percentage of (more than) 30%. In order to confront
this problem, Yarmolik, introduced the concept of symmetric
transparent BIST, which is explained below.

C. Symmetric Transparent BIST

In order to define a symmetric transparent algorithm, some
notations will be introduced first, Let d = (d0 , d1 ,.., dn-1)
0,1n be a data stream, then d* = (dn-1,dn-2,…,d1,d0) denotes

(a) (b) (c)

Fig.1. March X algorithm: (a) Original version; (b) Transparent version; and
(c) Symmetric version.

-the data stream with components in reverse order and dc =
(d0

c….dn-1
c) denotes the data stream with inverted components.

For example, if d = (1011), d* = (1101) and dc = (0100).
A data string D 0, 12n is called symmetric, if there

exists a data string d 0, 1n with D = (d, d*) or D = (d, d*c).
For example, D1 = (1010 0101) and D2 = (1010 1010) are
symmetric data strings, since (0101) = (1010)* and (1010) =
(1010)*c. Furthermore, a transparent march test is called
symmetric if it produces a symmetric test data string D.

In order to derive a symmetric transparent algorithm, the
March series is modified in such a way that the expected
output response is equal to a known value. Therefore, the
signature prediction phase can be skipped and the time
required for the test is reduced.

In order to achieve this, Yarmolik, [6] noticed that most of
the March algorithms used for transparent BIST produce test
data with a high degree of symmetry. For example, the read
elements of the transparent March X algorithms [Fig. 1(b)],
ignoring the signature prediction phase (and the write
elements) are: (ra); (ra

c); (ra) It is easy to detect the
approximate symmetry; furthermore, it is also easy to derive
a symmetric sequence by adding an additional read element,
resulting in the following sequence of read elements: ((ra)c);
 (ra); (ra

c); (ra). For example, for bit-organized memory
with five words whose initial contents are (11010), the result
of the latter sequence is (00101 11010 00101 | 01011 10100
01011) which is easily shown to be symmetric with respect to
the given definition.

Yarmolik, [6], [7] have shown that by exploiting the
previously mentioned symmetry and by using linear structures
as compactors for the outputs of the RAM, the final value of
the compactor is equal to a known value, i.e., the all-zero
value. For the case of bit-organized memories, SISRs were
utilized, while for word-organized memories MISRs were
exploited, In [6] and [7], it was proven that by toggling
between a primitive polynomial and its reciprocal one during
the r and r operations, the final signature is equal to the
all-zero state. They even reported marginal increase in the
fault coverage of the symmetric schemes compared to the

 M0 (w0) ; (ra) ; ((ra)c
) ;

M1 (r0, w1); (ra, wa

c); (ra, wa
c);

M2 (r1, w0) ; (ra

c, wa) ; (ra
c, wa) ;

M3 (r0); (ra); (ra);

International Journal of Computer Trends and Technology- volume2Issue1- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 101

respective transparent ones with signature prediction. For
example, in Fig. 1(c) the symmetric transparent version of the
March X algorithm is presented.

Address contents

 Inv
00
01
10
11

Add/sub

 clk

 ACC [n:1]

 (a) (b)

Fig. 2 Accumulator-based compaction in word organized memories.

IV. ACCUMULATOR-BASED COMPACTION OF THE

RESPONSES IN SYMMETRIC TRANSPARENT BIST

The accumulator-based response compaction scheme
proposed in this paper stems from the following two
observations:

A. Observation 1
 If the March algorithm is symmetric (as in the case of

symmetric transparent BIST) then the number of ra elements
equals the number of ra

c elements plus the number of ((ra)c)
elements (without taking into account the addressing order, ,
 of the march element).
B. Observation 2

The accumulator-based compaction of the responses holds
the order-independent property (i.e., the final signature is
independent of the order of the incoming vectors [10]).

Observation 2 stems directly from the permutational
property of the addition operation.

Accumulator-based compaction for symmetric transparent
BIST for the case of word-organized memories is based on
Lemma 1.

Lemma 1: If a symmetric transparent march algorithm is
applied to a word-organized memory whose word length is n
and the responses are captured in an n-stage accumulator
comprising a 1’s complement adder (starting from the all-0

state), then the final content of the accumulator is equal to the
all-1 state.

Proof: Let M be the number of elements of the March
algorithm; since the algorithm is symmetric, the total number -

TABLE II

OUTPUT DATA COMPACTION IN SYMMETRIC
TRANSPARENT BIST: COMPARISON

-of ra elements is equal to the total number of ra
c (plus the

number of ((ra)c)) elements.
Therefore, for every vector a driven to the inputs of the

accumulator, its compliment ac is also driven to the inputs of
the accumulator exactly once.

 But
 a + ac = 2n - 1 (1)

Furthermore, for 1’s complement addition it holds that the
sum of two numbers A and B is given by (A – 1 + B (mod 2n –
1)) + 1, therefore, the sum of 2n – 1 is (2n - 1 - 1 + 2n - 1) mod
(2n - 1) + 1 = (2n – 2) + 1 = 2n - 1. Therefore, it is trivial to
show (by induction) that (2) holds for any value of i.

 ∑ ݅ × (2
 − 1) = 2 − 1 (2)

From (1) and (2), and taking in to account that the addition
operation is permutative (observation 2), we have the proof:

For example, Let us consider the 4-word 3-bit RAM
presented in Fig. 2(a), the outputs of the memory are driven to
an n = 3-stage accumulator comprising a 1’s compliment
adder, Fig. 2(b), For the implementation of the (ra)c march
element, the subtraction operation of the accumulator can be
utilized. In order to apply march elements of the form (ra,wa

c)
or (ra

c,wa) the output of the RAM must be inverted and then
fed back to its inputs; with the proposed scheme, this can be
done by forcing the all-1 vector to one input of the
adder/subtractor and perform a subtract operation. This is
done with OR gates whose one input is driven by the inv
signal in Fig. 2(b). Therefore, the inverse of the read vector
appears at the outputs the adder/subtractor and applied to the
RAM inputs.

V. COMPARISONS

010
111
011
100

RAM

 +/-

 Register

Word-organized memories

Scheme Existing module #Gates

 Register 12n
[7]
 MISR 6n

Proposed Accumulator n

International Journal of Computer Trends and Technology- volume2Issue1- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 102

In this section, we shall compare the proposed scheme with
the one proposed in [7], with respect to the required hardware
overhead and the test complexity. For the scheme proposed in
[7], a MISR with double-shift (i.e. both left-to-right and right-
to-left) capability is required; in case that a register is
available, the transformation of n flip-flops into multiplexed
input, two-way flip-flops is required; furthermore, n two-input
XOR gates (to invert the values of the outputs of the RAM)
and another n two-input XOR gates are required (in case A
MISR is not available, in order to transform the register into a
MISR). In case that a MISR exists, the transformation of n
multiplexed input flip-flops into two-way multiplexed input
flip-flops is required. The overhead is presented in Table II.

For the implementation of the proposed scheme, assuming
the existence of an accumulator, n two-input OR gates are
required at the inputs of the accumulator. Since the outputs of
the RAM can be driven to the inputs of the accumulator by
proper control of the data path module, no additional overhead
is imposed.

From Table II, it is evident that the proposed scheme
requires lower hardware overhead than the scheme proposed
in [7] for the same purpose.

As compared to the symmetric transparent version of
March C- algorithm (Yarmolik), the proposed algorithm is
having less test complexity (Table 1) with high fault coverage.

VI. SIMULATION RESULTS

In this work we have designed a high speed accumulator
based compaction scheme for online BIST of RAMs. The
code is written in verilog language. Xilinx ISE 9.2i is the tool
used to convert the verilog language to hardware blocks and
implemented on Xilinx Spartan 3e based Xc 3s 500e FPGA
device. The benefits associated with FPGA such as flexibility,
shorter time to market and reconfigurability make them a very
attractive choice for implementing the designs. In the Xilinx
simulation environment, we create an ise file, then we specify
the features of the device such as the device family, device,
package, speed grade, synthesis tool, simulation tool, top level
module type and the language. Then we add the source files
i.e. the code and its test bench. Thus the ise file is created.
Test bench with several test cases were setup to verify the
expected results. After building the files we could able to see
the design overview of the top level file, device utilization
summary and performance summary. The figure 3 shows the
RTL schematic of the top module and the figure 4 shows the
result of our top module simulation, where the accumulator is
holding the all-1 value. If the accumulator holds some other
value then it results that there is a fault in the RAM module.

Fig.3. RTL Schematic of the top module

International Journal of Computer Trends and Technology- volume2Issue1- 2011

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 103

Fig.4. Result of our simulation
HDL Synthesis Report of the designed BIST is as follows:

Macro Statistics:

Adders/Subtractors : 2
 37-bit adder carry in : 1
 5-bit addsub : 1

Registers : 122
 1-bit register : 113
 3-bit register : 1
 32-bit register : 1
 37-bit register : 4
 4-bit register : 2
 5-bit register : 1

Comparators : 4
 3-bit comparator greater : 1
 37-bit comparator equal : 1
 5-bit comparator greater : 1
 5-bit comparator less equal : 1

Device utilization summary:

Selected Device: 3s500epq208-4

Number of Slices: 233 out of 3584 6%
Number of Slice Flip Flops: 279 out of 7168 3%
Number of 4 input LUTs: 411 out of 7168 5%
Number of IOs: 160
Number of bonded IOBs: 160 out of 141 113%
Number of GCLKs: 1 out of 8 12%

VII. CONCLUSION

In this paper, we have proposed the utilization of
accumulators for the compaction of the responses in ASTRA.
Compared to traditional transparent BIST schemes this new
approach significantly reduces the test time while preserving
the benefits of previous approaches with respect to hardware
overhead and fault coverage. Experimental studies even show
an increase in fault coverage in many cases. Therefore, it may
prove a viable solution for periodic testing of RAMs
embedded into current VLSI chips.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive comments that helped improve the
quality of this work.

REFERENCES

[1] V. C. Alves, M. Nicolaidis, P. Lestrat, and B. Courtois: Built-in Self-
Test for Multi-Port RAMs; Proc. IEEE Int. Conf. on Computer-Aided
Design, ICCAD-91, November 1991, pp. 248-251.

[2] R. Dekker, F. Beenker, and L. Thijssen: A Realistic Fault Model and

Test Algorithms for Static Random Access Memories; IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, Vol 9, No.
6, June 1990, pp 567-572.

[3] M. Nicolaidis: Transparent BIST for RAMs; Proc. IEEE Int. Test Conf.,

Baltimore, MD, Oct. 1992, pp. 598-607.

[4] V. N. Yarmolik, S. Hellebrand, H.J. Wunderlich: Self Adjusting Output

Data Compression: An Efficient BIST Technique for RAMs; Proc.
Design and Test in Europe (DATE’98), Paris, February 1998, pp. 173-
179.

[5] M.Nicolaidis, “Theory of transparent BIST for RAMs,” IEEE Trans.

Comput, vol. 45, no. 10, pp. 1141–1156, Oct. 1996.

[6] V. N. Yarmolik, S. Hellebrand, and H.J. Wunderlich, “Symmetric

transparent BIST for RAMs,” presented at the DATE, Munich,
Germany, March.1999.

[7] V. N. Yarmolik, I. V. Bykov, S. Hellebrand, and H.-J. Wunderlich,

“Transparent word-oriented memory BIST based on symmetric march
algorithms,” in Proc. Eur. Dependable Comput. Conf., 1999, pp. 339–
350.

[8] I. Voyiatzis, “Test vector embedding into accumulator-generated

sequences: A linear-time solution,” IEEE Trans. Comput., vol. 54, no.
4, pp. 476–484, Apr. 2005.

[9] A. Stroele, “BIST patter generators using addition and subtraction

operations” J. Electron. Test.: Theory Appl., vol. 11, pp. 69–80, 1997.

[10] I. Voyiatzis, A. Paschalis, D. Gizopoulos, N. Kranitis, and C. Halatsis,

“A concurrent built-in self-test architecture based on a self-testing
RAM,” IEEE Trans. Reliab., vol. 54, no. 1, pp. 69–78, Mar. 2005.

[11] A.J, Van de Goor, I.B.S. Tlili, “March Test for Word-Oriented

Memories”, In Proc. Design Automation and Test in Europe, Paris,
1998, pp. 501-508.

[12] A.J, Van de Goor, I.B.S. Tlili, and S. Hamdioui, “Converting March

Test for Bit-Oriented Memories into Tests for Word-Oriented
Memories”, IEEE Design and test, 1998, pp. 46-51.

[13] A. J. Van de Goor: Using March Tests to Test SRAMs; IEEE Design &

Test of Computers, Vol. 10, No. 1, March 1993, pp. 8-14.

