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Abstract— This work deals with the approximate string 
search in large spatial databases. We investigate range 
queries augmented with a string similarity search 
predicate in both Euclidean space and road networks. We 
make this query the spatial approximate Existing (Apr 19, 
2013) string (SAS) query. In Euclidean space, we propose 
an approximate solution MHR-tree, which will embed 
min-wise signatures into R-tree. These min-wise signature 
for an index node u keeps a concise representation of the 
union of q-grams from strings under the sub-tree of u. We 
here analyze the pruning functionality of such signatures 
based on the set resemblance between he query string and 
the q-grams from the sub-trees with index nodes. Here we 
also discuss how to estimate the selectivity of a SAS query 
in Euclidean space, for which here we present a novel 
adaptive algorithm to find balanced partitions using both 
the spatial and string information stored in the tree as 
discussed. For queries on road networks, we propose a 
novel method, the RSASSOL, which significantly 
outperforms the baseline algorithm in practice. RSASSOL 
combines the q-gram based inverted lists and the pruning 
based on reference nodes. Extensive experiments on large 
real data sets demonstrate the efficiency and effectiveness 
of the approach.      
 
  

I. INTRODUCTION 
The Keyword search in a very large amount of data is 
important operation in almost every domain which deals with 
collection or storing of the data. When we extend this study of 
databases to Spatial Data Bases, the keyword search will 
become the most fundamental building block for the 
increasing amount of the real world applications. But most of 
the present day’s keyword based searches such as IR2 –Tree 
will retrieve only exact keyword matches and not all. Since 
this type of exact match of keyword is a special case of 
approximate String matching it is very clear that when exact 
keyword search may lead us to a situation where the exact 
data required may not be found since we do not know what is 
the exact key word associated with that data. So the 
approximate string search is important when to uses have a 
fuzzy key search condition, or when a spelling mistake may 
occur when submitting the query.  In this concept of 
approximate string search this can be mixed and used with any 

combination of spatial queries. Here let us make that the 
keyword you have given acts as a point and the required data 
as a line. Here when it is regarding with the exact string 
search mostly it may connect too only on line which exactly 
matches whatever the keyword that is given but while coming 
to the approximate string search it may not link only to one 
line but to too many lines. Here it means it will take all the 
possible data which will have the approximation to the 
keyword that means which have may be around more than 
half matched with the keyword entered. A straightforward 
solution to the Spatial Approximate String query is to use the 
existing techniques for getting the spatial component of 
Spatial Approximate String Search query and to verify the 
approximate string match either in post-processing or on the 
intermediate results of the spatial search.  

The main contribution of this paper are as follows: 

 Formalizing the notion of Spatial Approximate String 
queries and related selective estimation problem 

 Here we present a robust and novel selectivity 
estimator. Our idea is to make an adaptive algorithm 
that can find balanced partitions from any tree based 
index based on both the spatial and string 
information nodes. 

 The RASSSOL partitions the road network, searches 
the relevant sub graphs, and then prunes candidate 
points using both the spatial reference nodes and 
string matching index. 

 We here demonstrate the effectiveness and efficiency 
of proposed methods for SAS queries by using a 
comprehensive experimental evaluation. 

 

PROBLEM FORMULATION: 

 
      Keyword search over a large amount of data is an 
important operation in all the domains that include storing and 
retrieval of data by searching. The recently extended study of 
spatial databases from common databases, where keyword 
search becomes a fundamental building block for an 
increasing number of real-world applications, and proposed 
the IR -Tree. A main limitation of the IR -Tree is that it only 
supports exact keyword search. So when the exact keyword 
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search is being employed always there will a condition where 
the user cannot get the required data that is because of the 
situation may be he may have spelt it wrong or in some cases 
may be he do not know the exact keyword that is associated 
with the data that he wanted to access, so as long as he do not 
know the exact key word he will not be able to get the data.   
 
       The main drawback for this is always the requirement of 
the exact keyword for getting the data which may not be 
always known. 
  
PROPOSED SOLUTION: 

For RSAS type queries where string match approximate is 
enough, the baseline of the spatial solution is based on the 
Dijkstra’s algorithm. Take the given query as point q, and the 
query range radius as r, and a string, we now expand from 
query point q on the road network using Dijkstra algorithm 
until we reach all the possible points that are distance r away 
from q and then verify the string predicate either in post-
processing step or on the intermediate results of expansion. 
We now denote this approach as the Dijkstra solution. Its 
performance will degrade quickly when the query range 
enlarges or when the data on the network increases or in both 
cases. This motivated us to find a novel method that can avoid 
the unnecessary expansions of road network, by combining 
the pruning from both the spatial and the string predicates 
simultaneously. 
 

We here demonstrate the effectiveness and efficiency 
of our proposed methods for Spatial Approximate String 
queries which are using a comprehensive experimental 
evaluation for the results. For ESAS queries, our experimental 
evaluation is able to cover both the synthetic and real data sets 
of up to 10 million points and in 6 dimensions on the other 
hand for RSAS queries, our evaluation is based on two large 
and real road network datasets that contain nearly 175,800 
nodes, 179,100 edges, and 2 million points on the road 
network. In both the cases, our method significantly 
outperformed the respective baseline methods. 
 
The most explained advantage of the proposed solution is the 
user will get the exact data that he was searching for even 
though the keyword he entered is not perfect. Here I also gives 
one more feasibility to the user that there is no need for him to 
remember the exact keyword or to be exact with the spelling 
of the keyword he is entering there. 
 
3 THE RSAS QUERIES: 
In case of RSAS Queries, since the locations of points which 
are constrained by the network and will be represented by the 
edge holding the point and the distance which acts as the 
offset to  the edge end. To handle large scale datasets, we here 
develop eternal-memory algorithms and adapt a disk-based 
road network storage framework. 
 
 
 

3.1 Disk-based road network representation 
 
Here we adopt a disk-based storage model to the setting that 
will group the network nodes based upon their connectivity 
and distance. The following figure demonstrates an instance 
of model proposed for the network. In the model of ours, the 
adjacency list and points will be stored in two different files, 
each of them is indexed by a separate VR  of the nodes form V 
is selected for  reference nodes. The distance between any two 
nodes or two points or a node from a point will make the 
length of the shortest path. 
 
 For the node ni, its distance from reference nodes in VR and 
number of nodes of ni. For every adjacent node nj of ni. we 
will store the adjacent node’s ID, the length of the edge 
e=(ni,nj) and a pointer that points group on e. See the 
following figure, 

 
Fig. 1 Disk- based storage of the road Network 

In the described points file, the ids of points will be  assigned 
in such a way that for points of the same edge (ni, nj ), points 
will be  stored by their own offset distances to the a node with 
smaller id in arranged in ascending order, and then  their ids 
are then sequentially assigned (crossing different edges as 
well). Note that any edge e defined with two nodes ni and nj , 
we will represent e by always placing that node with the 
smaller id first. That is, if ni < nj, in the adjacency list of nj , 
the entry for ni will have  pointer that  to the points group 
which is pointing to the points group of (ni, nj) (i.e., no 
duplication of any points group will be stored). We will also 
store other information that is associated with a point (i.e., 
strings) after the offset distance. We now store the points on 
the same edge in  points group. At the inception of the points 
group, we have to store the edge information (i.e., (ni, nj)) and 
the also the number of points on the edge. The groups are 
supposed to be stored in a points file in ascending order of the 
node ids that are defining the edges. Then B+-tree will be  
built on this file with the keys being the first point id of each 
points group and values that are being in the corresponding 
points group. For example, if the points file in Figure 1 
partially reflect the example. The ODISTi was the offset 
distance of point pi. 
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3.2 The RSASSOL algorithm: 
We partition a road network G={V,E} into m edge-disjoint 
sub graphs.  We also select one small subset of nodes as 
reference nodes. Given below is the overview of RSASSOL 
algorithm. Which by concept have five steps. When a query is 
given, first find all the sub graphs that are intersecting with 
query range. Then Filter trees of these sub graphs to retrieve 
the points which have the strings that are potentially similar to 
the query string. 
  
 

 

 

 
 

 
 

 

 
 

Fig 2: overview of RSASSOL ALGORITHM                         
 
 
 
 
 
 
Algorithmic Explanation of above discussed over view is as 
fllows.  
____________________________________________ 
Algorithm : RSASSOL(network G, Qr = (q, r), Qs = (_, _ )) 
__________________________________________________________________________ 

/* step 1: find sub graphs intersecting 1 the query range */ 

2 Find the set X of ids of all sub graphs intersecting (q, r); 
3 Set A = ∅, Ac = ∅; 
4 for each sub graph id i ∈ X do 
5 /* step 2: use the Filter Trees to retrieve points with strings 
that 
are potentially similar to the query string */ 
6 Find all point ids in Gi whose associated strings σ′ 
may satisfy ε(σ′, σ) ≤ τ using Filter Treei, and insert 
them into Ac; 
7 /* step 3: prune away points by calculating the lower and 
upper bounds of their distances to the query point using VR */ 
8 for every point pi ∈ Ac do 
calculate d+9 (pi, q) and d−(pi, q) as discussed; 
if d+10 (pi, q) ≤ r then 
11 if ε(σi, σ) ≤ τ then 
12 move pi from Ac to A; 
13 /* step 4: prune points using the exact edit distance 
between the query string and the candidate string */ 
14 else 
15 delete pi from Ac; 
16 else 
17 if d−(pi, q) > r then 
18 delete pi from Ac; 
19 /* step 4: same pruning as the step 4 above */ 
20 for every point pi ∈ Ac do 
21 if ε(σi, σ) > τ then 
22 delete pi from Ac; 
23 /* step 5: check the exact distances of the remaining 
candidate 
points to the query point */ 
24 Use the MPALT algorithm to find all points p’s in Ac 
such that d(p, q) ≤ r, push them to A; 
25 Return A. 
 
Query Processing: RSASSOL algorithm is presented as 
above described. First, we will find all possible sub graphs 
that intersect with query range. We here employ the Dijkstar’s 
algorithm for traversing the nodes in G, starting from query 
point q.  Whenever traversal meets the first node of new sub 
graph, we check the sub graph for further exploration. This 
algorithm terminates when the boundary of the query range is 
reached. For each Sub graph to examine it we give 
approximate string to search over Filter tree as the next 
pruning step to be taken. 
Further prune the points using the spatial predicate, by 
computing lower and upper bounds. Recall that we have pre 
computed the distance of every network node from every 
node.  
 
 
4.3 Selectivity estimation of RSAS queries 
 The Selectivity estimation of range queries on the road 
network is a very harder problem than its counter part of 
Eiclidean Space. Many methods are proposed for this but they 
are only able of estimating the count of nodes and edges in 
range. Nothing can be efficiently adapted to estimate the 
number of points. One unsophisticated solution is to treat 

A query 

Step1: find all sub graphs that intersect with the query 
range 
 

Step 2: use the FilterTrees to retrieve the Points with the 
strings that are potemtially similar to query string 
 

Step 3: prune away the candidate points by calculating the 
lower and upper bounds of their distances to query point 
 

Step 4: prune away the candidate points. Using the exact 
edit distances between the quey string and the candidate 
strings. 
 

Step 5: check the exact distances of the remaining candidate 
points to the query point. 
 

Query Results 
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points as nodes in the network which can be achieved by 
introducing more number of edges. This will certainly going 
to increase the space consumption of the network as always 
the number of points will be greater than the number of nodes 
existing in the network sometimes this difference between the 
count of number of nodes and the number of points will be 
very large. This will also leave a problem that integrating 
string selectivity estimator with the spatial selectivity 
estimator as we did for Euclidian space. 
 
EXPERIMENTAL EVALUATION: 
 
For the ESAS queries we have implemented R-tree solution 
and the MHR-tree using the widely adopted spatial library. 
The Adaptive R tree algorithm seamlessly for ESAS 
selectivity estimator for both R-Tree and the MHR tree. For 
RSAS queries, we implemented the Dijkstra algorithm as 
solution and the RASSOL method, based upon the disk-based 
storage model and Flamingo package tree. 
 
Setup: The spatial predicate r(a rectangle) is an ESAS query 
and is generated by selecting a center pint cr and a query area 
that is specified as percentage of total space, denoted by θ = 
area of  r/θ(p) randomly. For making sure that query should 
return non-empty results, we here select the query string as 
associated String of nearest neighbor center point from P. The 
default value of θ is 3%. Default size of signature is l = 50 
hash values. The spatial range predicate for a RSAS query can 
be generated by choosing point q on randomly selected edge 
and radius r is network distance value. 
 
RELATED WORK: 
 
IR2-tree was proposed to perform exact keyword search with 
kNN queries of spatial databases. The IR2 – tree cannot 
support spatial approximate string searches, authors in study 
of the m-closet type keywords query in Euclidian space, 
where proposed cannot handle the approximate string search 
neither.  
 
Another related work appears where LBAK-tree was proposed 
to answer location-based approximate search keyword queries 
which look similar to our definition of spatial approximate 
string queries and their working in Euclidian Space. The basic 
idea of this methodology is tree based spatial augmentation. 
With the q—grams sub tree nodes for supporting the edit 
distance based approximate string/keyword search. LBAK-
tree was proposed after   study on spatial approximate string 
queries in the Eucllidian space. The results of these shows that 
LBAK-tree has successfully achieved better query time than 
the MHR-tree.  
 
Best of our knowledge, RSAS queries and the selectivity 
estimation of the spatial approximate String queries have not 
been explored before. The approximate string search alone has 
been an extensively studied thing in the literature. All the 
works done on this generally assume a similarity function 

which will quantify the closeness between the two strings on 
the entered keyword and the other is the search keyword. A 
variety of these functions like edit distance are there. Many of 
the approaches leverage the concept   about q-terms.  
Note that the concept of Approximate string matching will 
also some times refers to a problem of finding a pattern string 
approximately in a text. The problem explained in our paper is 
different: we want to search in a collection of strings which 
serve as keywords for a particular data and now to find those 
similar to a single query string. 
 
CONCLUSION: 
 
In this paper presentation of comprehensive study on spatial 
approximate string search is being explained in both 
Euclidean space and road Networks. Here we use the edit 
distance as similarity measurement of a string predicate. Here 
we also address problem of selectivity estimation of queries in 
Euclidian space.  The Future Work may include examining 
spatial approximate sub-string, making methods that are more 
update-friendly and solving the problem of selectivity 
estimation for RSAS queries. 
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