
International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 4 – Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page161

A Framework for Geographical based Approximate
String Search

G. Vidya Praveena1, K. Krishna reddy2, Janapati Venkata Krishna 3
1pursuing M.Tech (CSE), 2Assistant Professor (CSE Department), 3Associate Professor & HOD (CSE Department)

1,2,3Holy Mary Institute of Technology and Science, Keesara, Affiliated to JNTU- Hyderabad, A.P, India

Abstract— This work deals with the approximate string
search in large spatial databases. We investigate range
queries augmented with a string similarity search
predicate in both Euclidean space and road networks. We
make this query the spatial approximate Existing (Apr 19,
2013) string (SAS) query. In Euclidean space, we propose
an approximate solution MHR-tree, which will embed
min-wise signatures into R-tree. These min-wise signature
for an index node u keeps a concise representation of the
union of q-grams from strings under the sub-tree of u. We
here analyze the pruning functionality of such signatures
based on the set resemblance between he query string and
the q-grams from the sub-trees with index nodes. Here we
also discuss how to estimate the selectivity of a SAS query
in Euclidean space, for which here we present a novel
adaptive algorithm to find balanced partitions using both
the spatial and string information stored in the tree as
discussed. For queries on road networks, we propose a
novel method, the RSASSOL, which significantly
outperforms the baseline algorithm in practice. RSASSOL
combines the q-gram based inverted lists and the pruning
based on reference nodes. Extensive experiments on large
real data sets demonstrate the efficiency and effectiveness
of the approach.

I. INTRODUCTION
The Keyword search in a very large amount of data is
important operation in almost every domain which deals with
collection or storing of the data. When we extend this study of
databases to Spatial Data Bases, the keyword search will
become the most fundamental building block for the
increasing amount of the real world applications. But most of
the present day’s keyword based searches such as IR2 –Tree
will retrieve only exact keyword matches and not all. Since
this type of exact match of keyword is a special case of
approximate String matching it is very clear that when exact
keyword search may lead us to a situation where the exact
data required may not be found since we do not know what is
the exact key word associated with that data. So the
approximate string search is important when to uses have a
fuzzy key search condition, or when a spelling mistake may
occur when submitting the query. In this concept of
approximate string search this can be mixed and used with any

combination of spatial queries. Here let us make that the
keyword you have given acts as a point and the required data
as a line. Here when it is regarding with the exact string
search mostly it may connect too only on line which exactly
matches whatever the keyword that is given but while coming
to the approximate string search it may not link only to one
line but to too many lines. Here it means it will take all the
possible data which will have the approximation to the
keyword that means which have may be around more than
half matched with the keyword entered. A straightforward
solution to the Spatial Approximate String query is to use the
existing techniques for getting the spatial component of
Spatial Approximate String Search query and to verify the
approximate string match either in post-processing or on the
intermediate results of the spatial search.

The main contribution of this paper are as follows:

 Formalizing the notion of Spatial Approximate String
queries and related selective estimation problem

 Here we present a robust and novel selectivity
estimator. Our idea is to make an adaptive algorithm
that can find balanced partitions from any tree based
index based on both the spatial and string
information nodes.

 The RASSSOL partitions the road network, searches
the relevant sub graphs, and then prunes candidate
points using both the spatial reference nodes and
string matching index.

 We here demonstrate the effectiveness and efficiency
of proposed methods for SAS queries by using a
comprehensive experimental evaluation.

PROBLEM FORMULATION:

 Keyword search over a large amount of data is an
important operation in all the domains that include storing and
retrieval of data by searching. The recently extended study of
spatial databases from common databases, where keyword
search becomes a fundamental building block for an
increasing number of real-world applications, and proposed
the IR -Tree. A main limitation of the IR -Tree is that it only
supports exact keyword search. So when the exact keyword

International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 4 – Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page162

search is being employed always there will a condition where
the user cannot get the required data that is because of the
situation may be he may have spelt it wrong or in some cases
may be he do not know the exact keyword that is associated
with the data that he wanted to access, so as long as he do not
know the exact key word he will not be able to get the data.

 The main drawback for this is always the requirement of
the exact keyword for getting the data which may not be
always known.

PROPOSED SOLUTION:

For RSAS type queries where string match approximate is
enough, the baseline of the spatial solution is based on the
Dijkstra’s algorithm. Take the given query as point q, and the
query range radius as r, and a string, we now expand from
query point q on the road network using Dijkstra algorithm
until we reach all the possible points that are distance r away
from q and then verify the string predicate either in post-
processing step or on the intermediate results of expansion.
We now denote this approach as the Dijkstra solution. Its
performance will degrade quickly when the query range
enlarges or when the data on the network increases or in both
cases. This motivated us to find a novel method that can avoid
the unnecessary expansions of road network, by combining
the pruning from both the spatial and the string predicates
simultaneously.

We here demonstrate the effectiveness and efficiency
of our proposed methods for Spatial Approximate String
queries which are using a comprehensive experimental
evaluation for the results. For ESAS queries, our experimental
evaluation is able to cover both the synthetic and real data sets
of up to 10 million points and in 6 dimensions on the other
hand for RSAS queries, our evaluation is based on two large
and real road network datasets that contain nearly 175,800
nodes, 179,100 edges, and 2 million points on the road
network. In both the cases, our method significantly
outperformed the respective baseline methods.

The most explained advantage of the proposed solution is the
user will get the exact data that he was searching for even
though the keyword he entered is not perfect. Here I also gives
one more feasibility to the user that there is no need for him to
remember the exact keyword or to be exact with the spelling
of the keyword he is entering there.

3 THE RSAS QUERIES:
In case of RSAS Queries, since the locations of points which
are constrained by the network and will be represented by the
edge holding the point and the distance which acts as the
offset to the edge end. To handle large scale datasets, we here
develop eternal-memory algorithms and adapt a disk-based
road network storage framework.

3.1 Disk-based road network representation

Here we adopt a disk-based storage model to the setting that
will group the network nodes based upon their connectivity
and distance. The following figure demonstrates an instance
of model proposed for the network. In the model of ours, the
adjacency list and points will be stored in two different files,
each of them is indexed by a separate VR of the nodes form V
is selected for reference nodes. The distance between any two
nodes or two points or a node from a point will make the
length of the shortest path.

 For the node ni, its distance from reference nodes in VR and
number of nodes of ni. For every adjacent node nj of ni. we
will store the adjacent node’s ID, the length of the edge
e=(ni,nj) and a pointer that points group on e. See the
following figure,

Fig. 1 Disk- based storage of the road Network

In the described points file, the ids of points will be assigned
in such a way that for points of the same edge (ni, nj), points
will be stored by their own offset distances to the a node with
smaller id in arranged in ascending order, and then their ids
are then sequentially assigned (crossing different edges as
well). Note that any edge e defined with two nodes ni and nj ,
we will represent e by always placing that node with the
smaller id first. That is, if ni < nj, in the adjacency list of nj ,
the entry for ni will have pointer that to the points group
which is pointing to the points group of (ni, nj) (i.e., no
duplication of any points group will be stored). We will also
store other information that is associated with a point (i.e.,
strings) after the offset distance. We now store the points on
the same edge in points group. At the inception of the points
group, we have to store the edge information (i.e., (ni, nj)) and
the also the number of points on the edge. The groups are
supposed to be stored in a points file in ascending order of the
node ids that are defining the edges. Then B+-tree will be
built on this file with the keys being the first point id of each
points group and values that are being in the corresponding
points group. For example, if the points file in Figure 1
partially reflect the example. The ODISTi was the offset
distance of point pi.

International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 4 – Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page163

3.2 The RSASSOL algorithm:
We partition a road network G={V,E} into m edge-disjoint
sub graphs. We also select one small subset of nodes as
reference nodes. Given below is the overview of RSASSOL
algorithm. Which by concept have five steps. When a query is
given, first find all the sub graphs that are intersecting with
query range. Then Filter trees of these sub graphs to retrieve
the points which have the strings that are potentially similar to
the query string.

Fig 2: overview of RSASSOL ALGORITHM

Algorithmic Explanation of above discussed over view is as
fllows.
__
Algorithm : RSASSOL(network G, Qr = (q, r), Qs = (_, _))
__

/* step 1: find sub graphs intersecting 1 the query range */

2 Find the set X of ids of all sub graphs intersecting (q, r);
3 Set A = ∅, Ac = ∅;
4 for each sub graph id i ∈ X do
5 /* step 2: use the Filter Trees to retrieve points with strings
that
are potentially similar to the query string */
6 Find all point ids in Gi whose associated strings σ′
may satisfy ε(σ′, σ) ≤ τ using Filter Treei, and insert
them into Ac;
7 /* step 3: prune away points by calculating the lower and
upper bounds of their distances to the query point using VR */
8 for every point pi ∈ Ac do
calculate d+9 (pi, q) and d−(pi, q) as discussed;
if d+10 (pi, q) ≤ r then
11 if ε(σi, σ) ≤ τ then
12 move pi from Ac to A;
13 /* step 4: prune points using the exact edit distance
between the query string and the candidate string */
14 else
15 delete pi from Ac;
16 else
17 if d−(pi, q) > r then
18 delete pi from Ac;
19 /* step 4: same pruning as the step 4 above */
20 for every point pi ∈ Ac do
21 if ε(σi, σ) > τ then
22 delete pi from Ac;
23 /* step 5: check the exact distances of the remaining
candidate
points to the query point */
24 Use the MPALT algorithm to find all points p’s in Ac
such that d(p, q) ≤ r, push them to A;
25 Return A.

Query Processing: RSASSOL algorithm is presented as
above described. First, we will find all possible sub graphs
that intersect with query range. We here employ the Dijkstar’s
algorithm for traversing the nodes in G, starting from query
point q. Whenever traversal meets the first node of new sub
graph, we check the sub graph for further exploration. This
algorithm terminates when the boundary of the query range is
reached. For each Sub graph to examine it we give
approximate string to search over Filter tree as the next
pruning step to be taken.
Further prune the points using the spatial predicate, by
computing lower and upper bounds. Recall that we have pre
computed the distance of every network node from every
node.

4.3 Selectivity estimation of RSAS queries
 The Selectivity estimation of range queries on the road
network is a very harder problem than its counter part of
Eiclidean Space. Many methods are proposed for this but they
are only able of estimating the count of nodes and edges in
range. Nothing can be efficiently adapted to estimate the
number of points. One unsophisticated solution is to treat

A query

Step1: find all sub graphs that intersect with the query
range

Step 2: use the FilterTrees to retrieve the Points with the
strings that are potemtially similar to query string

Step 3: prune away the candidate points by calculating the
lower and upper bounds of their distances to query point

Step 4: prune away the candidate points. Using the exact
edit distances between the quey string and the candidate
strings.

Step 5: check the exact distances of the remaining candidate
points to the query point.

Query Results

International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 4 – Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page164

points as nodes in the network which can be achieved by
introducing more number of edges. This will certainly going
to increase the space consumption of the network as always
the number of points will be greater than the number of nodes
existing in the network sometimes this difference between the
count of number of nodes and the number of points will be
very large. This will also leave a problem that integrating
string selectivity estimator with the spatial selectivity
estimator as we did for Euclidian space.

EXPERIMENTAL EVALUATION:

For the ESAS queries we have implemented R-tree solution
and the MHR-tree using the widely adopted spatial library.
The Adaptive R tree algorithm seamlessly for ESAS
selectivity estimator for both R-Tree and the MHR tree. For
RSAS queries, we implemented the Dijkstra algorithm as
solution and the RASSOL method, based upon the disk-based
storage model and Flamingo package tree.

Setup: The spatial predicate r(a rectangle) is an ESAS query
and is generated by selecting a center pint cr and a query area
that is specified as percentage of total space, denoted by θ =
area of r/θ(p) randomly. For making sure that query should
return non-empty results, we here select the query string as
associated String of nearest neighbor center point from P. The
default value of θ is 3%. Default size of signature is l = 50
hash values. The spatial range predicate for a RSAS query can
be generated by choosing point q on randomly selected edge
and radius r is network distance value.

RELATED WORK:

IR2-tree was proposed to perform exact keyword search with
kNN queries of spatial databases. The IR2 – tree cannot
support spatial approximate string searches, authors in study
of the m-closet type keywords query in Euclidian space,
where proposed cannot handle the approximate string search
neither.

Another related work appears where LBAK-tree was proposed
to answer location-based approximate search keyword queries
which look similar to our definition of spatial approximate
string queries and their working in Euclidian Space. The basic
idea of this methodology is tree based spatial augmentation.
With the q—grams sub tree nodes for supporting the edit
distance based approximate string/keyword search. LBAK-
tree was proposed after study on spatial approximate string
queries in the Eucllidian space. The results of these shows that
LBAK-tree has successfully achieved better query time than
the MHR-tree.

Best of our knowledge, RSAS queries and the selectivity
estimation of the spatial approximate String queries have not
been explored before. The approximate string search alone has
been an extensively studied thing in the literature. All the
works done on this generally assume a similarity function

which will quantify the closeness between the two strings on
the entered keyword and the other is the search keyword. A
variety of these functions like edit distance are there. Many of
the approaches leverage the concept about q-terms.
Note that the concept of Approximate string matching will
also some times refers to a problem of finding a pattern string
approximately in a text. The problem explained in our paper is
different: we want to search in a collection of strings which
serve as keywords for a particular data and now to find those
similar to a single query string.

CONCLUSION:

In this paper presentation of comprehensive study on spatial
approximate string search is being explained in both
Euclidean space and road Networks. Here we use the edit
distance as similarity measurement of a string predicate. Here
we also address problem of selectivity estimation of queries in
Euclidian space. The Future Work may include examining
spatial approximate sub-string, making methods that are more
update-friendly and solving the problem of selectivity
estimation for RSAS queries.

REFERENCES:
[1] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity
estimation in
spatial databases. In SIGMOD, pages 13–24, 1999.
[2] S. Alsubaiee, A. Behm, and C. Li. Supporting location-
based
approximate-keyword queries. In GIS, pages 61–70, 2010.
[3] A. Arasu, S. Chaudhuri, K. Ganjam, and R. Kaushik.
Incorporating
string transformations in record matching. In SIGMOD, pages
1231–
1234, 2008.
[4] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-
similarity joins.
In VLDB, pages 918–929, 2006.
[5] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger.
The R_-tree: an efficient and robust access method for points
and rectangles. In
SIGMOD, pages 322–331, 1990.
[6] A. Z. Broder, M. Charikar, A. M. Frieze, and M.
Mitzenmacher. Minwiseindependent permutations (extended
abstract). In STOC, pages
327–336, 1998.
[7] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k
prestige-basedrelevant spatial web objects. Proc. VLDB
Endow., 3:373–384, 2010.
[8] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin. An
efficient filterfor approximate membership checking. In
SIGMOD, pages 805–818,
2008.

International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 4 – Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page165

AUTHOR PROFILE

G.Vidya Praveena,
pursuing M.Tech (CSE) from
Holy Mary Institute of
Technology and Science,
Keesara, Ranga Reddy Dist.,
Affiliated to JNTU-
HYDERABAD.

K.Krishna Reddy,
Assistant Professor (CSE
Department), Holy Mary
Institute Of Technology and
Science, Keesara, Ranga
Reddy Dist., Affiliated to
JNTU-HYDERABAD.

Janapati Venkata Krishna,
Associate Professor & H O D
(CSE Department), Holy Mary
Institute Of Technology and
Science, Keesara, Ranga
Reddy Dist., Affiliated to
JNTU-HYDERABAD.

