
International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 3–Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page 121

A Formal Approach to Distributed System Security
Test Generation

Vladimir A. Khlevnoy, Andrey A. Shchurov,
Department of Cybernetics, Faculty of Electrical Engineering,

Czech Technical University in Prague, The Czech Republic

Abstract— Deployment of distributed systems sets high
requirements for procedures for the security testing of these
systems. This work introduces: (1) a list of typical threats based
on standards and actual practices; (2) an extended six-layered
model for test generation mission on the basis of technical
specifications and end-user requirements. Based on the list of
typical threats and the multilayer model, we describe a formal
approach to the automated design and generation of security
mechanisms checklists for complex distributed systems.

Keywords— distributed systems, security testing, formal
approaches

I. INTRODUCTION
If you can’t describe what you are doing as a process, you

don’t know what you’re doing.
— William Edwards Deming

Nowadays distributed systems have critical security

requirements. Their failure may endanger human lives and the
environment, do serious damage to major economic
infrastructure, endanger personal privacy, undermine the
viability of whole business sectors and facilitate crime [1]. As
a consequence, the most difficult part of distributed systems
deployment is the question of assurance (whether the system
will work) and verification. If assurance is difficult,
verification is even more difficult: it is a question of how to
convince customers (and, in extremis, a jury) that a system is
indeed fit for its goals including security objectives.

Generally, security requirements differ greatly from one
system to another. But in the real world many systems have
failed because their designers: (1) had protected the wrong
things; (2) had protected the right things but in the wrong way;
(3) or some things had been just simply forgotten. As a
possible solution, it is necessary to determine a formal list of
control objectives during the design phase of the System
Development Life Cycle (SDLC) and, as the next step, to
show that each component of this list meets at least one
protection mechanism during the implementation phase of the
SDLC: i.e. it is necessary to have checklists.

But we face the great challenge of the dual nature of
distributed systems. In fact, it is necessary to pay respect to
their software nature – services and end-user application. On
the other hand, the distribution character of these systems
forces us to consider their network nature. Historically, we
have two independent administrative domains with two
different approaches to security policies: (1) the
communication (network-based) domain [2]; and (2) the

system (software-based) domain [3] instead of comprehensive
(integral) approach.

Our main goal is the automated design and generation of
security mechanisms checklists (or a set of test cases) for
distributed systems based on end-user requirements and
technical specifications as a necessary part of project
documentation. We need to state here - working engineers
treat formal methods as they are widely taught in universities
and not used anywhere in the real world. But in the case of
complex or non-standard systems, personal experience and/or
intuition are often inadequate. Thus, to accomplish such a goal
we need to identify a formal list of control objectives with the
following criteria: (1) it should be based on standards and/or
well-known practical methods (as a formal document); (2) it
has to cover all aspects of distributed systems; and (3) it has to
be simple enough for practical application.

The rest of this paper is structured as follows. Section 2
introduces the related work. Section 3 presents the extended
six-layered model of distributed systems for test generation
mission and the checklists generation approach. Section 4
introduces an example based on a simple information system.
Finally, conclusion remarks are given in Section 5.

II. RELATED WORK
The current revision of ITU-T X.805 [4] standard defines

the security architecture that addresses three essential
questions with regard to end-to-end security:

 What kind of protection is needed and against what
threats?

 What are the distinct types of system equipment and
facility groupings that need to be protected?

 What are the distinct types of system activities that need
to be protected?

A. Definition of typical threats
In respect to our main goals, the answer on the first

question must be based on related standards or well-known
practical methods.

The current revision of ISO/IEC 27005:2011 [5] standard
contains a list of typical threats and can be used as a starting
point. We need to state here – this list covers both aspects
(software-based and network-based) of distributed systems but
not only these aspects.

On the other hand as recent practical approaches, Trilateral
Research & Consulting describes more than 30 different risk
management standards and methodologies [6]. The most
widespread and comprehensive solutions are [7]: EBIOS [8],

International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 3–Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page 122

IRAM [9], IT-Grundschutz [10], MAGERIT [11], Mehari [12]
and OCTAVE [13].

B. Definition of protected objects
In respect to our main goals, the answer to the later

questions must be based on system specifications. The search
for necessary system equipment and system activities usually
involves analyzing system models, with the analysis covering
paths in a model. In this context, this work lies in the area of
model-based testing (MBT) based on formal specifications.

Bernot et al [14] set up a theoretical basis for specification-
based testing, explaining how a formal specification can serve
as a base for test case generation. Dick and Faivre [15]
propose transforming formal specifications into a disjunctive
normal form (DNF) and then using it as the basis for test case
generation. Donat [16] represents a technique for automatic
transformation of formal specifications into test templates and
taxonomy for coverage schemes. Hong et al [17] show how
coverage criteria based on control-flow or data-flow
properties can be specified as sets of temporal logic formulas,
including state and transition coverage as well as criteria
based on definition-use pairs. Liu and Shen [18] describe a
method that can be used for (1) identifying all interface
scenarios, formalizing requirements into formal operation
specifications whose interfaces are consistent with the
corresponding ones of the program; and (2) for testing
programs based upon the formal specifications (scenario-
coverage strategy). In turn, Shchurov and Marik [19] present a
requirements-coverage test strategy that covers both
hardware-based (system equipment) and software-based
(system activities) aspects of complex distributed systems.

III. CHECKLISTS GENERATION

A. Basic approach
The essential idea of our approach is based on:
 IT-Grundschutz risk management methodology [10];
 component-based approach with its two important

consequences: (1) components are built to be reused in
different systems, and (2) component development
process is separated from the system development
process [20], [21].

In our case IT-Grundschutz was chosen as the basic
analytic tool based on the following notions:

 the list of typical threats of IT-Grundschutz is
compatible with the list of typical threats of ISO/IEC
27005:2011;

 in contrast with ISO/IEC 27005:2011 and other
solutions, the list of typical threats of IT-Grundschutz
has a linear structure (the list of ISO/IEC 27005:2011
has a tree structure);

 in contrast with ISO/IEC 27005:2011, the list of typical
threats of IT-Grundschutz has detailed descriptions for
each threat.

We need to state here – the international standard ISO/IEC
27005:2011 and/or regional standards/methodologies can be
used as an analytic tool depending on the state legislation
and/or corporate requirements.

Fig. 1 Four-layered model of distributed systems for test generation missions
[22]

In turn, the component-based approach refers to the fact

that the functional usefulness of distributed systems does not
depend on any particular part of these systems, but emerges
from the way in which their components interact. Thus, a
formal four layered model for test generation missions [22]
can be used as a starting point. This model is stated as a four-
layered graph as follows see Fig.1:

 The ready-for-use system architecture layer defines
functional components and their interconnections.

 The service architecture layer defines software-based
components (services/applications) and their
interconnections.

 The logical architecture layer defines logical (virtual)
components and their interconnections.

 The physical architecture layer defines hardware
(physical) components and their interconnections.

 The interlayer projections define all types of
components hierarchical (interlayer) relations/mapping.
These relations make the layered model consistent and
represent interlayer technologies (virtualization,
clustering, etc.) used to build distributed systems.

Unfortunately, this multilayer model of complex systems
includes only four layers and, as a consequence, does not
cover the lists of typical threats completely. This problem can
be solved by two additional layers:

 The engineering environment architecture layer. This
layer defines external engineering systems (power
supply systems, climate control systems, physical
security systems, etc.) that are vital for normal
operation of distributed systems and their
interconnections. It is based on topological models
(TMs) [23], where all systems (engineering and
distributed) are represented as individual components.

 The social environment architecture layer. This layer
defines an enterprise’s organization infrastructures or
“human networks”. It is also based on TMs but
represents persons or groups of persons and their
working relationships.

International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 3–Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page 123

These additional layers lie beyond the ISO/OSI Reference
Model (RM) [24] but they provide a necessary complement to
it with regard to our main goals. The final model is shown in
Fig.2.

Fig. 2 Extended six-layered model of distributed systems

B. Formal notations
Formal verification offers a rich toolbox of mathematical

techniques that can support the model-based testing of
computer systems. This toolbox contains logic programming
as one of the most relevant techniques of model checking [25].
In turn, logic programming deals with logical facts and, as a
consequence, the basic step is to determine the formal
notations which make the layered model applicable for logic
programming.

Applying of the requirements-coverage test strategy [19] to
the system model (see Fig.2.) provides the set of system
objects that need to be protected.
Definition 1 (objects): Let the set On denote the system
objects for each layer n that need to be protected:

ܱ = ܸ 	∪ 		 ܶ

where Vn is a subset of individual components (or system
equipment and facility groupings) on layer n; and Tn is a
subset of data flows (or system activities) between pairs of
individual components on layer n, which must communicate.

As the next step, we have to partition the set of typical
threats with regard to the model layered structure and the
objects definition (see Definition 1).

Definition 2 (threats/dangers): Let the set Thn denote the
threats for each layer n:

ܶℎ = ܶℎଵ 	∪ 		ܶℎଶ

where Thn1 is a subset of threats that affects individual
components on layer n; and Thn2 is a subset of threats that
affects data flows on layer n. In turn:

ܶℎ = ራܶℎ

ே

ୀ

where Th is the list of typical threats; and N is the number of
layers of the system model.

In the case of IT-Grundschutz risk management
methodology [10] sets of threats shown in the Table 1.

As the final step, we have to determine the security
checklist generation process.

Definition 3 (the security checklist): The set of test cases (or
security checklist), denoted by Sn, is the mapping from the set
of threats (see Definition 2) to the set of protected objects (see
Definition 1) for every layer n:

ܵ ∶ 	 ܶℎ → ܱ

In turn:

ܵ 	= ܵଵ ∪ ܵଶ
ܵଵ ∶ 	 ܶℎଵ → ܸ
ܵଶ ∶ 	ܶℎଶ → ܶ

where Sn1 is a subset of test cases that affects individual
components on layer n; and Sn2 is a subset of test cases that
affects data flows between pairs of individual components on
layer n, which must communicate.

Generally, each individual component of Thn must be
mapped to at least one component of On. As a consequence,
Sn cannot be an empty set without any exception. Then:

ܵ = ራܵ

ே

ୀ

where S is the completed set of test cases (or final security
checklist); and N is the number of layers of the system model.

The graphical representation of the security checklist
generation process is shown in Fig. 3.

C. Complexity of the approach
The total number of test cases |S| is based on the two main

steps of the checklist generation approach:

|ܵ| = |ܵଵ| + |ܵଶ|

where S1 is a subset of test cases that affects individual
components; and S2 is a subset of test cases that affects data
flows between pairs of individual components, which must
communicate.

International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 3–Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page 124

TABLE I
PARTITIONED LIST OF THREATS OF IT-GRUNDSCHUTZ [27]

THREATS DESCRIPTION SETS OF TREATS
Th01 Th11 Th21 Th31 Th51 Th02 Th12 Th22 Th32 Th52

T 0.01 Fire x
T 0.02 Unfavorable climatic conditions x
T 0.03 Water x
T 0.04 Pollution, dust, corrosion x
T 0.05 Natural disasters x
T 0.06 Environmental disasters x x
T 0.07 Major events in the environment x x
T 0.08 Failure or disruption of the power supply x
T 0.09 Failure or disruption of communication networks x x
T 0.10 Failure or disruption of mains supply x
T 0.11 Failure or disruption of service providers x
T 0.12 Interfering radiation x x
T 0.13 Intercepting compromising emissions x x
T 0.14 Interception of information / espionage x x
T 0.15 Eavesdropping x x
T 0.16 Theft of devices, storage media and documents x
T 0.17 Loss of devices, storage media and documents x
T 0.18 Bad planning or lack of adaptation x x
T 0.19 Disclosure of sensitive information x x
T 0.20 Information or Product from an unreliable source x
T 0.21 Manipulation of hardware and software x
T 0.22 Manipulation of information x
T 0.23 Unauthorized access to IT systems x x
T 0.24 Destruction of devices or storage media x
T 0.25 Failure of devices or systems x
T 0.26 Malfunction of devices or systems x
T 0.27 Lack of resources x x
T 0.28 Software vulnerabilities or errors x x
T 0.29 Violation of laws or regulations x x
T 0.30 Unauthorized use or administration of devices and systems x x x x x x
T 0.31 Incorrect use or administration of devices and systems x x x x
T 0.32 Abuse of authorizations x x x x
T 0.33 Absence of personal x
T 0.34 Attack x
T 0.35 Coercion, extortion or corruption x
T 0.36 Identity theft x
T 0.37 Repudiation of actions x
T 0.38 Abuse of personal data x
T 0.39 Malicious software x
T 0.40 Denial of service x
T 0.41 Sabotage x
T 0.42 Social Engineering x
T 0.43 Replay of messages x
T 0.44 Unauthorized entry to premises x
T 0.45 Data loss x
T 0.46 Loss of integrity of sensitive information x

International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 3–Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page 125

Fig. 3. Graphical representation of the security checklist generation process.

1) In the case of individual components, the result is a quite
trivial:

|ܵଵ| ≤ |ܶℎଵ|
ே

ୀଵ

| ܸ|

2) In the case of data flows, there are two possible options:
2.1) Simple communication systems. In this case, there is only
one possible route between each pair of individual
components, which must communicate. For such systems:

| ܶ| ≤
| ܸ|(| ܸ| − 1)

2
And:

|ܵଶ| ≤ ቈ
|ܶℎଶ|| ܸ|(| ܸ| − 1)

2
ே

ୀଵ

2.2) Complex communication systems. For these systems there
are some independent routes between each pair of individual
components, which must communicate. In this case:

| ܶ| ≤
| ܸ|(| ܸ| − 1)

2

where is the number of possible independent routes. In the
real engineering word under financial constraints commercial

systems are usually based on redundant architecture [26]:
 = 2. We need to state here – specific areas like the military,
nuclear or aerospace industries are beyond the scope this work.
Then:

|ܵଶ| ≤ |ܶℎଶ|| ܸ|(| ܸ| − 1)
ே

ୀଵ

Table 2 shows the cardinality of the set of threats based on

IT-Grundschutz risk management methodology [27].
TABLE II

CARDINALITY OF THE THREATS BASED ON IT-GRUNDSCHUTZ

Threats subset
Model layer (n)

0 1 2 3 4 5

| Thn1 | 15 5 5 13 - 13

| Thn2 | 5 3 4 5 - 2

IV. CASE STUDY

As a practical example, we have a very simple distributed

system (see Fig. 4 – Fig. 7). The service architectural layer
and the logical architectural layer are represented in [19] (they
are not shown here because of the lack of space).

International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 3–Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page 126

Fig. 4 Simple example of multi-layered system model - functional

architecture layer [19]

Fig. 5 Simple example of multi-layered system model - physical architecture
layer [19]

The security checklist generation process application to the
example shows a surprisingly large number of tests required
to fully cover even this very simple system – see Table 3.

Fig. 6 Simple example of multi-layered system model - engineering
environment architecture layer

By and large, this result can easily explain the existence of

the huge number of vulnerabilities in commercial systems.
Increasing system complexity and fierce market competition
on time-to-market and cost make complex security testing of
distributed systems really difficult (or even impossible).

Fig. 7 Simple example of multi-layered system model - social environment
architecture layer

TABLE III
APPLICATION OF THE SECURITY CHECKLIST GENERATION PROCESS

Architectural
layers

Security checklists

n
Sn1 Sn2

|Sn|
|Vn| |Thn1| |Tn| |Thn2|

Social
environment 5 4 13 3 2 58

Functional 4 2 - 1 - -
System 3 14 13 15 5 257
Logical 2 6 5 7 4 58
Physical 1 7 5 6 3 53
Engineering
environment 0 4 15 4 5 80

Total: 506

V. CONCLUSIONS
When talking about the security testing of distributed

systems, we face the great challenge of the dual nature of
these systems. Today every computing and/or communication
(network) component is a computer with special operating
software. So, it is necessary to pay respect to their software
nature and we have to talk about “software-based systems”
instead of simply “systems”. On the other hand, the
distribution character of these systems forces us to consider
their network nature. So, test applications should be very
flexible to cover distributed systems appropriately and test
multiple different aspects with a variety of requirements [28].

Historically, the software part is “a private area” for system
and software engineers. Respectively, the network part is “a
private area” for network engineers and partially for system
engineers. As a consequence, system, software and network
engineers have few common models or approaches and even
their vocabulary is different [1]. The situation worsens when
we talk about industrial control systems. Objectively, they
have the same physical nature as every distributed system. But
practically, “the private area” of industrial engineers was
closed for system and/or network engineers for many years
[29].

In this work we determined: (1) a set of typical threats
based on standards and actual practices; and (2) a formal
model for test generation mission on the basis of the concept

International Journal of Computer Trends and Technology (IJCTT) – volume 16 number 3–Oct 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page 127

of layered networks. The model is a six-layered graph, derived
from the system technical specifications, which covers
software-based and network-based aspects of distributed
systems and their environments – external engineering
systems and organization infrastructures (see Fig. 2).

Applying of the requirements-coverage test strategy [19] to
the system model provides a set of system objects that need to
be protected:

 individual components;
 individual components interaction from the end-user

requirements on all architectural layers.
Next, we partitioned the set of typical threats with regard to

the model layered structure (see Table 1). The result of the
layer-by-layer mapping from this set of threats to the set of
protected objects (individual components and their
interactions) is the necessary security checklist.

ACKNOWLEDGMENT
This research has been performed within the scientific

activities at the Department of Telecommunication
Engineering of the Czech Technical University in Prague,
Faculty of Electrical Engineering.

REFERENCES

[1] N. G. Leveson, Safeware: system safety and computers, ACM, 1995.
[2] A. S. Tanenbaum and D. J. Wetherall, Computer Networks, 5th ed.,

Prentice Hall Press, 2011.
[3] A. S. Tanenbaum and M. v. Steen, Distributed Systems: Principles and

Paradigms, 3rd ed., Prentice Hall Press, 2013.
[4] ITU-T, ITU-T Rec. X.805 - Security Architecture for Systems Providing

End-to-End Communications, 2003.
[5] ISO/IEC, ISO/IEC 27005 "Information technology - Security techniques

- Information security risk management", 2011.
[6] D. Wright, K. Wadhwa, M. Lagazio, C. Raab and C. Eric, "Privacy

impact assessment and risk management," 2013.
[7] K. Kiran, S. Mukkamala, A. Katragadda and D. Reddy, "Performance

And Analysis Of Risk Assessment Methodologies In Information
Security," International Journal of Computer Trends and Technology
(IJCTT), vol. 4, no. 10, pp. 3685-3692, 2013.

[8] EBIOS. [Online]. Available: http://www.ssi.gouv.fr/.
[9] IRAM. [Online]. Available: https://www.securityforum.org/tools/isf-

risk-manager/.
[10] BSI-2-100, Bundesamt fur Sicherheit in der Informationstechnik. BSI-2-

100 IT-Grundschutz Methodology, 2008.
[11] MAGERIT. [Online]. Available: http://www.csi.map.es/csi/pg5m20.htm.
[12] Mehari. [Online]. Available: http://www.clusif.asso.fr/en/clusif/present/.
[13] A. J. Dorofee and C. J. Alberts, "OCTAVE Method Implementation

Guide Version 2.0," 2001.
[14] G. Bernot, M.-C. Gaudel and B. Marre, "Software testing based on

formal specifications: a theory and a tool," Software Engineering
Journal, vol. 6, pp. 387-405, 1991.

[15] J. Dick and A. Faivre, "Automating the Generation and Sequencing of
Test Cases from Model-Based Specifications," in Proceedings of the
First International Symposium of Formal Methods Europe on Industrial-
Strength Formal Methods, 1993.

[16] M. R. Donat, "Automating formal specification-based testing," in
TAPSOFT '97: Theory and Practice of Software Development, 7th
International Joint Conference CAAP/FASE, 1997.

[17] Hyoung Seok Hong, Sung-Deok Cha, Insup Lee, O. Sokolsky and H.
Ural, "Data flow testing as model checking," in Software Engineering,
2003. Proceedings. 25th International Conference on, 2003.

[18] Shaoying Liu and Wuwei Shen, "A formal approach to testing programs
in practice," in Systems and Informatics (ICSAI), 2012 International
Conference on, 2012.

[19] A. A. Shchurov and R. Mařík, "A Formal Approach to Distributed
System Tests Design," International Journal of Computer and
Information Technology, vol. 3, no. 4, pp. 696-705, 2014.

[20] J. Liu and E. A. Lee, "A component-based approach to modeling and
simulating mixed-signal and hybrid systems," ACM Trans. Model.
Comput. Simul., vol. 12, pp. 343-368, October 2002.

[21] M. Torngren, DeJiu Chen and I. Crnkovic, "Component-based vs.
model-based development: a comparison in the context of vehicular
embedded systems," in Software Engineering and Advanced
Applications, 2005. 31st EUROMICRO Conference on, 2005.

[22] A. A. Shchurov, "A Formal Model of Distributed Systems For Test
Generation Missions," International Journal of Computer Trends and
Technology (IJCTT), vol. 15, no. 3, pp. 128-133, 2014.

[23] J. D. McCabe, Network Analysis, Architecture, and Design, 3rd ed.,
Morgan Kaufmann Publishers, 2007.

[24] ISO/IEC, ITU-T Rec. X.901-904 - ISO/IEC 10746 Information
technology - The Reference Model of Open Distributed Processing (RM-
ODP), 1998.

[25] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J.
Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Luttgen, A. J.
H. Simons, S. Vilkomir, M. R. Woodward and H. Zedan, "Using formal
specifications to support testing," ACM Comput. Surv., vol. 41, pp. 9:1-
9:76, February 2009.

[26] D. K. Pradhan, Ed., Fault-tolerant computer system design, Prentice-
Hall, 1996.

[27] BSI-TC, Bundesamt fur Sicherheit in der Informationstechnik, 2011.
[28] S. Delgado, "Designing Modular Software Architectures for Next-

Generation Heterogeneous Networked Test Systems," in Autotestcon,
2006 IEEE, 2006, pp. 461-466.

[29] "Converged Plantwide Ethernet (CPwE) Design and Implementation
Guide," 2011.

