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Abstract— Deployment of distributed systems sets high 
requirements for procedures for the security testing of these 
systems. This work introduces: (1) a list of typical threats based 
on standards and actual practices; (2) an extended six-layered 
model for test generation mission on the basis of technical 
specifications and end-user requirements. Based on the list of 
typical threats and the multilayer model, we describe a formal 
approach to the automated design and generation of security 
mechanisms checklists for complex distributed systems. 
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I. INTRODUCTION 
If you can’t describe what you are doing as a process, you 

don’t know what you’re doing. 
— William Edwards Deming 

 
Nowadays distributed systems have critical security 

requirements. Their failure may endanger human lives and the 
environment, do serious damage to major economic 
infrastructure, endanger personal privacy, undermine the 
viability of whole business sectors and facilitate crime  [1]. As 
a consequence, the most difficult part of distributed systems 
deployment is the question of assurance (whether the system 
will work) and verification. If assurance is difficult, 
verification is even more difficult: it is a question of how to 
convince customers (and, in extremis, a jury) that a system is 
indeed fit for its goals including security objectives. 

Generally, security requirements differ greatly from one 
system to another. But in the real world many systems have 
failed because their designers: (1) had protected the wrong 
things; (2) had protected the right things but in the wrong way; 
(3) or some things had been just simply forgotten. As a 
possible solution, it is necessary to determine a formal list of 
control objectives during the design phase of the System 
Development Life Cycle (SDLC) and, as the next step, to 
show that each component of this list meets at least one 
protection mechanism during the implementation phase of the 
SDLC: i.e. it is necessary to have checklists. 

But we face the great challenge of the dual nature of 
distributed systems. In fact, it is necessary to pay respect to 
their software nature – services and end-user application. On 
the other hand, the distribution character of these systems 
forces us to consider their network nature. Historically, we 
have two independent administrative domains with two 
different approaches to security policies: (1) the 
communication (network-based) domain [2]; and (2) the 

system (software-based) domain [3] instead of comprehensive 
(integral) approach. 

Our main goal is the automated design and generation of 
security mechanisms checklists (or a set of test cases) for 
distributed systems based on end-user requirements and 
technical specifications as a necessary part of project 
documentation. We need to state here - working engineers 
treat formal methods as they are widely taught in universities 
and not used anywhere in the real world. But in the case of 
complex or non-standard systems, personal experience and/or 
intuition are often inadequate. Thus, to accomplish such a goal 
we need to identify a formal list of control objectives with the 
following criteria: (1) it should be based on standards and/or 
well-known practical methods (as a formal document); (2) it 
has to cover all aspects of distributed systems; and (3) it has to 
be simple enough for practical application. 

The rest of this paper is structured as follows. Section 2 
introduces the related work. Section 3 presents the extended 
six-layered model of distributed systems for test generation 
mission and the checklists generation approach. Section 4 
introduces an example based on a simple information system. 
Finally, conclusion remarks are given in Section 5. 

II.  RELATED WORK 
The current revision of ITU-T X.805 [4] standard defines 

the security architecture that addresses three essential 
questions with regard to end-to-end security: 

 What kind of protection is needed and against what 
threats?  

 What are the distinct types of system equipment and 
facility groupings that need to be protected?  

 What are the distinct types of system activities that need 
to be protected? 

A.  Definition of typical threats 
In respect to our main goals, the answer on the first 

question must be based on related standards or well-known 
practical methods.  

The current revision of ISO/IEC 27005:2011 [5] standard 
contains a list of typical threats and can be used as a starting 
point. We need to state here – this list covers both aspects 
(software-based and network-based) of distributed systems but 
not only these aspects. 

On the other hand as recent practical approaches, Trilateral 
Research & Consulting describes more than 30 different risk 
management standards and methodologies [6]. The most 
widespread and comprehensive solutions are [7]: EBIOS [8], 
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IRAM [9], IT-Grundschutz [10], MAGERIT [11], Mehari [12] 
and OCTAVE [13]. 

B. Definition of protected objects 
In respect to our main goals, the answer to the later 

questions must be based on system specifications. The search 
for necessary system equipment and system activities usually 
involves analyzing system models, with the analysis covering 
paths in a model. In this context, this work lies in the area of 
model-based testing (MBT) based on formal specifications. 

Bernot et al [14] set up a theoretical basis for specification-
based testing, explaining how a formal specification can serve 
as a base for test case generation. Dick and Faivre [15] 
propose transforming formal specifications into a disjunctive 
normal form (DNF) and then using it as the basis for test case 
generation. Donat [16] represents a technique for automatic 
transformation of formal specifications into test templates and 
taxonomy for coverage schemes. Hong et al [17] show how 
coverage criteria based on control-flow or data-flow 
properties can be specified as sets of temporal logic formulas, 
including state and transition coverage as well as criteria 
based on definition-use pairs. Liu and Shen [18] describe a 
method that can be used for (1) identifying all interface 
scenarios, formalizing requirements into formal operation 
specifications whose interfaces are consistent with the 
corresponding ones of the program; and (2) for testing 
programs based upon the formal specifications (scenario-
coverage strategy). In turn, Shchurov and Marik [19] present a 
requirements-coverage test strategy that covers both 
hardware-based (system equipment) and software-based 
(system activities) aspects of complex distributed systems. 

III. CHECKLISTS GENERATION 

A. Basic approach  
The essential idea of our approach is based on: 
 IT-Grundschutz risk management methodology [10]; 
 component-based approach with its two important 

consequences: (1) components are built to be reused in 
different systems, and (2) component development 
process is separated from the system development 
process [20], [21]. 

In our case IT-Grundschutz was chosen as the basic 
analytic tool based on the following notions: 

 the list of typical threats of IT-Grundschutz is 
compatible with the list of typical threats of ISO/IEC 
27005:2011; 

 in contrast with ISO/IEC 27005:2011 and other 
solutions, the list of typical threats of IT-Grundschutz 
has a linear structure (the list of ISO/IEC 27005:2011 
has a tree structure); 

 in contrast with ISO/IEC 27005:2011, the list of typical 
threats of IT-Grundschutz has detailed descriptions for 
each threat. 

We need to state here – the international standard ISO/IEC 
27005:2011 and/or regional standards/methodologies can be 
used as an analytic tool depending on the state legislation 
and/or corporate requirements. 

 

 
Fig. 1 Four-layered model of distributed systems for test generation missions 
[22] 

 
In turn, the component-based approach refers to the fact 

that the functional usefulness of distributed systems does not 
depend on any particular part of these systems, but emerges 
from the way in which their components interact. Thus, a 
formal four layered model for test generation missions [22] 
can be used as a starting point. This model is stated as a four-
layered graph as follows see Fig.1: 

 The ready-for-use system architecture layer defines 
functional components and their interconnections. 

 The service architecture layer defines software-based 
components (services/applications) and their 
interconnections. 

 The logical architecture layer defines logical (virtual) 
components and their interconnections. 

 The physical architecture layer defines hardware 
(physical) components and their interconnections. 

 The interlayer projections define all types of 
components hierarchical (interlayer) relations/mapping. 
These relations make the layered model consistent and 
represent interlayer technologies (virtualization, 
clustering, etc.) used to build distributed systems.  

Unfortunately, this multilayer model of complex systems 
includes only four layers and, as a consequence, does not 
cover the lists of typical threats completely. This problem can 
be solved by two additional layers: 

 The engineering environment architecture layer. This 
layer defines external engineering systems (power 
supply systems, climate control systems, physical 
security systems, etc.) that are vital for normal 
operation of distributed systems and their 
interconnections. It is based on topological models 
(TMs) [23], where all systems (engineering and 
distributed) are represented as individual components. 

 The social environment architecture layer. This layer 
defines an enterprise’s organization infrastructures or 
“human networks”. It is also based on TMs but 
represents persons or groups of persons and their 
working relationships. 
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These additional layers lie beyond the ISO/OSI Reference 
Model (RM) [24] but they provide a necessary complement to 
it with regard to our main goals. The final model is shown in 
Fig.2. 

 

 
Fig. 2 Extended six-layered model of distributed systems 

B. Formal notations 
Formal verification offers a rich toolbox of mathematical 

techniques that can support the model-based testing of 
computer systems. This toolbox contains logic programming 
as one of the most relevant techniques of model checking [25]. 
In turn, logic programming deals with logical facts and, as a 
consequence, the basic step is to determine the formal 
notations which make the layered model applicable for logic 
programming.  

Applying of the requirements-coverage test strategy [19] to 
the system model (see Fig.2.) provides the set of system 
objects that need to be protected. 
Definition 1 (objects): Let the set On denote the system 
objects for each layer n that need to be protected: 

 
ܱ = ܸ 	∪ 		 ܶ 

 
where Vn is a subset of individual components (or system 
equipment and facility groupings) on layer n; and Tn is a 
subset of data flows (or system activities) between pairs of 
individual components on layer n, which must communicate. 

As the next step, we have to partition the set of typical 
threats with regard to the model layered structure and the 
objects definition (see Definition 1). 

 
Definition 2 (threats/dangers): Let the set Thn denote the 
threats for each layer n: 

 
ܶℎ = ܶℎଵ 	∪ 		ܶℎଶ 

 
where Thn1 is a subset of threats that affects individual 
components on layer n; and Thn2 is a subset of threats that 
affects data flows on layer n. In turn: 
 

ܶℎ = ራܶℎ

ே

ୀ

 

 
where Th is the list of typical threats; and N is the number of 
layers of the system model. 

In the case of IT-Grundschutz risk management 
methodology [10] sets of threats shown in the Table 1. 

As the final step, we have to determine the security 
checklist generation process. 

 
Definition 3 (the security checklist): The set of test cases (or 
security checklist), denoted by Sn, is the mapping from the set 
of threats (see Definition 2) to the set of protected objects (see 
Definition 1) for every layer n: 

 
ܵ ∶ 	 ܶℎ → ܱ 

 
In turn: 

 
ܵ 	= ܵଵ ∪ ܵଶ  
ܵଵ ∶ 	 ܶℎଵ → ܸ 
ܵଶ ∶ 	ܶℎଶ → ܶ 

 
where Sn1 is a subset of test cases that affects individual 
components on layer n; and Sn2 is a subset of test cases that 
affects data flows between pairs of individual components on 
layer n, which must communicate. 

Generally, each individual component of Thn must be 
mapped to at least one component of On.  As a consequence, 
Sn cannot be an empty set without any exception. Then: 

 

ܵ = ራܵ

ே

ୀ

 

 
where S is the completed set of test cases (or final security 
checklist); and N is the number of layers of the system model. 

The graphical representation of the security checklist 
generation process is shown in Fig. 3. 

C.  Complexity of the approach 
The total number of test cases |S| is based on the two main 

steps of the checklist generation approach: 
 

|ܵ| = |ܵଵ| + |ܵଶ| 
 

where S1 is a subset of test cases that affects individual 
components; and S2 is a subset of test cases that affects data 
flows between pairs of individual components, which must 
communicate. 
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TABLE I 
PARTITIONED LIST OF THREATS OF IT-GRUNDSCHUTZ [27] 

THREATS DESCRIPTION SETS OF TREATS 
Th01 Th11 Th21 Th31 Th51 Th02 Th12 Th22 Th32 Th52 

T 0.01 Fire x                   
T 0.02 Unfavorable climatic conditions x                   
T 0.03 Water  x                   
T 0.04 Pollution, dust, corrosion x                   
T 0.05 Natural disasters x                   
T 0.06 Environmental disasters x         x         
T 0.07 Major events in the environment x         x         
T 0.08 Failure or disruption of the power supply x                   
T 0.09 Failure or disruption of communication networks   x         x       
T 0.10 Failure or disruption of mains supply x                   
T 0.11 Failure or disruption of service providers               x     
T 0.12 Interfering radiation x         x         
T 0.13 Intercepting compromising emissions x         x         
T 0.14 Interception of information / espionage        x         x   
T 0.15 Eavesdropping    x         x       
T 0.16 Theft of devices, storage media and documents x                   
T 0.17 Loss of devices, storage media and documents         x           
T 0.18 Bad planning or lack of adaptation         x         x 
T 0.19 Disclosure of sensitive information       x          x    
T 0.20 Information or Product from an unreliable source         x           
T 0.21 Manipulation of hardware and software         x           
T 0.22 Manipulation of information       x             
T 0.23 Unauthorized access to IT systems     x x             
T 0.24 Destruction of devices or storage media          x           
T 0.25 Failure of devices or systems   x                 
T 0.26 Malfunction of devices or systems   x                 
T 0.27 Lack of resources x         x         
T 0.28 Software vulnerabilities or errors     x x             
T 0.29 Violation of laws or regulations          x         x 
T 0.30 Unauthorized use or administration of devices and systems    x x x     x x x   
T 0.31 Incorrect use or administration of devices and systems      x x       x x   
T 0.32 Abuse of authorizations     x x       x x   
T 0.33 Absence of personal         x           
T 0.34 Attack x                   
T 0.35 Coercion, extortion or corruption         x           
T 0.36 Identity theft         x           
T 0.37 Repudiation of actions          x           
T 0.38 Abuse of personal data         x           
T 0.39 Malicious software       x             
T 0.40 Denial of service       x             
T 0.41 Sabotage          x           
T 0.42 Social Engineering         x           
T 0.43 Replay of messages        x             
T 0.44 Unauthorized entry to premises x                   
T 0.45 Data loss        x             
T 0.46 Loss of integrity of sensitive information       x             
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Fig. 3. Graphical representation of the security checklist generation process. 

1) In the case of individual components, the result is a quite 
trivial: 

 

|ܵଵ| ≤  |ܶℎଵ|
ே

ୀଵ

| ܸ| 

 
 

2) In the case of data flows, there are two possible options: 
2.1) Simple communication systems. In this case, there is only 
one possible route between each pair of individual 
components, which must communicate. For such systems: 

 

| ܶ| ≤
| ܸ|(| ܸ| − 1)

2  
And: 
 

|ܵଶ| ≤ ቈ
|ܶℎଶ|| ܸ|(| ܸ| − 1)

2 
ே

ୀଵ

 

 
 

 
2.2) Complex communication systems. For these systems there 
are some independent routes between each pair of individual 
components, which must communicate. In this case: 

 

| ܶ| ≤ 
| ܸ|(| ܸ| − 1)

2  
 

where  is the number of possible independent routes. In the 
real engineering word under financial constraints commercial 

systems are usually based on redundant architecture [26]:       
 = 2. We need to state here – specific areas like the military, 
nuclear or aerospace industries are beyond the scope this work. 
Then: 

 

|ܵଶ| ≤  |ܶℎଶ|| ܸ|(| ܸ| − 1)
ே

ୀଵ

 

 
 
Table 2 shows the cardinality of the set of threats based on 

IT-Grundschutz risk management methodology [27]. 
TABLE II 

CARDINALITY OF THE THREATS BASED ON IT-GRUNDSCHUTZ 

Threats subset 
Model layer (n) 

0 1 2 3 4 5 

| Thn1 | 15 5 5 13 -  13 

| Thn2 | 5 3 4 5 -  2 

 

IV. CASE STUDY 

 
As a practical example, we have a very simple distributed 

system (see Fig. 4 – Fig. 7). The service architectural layer 
and the logical architectural layer are represented in [19] (they 
are not shown here because of the lack of space). 
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Fig. 4 Simple example of multi-layered system model - functional 

architecture layer [19] 
 

 
Fig. 5 Simple example of multi-layered system model - physical architecture 
layer [19] 
 

The security checklist generation process application to the 
example shows a surprisingly large number of tests required 
to fully cover even this very simple system – see Table 3. 

 

 
Fig. 6 Simple example of multi-layered system model - engineering 
environment architecture layer 

 
By and large, this result can easily explain the existence of 

the huge number of vulnerabilities in commercial systems. 
Increasing system complexity and fierce market competition 
on time-to-market and cost make complex security testing of 
distributed systems really difficult (or even impossible). 

 

 
Fig. 7 Simple example of multi-layered system model - social environment 
architecture layer 
 

TABLE III 
APPLICATION OF THE SECURITY CHECKLIST GENERATION PROCESS 

Architectural 
layers 

Security checklists 

n 
Sn1 Sn2 

|Sn| 
|Vn| |Thn1| |Tn| |Thn2| 

Social  
environment 5 4 13 3 2 58 

Functional 4 2 - 1 - - 
System 3 14 13 15 5 257 
Logical 2 6 5 7 4 58 
Physical 1 7 5 6 3 53 
Engineering 
environment 0 4 15 4 5 80 

Total: 506 
 

V. CONCLUSIONS 
When talking about the security testing of distributed 

systems, we face the great challenge of the dual nature of 
these systems. Today every computing and/or communication 
(network) component is a computer with special operating 
software. So, it is necessary to pay respect to their software 
nature and we have to talk about “software-based systems” 
instead of simply “systems”. On the other hand, the 
distribution character of these systems forces us to consider 
their network nature. So, test applications should be very 
flexible to cover distributed systems appropriately and test 
multiple different aspects with a variety of requirements [28]. 

Historically, the software part is “a private area” for system 
and software engineers. Respectively, the network part is “a 
private area” for network engineers and partially for system 
engineers. As a consequence, system, software and network 
engineers have few common models or approaches and even 
their vocabulary is different [1]. The situation worsens when 
we talk about industrial control systems. Objectively, they 
have the same physical nature as every distributed system. But 
practically, “the private area” of industrial engineers was 
closed for system and/or network engineers for many years 
[29]. 

In this work we determined: (1) a set of typical threats 
based on standards and actual practices; and (2) a formal 
model for test generation mission on the basis of the concept 
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of layered networks. The model is a six-layered graph, derived 
from the system technical specifications, which covers 
software-based and network-based aspects of distributed 
systems and their environments – external engineering 
systems and organization infrastructures (see Fig. 2). 

Applying of the requirements-coverage test strategy [19] to 
the system model provides a set of system objects that need to 
be protected: 

 individual components;  
 individual components interaction from the end-user 

requirements on all architectural layers.  
Next, we partitioned the set of typical threats with regard to 

the model layered structure (see Table 1). The result of the 
layer-by-layer mapping from this set of threats to the set of 
protected objects (individual components and their 
interactions) is the necessary security checklist. 
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