
International Journal of Computer Trends and Technology (IJCTT) – volume 14 number 1 – Aug 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 26

Implementation of Path Finding Algorithms in a

3-Dimentional Environment
Firas Abdullah Thweny Al-Saedi

1
, Fadi Khalid Ibrahim

 2

1,2 Computer Engineering Department, Al-Nahrain University, Baghdad, Iraq

Abstract — This paper discusses the use of the path finding

algorithms in a 3-Dimensional (3D) military training

environment. It describes how to represent the nodes in a 3D

environment. Two algorithms are used: the Waypoint Navigation

and the A* path finding algorithm. A comparison between the

two path finding algorithms is made to evaluate their

performance. Also, a solution to the problem of finding the first

node to go to by the object is solved.

Keywords — 3D, Path finding, A*, Introduction, Waypoint

navigation.

I. INTRODUCTION

Before moving into the subject the reader must know what

is Virtual Reality (VR), VR is a computer-simulated

environment, whether that environment is a simulation of the

real world or an imaginary world. Most current VR

environments are primarily visual experiences, displayed

either on a computer screen or through special or stereoscopic

displays, but some simulations include additional sensory

information, such as sound through speakers or headphones.

Some advanced, haptic systems now include tactile

information, generally known as force feedback, in medical
and gaming applications. Users can interact with a virtual

environment or a Virtual Artifact (VA) either through the use

of standard input devices such as a keyboard and mouse, or

through multimodal devices such as a wired glove, the

Polhemus boom arm, and omni-directional treadmill. The

simulated environment can be similar to the real world, for

example, simulations for pilot or combat training, or it can

differ significantly from reality, as in VR games. In practice, it

is currently very difficult to create a high-fidelity virtual

reality experience, due largely to technical limitations on

processing power, image resolution and communication
bandwidth. However, those limitations are expected to

eventually be overcome as processor, imaging and data

communication technologies become more powerful and cost-

effective over time [1].

In this paper and to be cost-effective, Microsoft Visual C#

2008 [2] along with the new XNA 3.0 [3][4][5] graphics

technology released by Microsoft were used, actually, the

graphics technology used is games-quality, this technology

was used to generate a VR environment that is used

individually or through network of two computers (this can be

expanded easily). Also, the input device used is either the

standard keyboard and mouse or using the new Nintendo Wii

Remote (Wiimote) [6][7].

Another paper on A* path finding algorithm in a bird's eye
perspective can be found in [8]. Also, another paper that uses

the A* path finding algorithm and discuss its uses in games

can be found in [9].

The soldiers controlled by the computer AI need to know

the path in the simulation environment, for this reason, the

path finding algorithms are used. The path finding algorithms

related to the soldiers in the simulation are discussed in the

following sections.

II. THE PATH FINDING PROBLEM

An example of path-finding algorithms is the algorithms

that are used in network routers. Each router represents a node

in the system. When the data enters the router, its destination

address is checked, then using path finding algorithms, its

route is determined and it is sent. In some circumstances, the

whole path from source to destination can be calculated in one

router. In the case of the 3D simulation, it is different in some

aspects, the 3D environment must be planted with nodes and

connections between those nodes must be made in a way that

makes it possible for an object to move from one node to the

other either directly or by passing through any number of
nodes. It is better to use a few number of nodes but they must

be sufficient relative to the environment size. By sufficient, it

is meant that there must be a node in every corner or point of

the 3D environment. All this is made to make the object able

to reach any point in the environment.

A node in a 3D environment is represented by a bounding

sphere. A bounding sphere is a data structure that has two

properties, a center, which is represented by a (X,Y,Z)

coordinate and a radius which represent the size of the sphere.

The reason beyond using the bounding spheres as nodes is that
they are used as indicators for where the object is in the

moment. When the bounding box of the object intersects with

a bounding sphere, it is known now where the object is and

the path finding routine can be activated again to find the path

to another node. Fig. 1 is a simple illustration of how to use

nodes in a 3D environment (top view).

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 14 number 1 – Aug 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 27

Fig. 1 Illustration of node distribution

As seen, the filled circles are the nodes (bounding spheres)

with an appropriate radius. The radius is important because

when the object moves in the environment, it may move in 'n'

steps per frame. The more 'n' the more is the speed that the

object appears to be moving. If the object is moving at a

relatively high speed and passes over a node, the object's
bounding box may not intersect with the node and in this case

the path will not be calculated at that node and the object will

continue moving in its direction which may lead it to an

obstacle. For this reason, the bounding sphere that represents a

node must have an appropriate radius, that is, it must be

greater than the object's step. For example, if the object moves

two units in a frame, the bounding sphere radius must be

greater than two.

In the simulation, each soldier has the capability to find the

way to any point in the environment through the use of the

nodes that are distributed in the environment. There are steps
that the soldier in the simulation follows to go to a node.

These steps are demonstrated in Fig. 2.

The origin node and the destination node are found by

finding the nearest node to the source and destination

respectively. The reason beyond using nearest node is that it is

impossible to cover the whole environment with nodes. This

means, to get to any point, the path finding routine must find

the nearest node to that point and then, from that point, the

soldier can go directly to the desired point. In the military

simulator, the desired point is always a soldier and its running

most of the time. This will make it impossible to find the

entire path from one node because the destination node is
always changing due to the change in the destination point

(destination solder's position). For this reason, the destination

node is found and the path is calculated when the soldier

reaches any node only to find the next node.

For the soldier to go to a point, it must turn by an angle that

makes it face the point directly. Fig. 3 is a demonstration of

this problem.

Start

Find the origin node (nearest

node to the soldier)

Turn by an angle that makes the

soldier’s direction towards the

node

Run to the node

Did the soldier reach the

original node?

Find the destination node

(nearest node to the destination

point)

Calculate the path to the

destination node to get the next

node to go to

Run to the node

Did the soldier reach the

node?

Is this node the

destination node?

End

YES

NO

YES

NO

NO

YES

Fig. 2 Steps followed by the soldier to get to any point

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 14 number 1 – Aug 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 28

Fig. 3 Demonstration of soldier looking at a point

Using the soldier's position P(X,Y,Z) and the point to look

at position D(X,Y,Z) which is the center of the bounding

sphere, the P.Z-D.Z and P.X-D.X can be found and used to

find the angle shown above by using the algorithm shown in
Fig. 4.

To check if the soldier had reached the destination node, its

collision with the bounding sphere that represents the node is

checked. If there is a collision then the soldier is at the node

and then the path finding routine should be activated again to

find the next node to go to. In the next sections, the two path

finding algorithms used are discussed also the difference

between them is stated.

III. PATH FINDING ALGORITHMS

There are a lot of algorithms used for path finding [10][11].
Each algorithm has its own uses. The two algorithms used are

discussed, the first one is the waypoint navigation [10] and the

second one is the A* (A-Star) search algorithm [10][11] to

find the shortest path.

Start

DiffX = P.X - D.X

DiffZ = P.Z - D.Z

Angle = ArcTAN (DiffX / DiffZ)

Is DiffZ < 0?

Is angle > 360º?

Is angle < 0º?

Turn the soldier by

the angle (angle)

angle=angle + 180º

angle=angle - 360º

angle=angle + 360º

End

NO

YES

NO

NO

YES

YES

Fig. 4 Finding the angle that the soldier's angle that faces the point

D(X,Y,Z)

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 14 number 1 – Aug 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 29

1) Waypoint Navigation

Path-finding can be a very time-consuming. One way to

reduce this problem is to pre-calculate paths whenever

possible. Waypoint navigation reduces this problem by

carefully placing nodes in the simulation environment and

then using pre-calculated paths or inexpensive path-finding

methods to move between each node. Fig. 5 demonstrates

nodes distributed in a floor in a building.

Fig. 5 Nodes distribution in a floor in a building

It should be noticed that there must be a line of sight
between a node and its neighbor. In waypoint navigation, the

path between a node to another must be calculated by the

designer and store the path in a table. During the program

execution, the path between any node and the other can be

found easily by finding the next node to go to only. For

example, Fig. 6 demonstrates the pre-calculated paths between

nodes.

Fig. 6 Node table for the nodes in Fig.5

So, if the soldier is at node A and it needs to go to node E,

the first node to go to in this case is node B. When the soldier

reaches at node B, it will find the destination node and let it be

node E, also it will find the next node to go to which is node C.
and so on until it reaches to the destination node. In the next

sub-section, the A* algorithm is demonstrated which is used

to calculate the shortest path between any two nodes in a

node-based system, so there is no need to pre-calculate the

paths manually.

2) A* Path-Finding

Fortunately, the A* algorithm provides an effective

solution to the problem of path-finding. What makes the A*

algorithm so appealing is that it is guaranteed to find the best

path between any starting point and any ending point,

assuming, of course, that a path exists. Also, it's a relatively

efficient algorithm, which adds to its appeal. The A*
algorithm is efficient, but it still can consume quite a few CPU

cycles, especially if it is needed to do simultaneous path-

finding for a large number of objects.

To find the shortest path between two nodes, there should

be a way to put a weight for each connection between any two

nodes. In this case, and because of the geographical nature of

the simulation, the distance between each node and each of its

neighbors is used as a weight. So in the code, the mesh of the

nodes is defined as a data structure, and in the initialization,

the weight (distance) between each node and its neighbors is

calculated. Then in run-time the A* path-finding routine can
be executed which can be represented in Fig. 7.

The “lowest cost” term mentioned above means the cost of

the current node to the starting node which is the sum of the

weights of the connections between the nodes from the

starting node to the current node. Each node’s parent node

must be tracked in the A* path-finding routine because when

the destination node is found, the routine will know the path

from the starting node to the destination node. Although the

whole path is calculated but the second node found in the

search is used as the destination node and that is because the

destination object is always moving and it is not expected that
it would be in its original place when the path was calculated.

3) Performance Evaluation

Both path finding algorithms were used. The waypoint

navigation as seen is good for small environments where there

are a few number of nodes, also, it is perfect in systems that

needs each bit of CPU cycles because the calculation needed

in this algorithm is just accessing memory and getting the next

node index which is a very fast and simple process and does

not take a lot of CPU cycles. Also it is perfect when there are
a lot of objects that need to know their paths in the same time.

While the A* path finding algorithms seems more robust

because it calculates the shortest path between any two nodes,

it takes more CPU cycles than the waypoint navigation and

this becomes worse when a lot of objects use the routine to

calculate their own paths. In the simulation environment, the

soldier needs to calculate the path only when it is at a node, so

there is a small chance that all the soldiers in the simulation

are at some node. For this reason, even when using a lot of

soldiers, the performance will still be good because there is a

very small chance that all the soldiers are using the path
finding routine.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 14 number 1 – Aug 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 30

Fig. 7 A* path finding algorithm

IV. PROPOSED SOLUTION TO THE PROBLEM

As seen in Section II, the soldier turns to the nearest node

to itself and then runs toward it to be able to locate itself and

this is to calculate the path to the destination node. In some

situations, the soldier happened to be outdoor, that is, it is not

inside a building, and the nearest node is inside the building.

In the traditional case, the soldier will turn to the nearest node

and run toward it. This sometimes will result in a non realistic

effect when there is an obstacle "the building's wall" between

the soldier and the indoor node, the soldier will run through

the wall, which is not realistic. This can be seen in Fig. 8.

Fig. 8 The problem of nearest indoor nodes

For this reason, a solution was proposed, that is, the indoor

nodes are marked with a flag by the designer when coding and

in run-time each soldier is tracked to know that it is indoor or

outdoor. If the soldier is outdoor, then when finding the

nearest node to it, the indoor nodes are neglected and the

nearest outdoor node is returned by the routine. This simply
solves the problem.

V. CONCLUSIONS

The subjects discussed in this paper are parts of a project

that simulates a military environment. The path finding

system was discussed here and the two algorithms used where

discussed. Also a comparison between them was made. For

this project the A* path finding algorithms is better due to the

size of the environment used which is a max of (86) nodes.

Also, a solution was proposed to solve the problem of indoor

and outdoor nodes. Fig. 9 shows the simulation environment
in top view, the nodes are drawn to demonstrate the node

distribution.

Fig. 9 The simulation environment (top view) with the distributed nodes

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 14 number 1 – Aug 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 31

REFERENCES

[1] en.wikipedia.org/wiki/Virtual_reality.

[2] Rob Miles, "C# Developement", Department of Computer Sciences,

University of HULL, October 2008.

[3] Aaron Reed, "Learning XNA 3.0", O'Reilly Media, 2009.

[4] Chad Carter. "Microsoft XNA Unleashed:Graphics and Game

programming for XBOX360 and Windows", SAMS Publishing, 2008.

[5] Reimer Grootjans, "XNA 3.0 Game Programming Recipes: A Problem-

Solution Approach", Apress, March 9, 2009.

[6] en.wikipedia.org/wiki/Wii.

[7] http://blogs.msdn.com/coding4fun/archive/ 2007/03/14/1879033.aspx.

[8] R.Anbuselvi and R.S.Bhuvaneswaran, "Simulation of Path Finding

Algorithm – a Bird’s Eye Perspective", 2009.

[9] Hui, Y.C. Prakash, E.C. Chaudhari, N.S, "Game AI: artificial

intelligence for 3D path finding", 2005.

[10] David M Bourg, Glenn Seemann, "AI for Game Developers", O'Reilly

Media, July 2004.

[11] Ian Millington, "Artificial Intelligence for Games", Elsevier Inc., 2006.

http://www.ijcttjournal.org/
http://www.oreillynet.com/pub/au/702
http://www.oreillynet.com/pub/au/1839

