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Abstract—We study the computability of the solution operator of 
the initial problem for the Hartree equation with repulsive harmonic 
potential on the Type-2 Turing machines. We will prove that in 
Sobolev space 1 1  H FH , for 5n ,when the solution 

operator: : ( ) ( ; ( ))  n n
RK R C R R is  ,[ ]  s sH H

-

computable. The conclusion enriches the theory of computability. 
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I. INTRODUCTION 
     At present, the computability of solutions of the nonlinear 

evolution equations have become an important topic to the 

workers of physics and mathematics. Researching 

boundedness and computability of the solutions of the 

nonlinear equations will offer effective tools for the 

application of equations, enrich theoretical foundation of 

computer science and promote the development of computer 

software. From 1985，K.Weihrauch and others established a 

computational model, called Type-2 theory of effectivity 

(TTE for short). K.Weihrauch and N.Zhong have studied the 

computability of the solution operator of a three-dimensional 

wave equation : 
3, (0, ) ( ), (0, ) 0, ,    tt tu u u x f x u x t R x R  

on Sobolev space by using Type-2 theory of Effectivity, and 

construct the appropriate space to prove its unique solution is 

computable in the scope of the continuous differential 

equation. Dianchen Lu and others have studied the 

computability of the non-linear kawahara equation of[1]. 

The Hartree equation with repulsive harmonic potential[2-5]: 
21 1 ( ), , 5

2 2
      n

tiu u x u f u x R R n  ,               (1.1) 

(0) ( ), ,  nu x x R                                  (1.2) 
Here 2( ) ( ) f u V u u is a nonlinear function of Hartree for  

( ) V x x , 4  ,where denotes the convolution in nR . 

In this paper , we will prove that the solution operator of the 
initial problem(1.1) and (1.2) is computability. 

We can get its equivalent integral equation by Duhamel 
principle: 

0
( ) ( ) ( ) ( ( ))  

t
u t U t i U t s f u s ds                                  (1.3) 

Where 
21 ( )

2( )



it x

U t e . 
The structure of the article is that: In part 2, we mainly 

introduce some basic definitions, lemmas and conclusions, 
which are relevant to the proof of part3; In part 3, we prove 
the main theorem of the paper mainly. 

II. PRELIMINARIES 

Lemma 2.1[6]   (1) In Schwarz space  S R ,the function 

 , a a  is  , ,  s s -computable; 

   , t t is  , ,  s - computable;  ,    is 

 , ,  s s s -computable. 

(2)The function    , t V t  is  , ,  s s -computable. 

(3)The fourier transform and its inverse fourier transform are 

both computable. 

 

Lemma 2.2[6] (type conversion)  Let :    i iX  be a 

representation of the set iX  0  i k .let  

     1 1 1, , : , , ,     k k kL x x x f x x  

then if f  is  1 0, , ,     k -computable if and only if L  is 

  1 1 0, , ,      k k -computable . 

 

Lemma 2.3[6]  The fuction 

       : ;   H C R S R R R S R  

   , ,  
b

a
H u a b u t dt  

is   , , ,     s s -computable. 
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Lemma 2.4[6]  Let :  Y M  and  :   Y M  are two 

representations, Nv  is admissible representation of N .Then 

we have the following propositions: 

(1) If :  f M M is  ,   - computable, then 

:     f N M M M  is  , , ,   Nv - computable. 

We define a function :   g N M M  as follow: 

        0, , 1, , , , ,     g x f x g n x f n g n x x  

Where x M ， n N ,then g is  , ,  Nv - computable. 

(2)Assuming that : h M M  is  ,  -computable, 

Define a function 

:  H N M M : 

       10, , 1, , ,    nH x x H n x h H n x h x  

So, the function H  is  , , Nv - computable. 

 

Definition 2.5[7] For any time interval I , we use 

( )q r n
t xL L I R to denote the mixer space-time Lebesgue norm 

1

( ) ( )
( )


 q r n r n

t x

q q
L L I R L RI

u u dt  

with the usual modifications when  q . When q r , we 
abbreviate q r

t xL L by ,
q
t xL . 

For a space-time slab 
n

I R ,we define the Strichartz norm 
0 ( )
�

S I by 

0
( )

( )
( , )

sup


�

q r nL L I Rxt
S I

q r admissible
u u  

When 5n , the space 0
0 ( )( ( ), )

�
�

� S IS I is Banach space. 
 

For sake of convenience, we introduce three abbreviated 
notations. For a time interval I ,we  
Set 

6
6 3 8

1( ) ( ) 
n

nn
t xX I L L I R , 

6
6 3 2

0 ( ) ( ) 
n

nn
t xX I L L I R , 

6
3 3 4

0 ( ) ( ) 
n

nn
t xZ I L L I R . 

We denote by ( ) ( )A t t R the fundamental solution operator: 

( ) { ( ), ( ), }A t J t H t I , { , , } B i x I . 
( ) cosh sinh  J t i t x t , ( ) sinh cosh   H t i t x t . 

2 2 2{ : }      
L L L

u u u xu  

Lemma 2.6[7]  For any function u on  nI R ,we have 

02
( ) ( ) ( )


A t u t C u                                                    (2.1) 

Lemma 2.7[7]  Let 2( ) ( ) f u V u u , where 4( ) 
V x x . 

For any time interval I and 0 t I , we have  

1 00

2

( ) ( )0 ( )
( ) ( ) ( )( , ) ( ) 

t

X I Z I
S I

A t U t s f u s x ds u A t u      (2.2) 

 
.Ⅲ MAIN RESULT 

From the problem (1.1) and (1.2), we establish a nonlinear 

map 

: ( ) ( ; ( ))  n n
RK R C R R  

which translatea the initial data   to the solution 

 '0 ,0   t T t T .The map RK  is the solution operator of 

the initial problem . 

Theorem 3.1 When, 5n , 1 1  H FH , the solution 

operator : ( ) ( ; ( ))  n n
RK R C R R  is  ,[ ]    -

computable. 

To prove the Theorem 3.1, we firstly translate the 

differential equation to its equivalent integral equation by 

Duhamel principle on space  ; Then prove the existence and 

uniqueness of solution by the contraction principle. Last, 

using the type-2 Turing machine and some propositions of 

Sobolev space to prove the solution operator is computable. 

We can get its equivalent integral equation by Duhamel 
principle: 

0
( ) ( ) ( ) ( ( ))  

t
u t U t i U t s f u s ds  

Where 
21 ( )

2( )



it x

U t e  
Now, we prove the existence and uniqueness of solution by 

the contraction principle, i.e., lemma 3.2. 

Lemma 3.2  Let 5n , 4  . Then there exist a 0T  and a 
unique solution u  of (1.1) in ( ; ( ))  nu C R R  
Proof Define the work space as  

 
0 0 0 0 0( ) ( ) 2 ( ) 2

: ( ) 2 , ( ) 2 , 2


    
x z I z I z I

u J t u H t u C xu u C u

with the natural metric. 
We define an operator : 

0 0

( ) ( )( ) :

( ) ( ) ( ) ( ) ( ( ))

 

 
t

A t u t

U t Bu t i U t s A s f u s ds
                             (3.1)                         

For any u , by Lemmas 2.6- 2.7 we have 

0 1 0

2
0( ) 2 ( ) ( )

( )  
z I X I z I

u u C u u  
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1 0

2

2 ( ) ( )
 

X I z I
C u u  

0

2
2 ( )

  
z I

C u  

2
2  C                                                          (3.2) 

Similarly, we also have 

0 1 1 0

2 2

( ) ( ) ( ) ( )
( ) ( ) ( )    

z I X I X I z I
u v u v u v  

0 0 0

2 2

( ) ( ) ( )
( ( ) ( ) )  

X I X I z I
J t u J t v u v  

0

2
( )

2 
z I

u v                                   (3.3) 

as long as   is chosen sufficiently small. According the 

Banach fixed point theorem,   has the unique fixed point. 

The point is the solution of the initial problem (1.1 ) and (1.2). 

This completes the proof. 

For ( ; ( ))  nC R R ,define solution operator： 

0 0
( ) ( ) ( ) ( ) ( ) ( ( ))  

t
S t U t Bu t i U t s A s f u s ds . 

According the Lemma 3.2 in[2], It is easy to prove the 

operator is  ,[ ]     computable. 

Corollary 3.3 Function 

       2 2 2: ; ; S C R S R S R C R S R  

    , : , , , S u t S u t  

is   , ,  s N sv -computable. 

Proof  This follows from lemma 2.2 and lemma 3.2 in [2] . 

Lemma 3.4：The function 
2 2: ( ) ( ; ( )) v S R N C R S R ,defined by 

     ,0 0, v S                                                             (3.4) 

      , 1 , ,   v j S v j                                              (3.5) 

is  ,[ ]    -computable 

Proof  The function v  is defined by primitive recursion 

fromcomputable functions. By Lemma 2.4 v  is 

  , ,  s N sv -computable. 

Next, we prove the theorem (3.1). 

For given the initial value ( ; ( ))  nC R R and rational 

value 0T ,we will consider the following problem : 

21 1 ( ), , 5
2 2

(0) ( ), ,

       

  

n
t

n

iw w x w f w x R R n

w x x R
    （3.6） 

where 0 0( , ) ( , ), 0  w x t u x t t t , 0( , , ) ( , )w x y t x y  

We assume that the initial value ( ; ( ))  nC R R is given 

by a  sH
-name , i.e., 0 1, , p p p which is obtained by 

( )  i ip  and 
0

2
( )

2     n
n z I

n N . For  k N , 

there exist appropriate computable kn satisfying 

0

2 2

( )
2 2       k

k

n k
n z I

. 

Define  
0 1: (0, ), : ( , )  j j
n n n n nw S w S w  

From Lemma (3.2), we know the sequence  jnw is 

computable. If ( ) j
n nw w j , then nv is the fixed point of 

the iteration and satisfies the following integral equation: 

0 0

( ) ( , )

( ) ( ) ( ) ( ) ( ( ))



  
n n n

t

n n

w t S w

U t Bw t i U t s A s f w s ds
 

So, ( )nw t is the solution of the initial problem 

21 1 ( ), , 5
2 2

(0) ( ), ,

        
  

nn
n n n

n
n

wi w x w f w x R R n
t

w x x R
  (3.7) 

Since ( ) j
n nw w j ,we can select suitable integer 

kn , kj  to constrct a sequence  


k

k

j
n k N

w ,satisfying 

( )0

12  k

k k
z I

j k
n nw w .Then  


k

k

j
n k N

w  is computable sequence. 

For 
kn ,

kj  and  jnw  are computable, the   name of  

( )k

k

j
nw t  is compute by Lemma 2.1.(1). 

In the following ,we prove  


k

k

j
n k N

w  fastly converges to w . 

From lemma (2.6)-(2.7), 

10 0 1 0

2 2

( )( ) ( ) ( ) ( )
( )      

k k k kn n n nX Iz I z I X I z I
w w w w w w

 

0

2 2

( )
2 2   

k

k
n z I

w w  
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When T  sufficient small such that 2

10 2
1 2

 


, then 

0

1

( )
2  

k

k
n z I

w w  

Therefore, 

0 0 0( ) ( ) ( )
    k k

k k k k

j j
n n n nz I z I z I

w w w w w w  
1 12 2 2      k k k  

Then we have proved  


k

k

j
n k N

w  fastly converges to w and 

w  is computable. 

We known  


k

k

j
n k N

w is computable sequence,if 

( ) ( )  k

k

j
k nq w t , then 

0 ( ) 0 1, , ( )  z I q q v t ,i.e., ,, 10 qq  

is the 
0 ( )z I -name of ( )w t . Hence the solution v  of the initial 

problem （ 3.6 ） is computable on ],[ TTt  ,that is 

solution operator map S  is computable. 

We define a  ,[ ]    -computable map 

     0 0 0: , , , ,    P t t u t t t T t T , 

Where 0( ) w t , ( )v x is the solution of the initial problem 

(1.1)and（1.2） on  0 0, t t t T . 

Then we prove the solution  Tnu   is computable. The 

function H :    , H n u nT  defined by  

 
      

,0

, 1 , , , 1

 

 



  

H

H n P nT H n n T
 

is computable since H  is derived by primitive recursion 

from computable function P . 

In the end, we prove )(tu  is computable. let 

  TntTn  1 ,we first compute  Tnu  ,then 

compute   , ,P nT u nT t ,so     , ,u t P nT u nT t  is 

computable. 

In this way, we have get the computable solution on on 
t R . When, 5n , 1 1  H FH , the solution operator 

: ( ) ( ; ( ))  n n
RK R C R R  is  ,[ ]    -computable. 
 
 
 

 

SUMMARY AND OUTLOOK 
 

The paper study computable of the solution operator of the 
dissipation-modified Kadomtsev-petviashvili equation .On the 
basis of computability theory, whether problem can be 
implemented on computer is an important problem. 
Computational complexity theory just can be used to solve the 
problem. The topic we will study in the future. 
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