
International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 4 – Jul 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page171

Vulnerabilities and Defensive Mechanism of CSRF
Purnima Khurana#1, Purnima Bindal#2

Assistant Professor ,Department of Computer Science
P.G.D.A.V. College, University of Delhi, Delhi, India

Abstract— In today’s era the internet and its applications
provide an easy way to individuals which helps them in their day
to day life. As the use of technology increases, dependency on
web applications also increases. But these web applications have
some major threats and one of them is CSRF(Cross Site Request
Forgery). CSRF is a common web application weakness. Cross
Site Request forgery attack occur when a malicious web site
causes a user’s web browser to perform an unwanted action on a
trusted site. There are various possible vulnerabilities and
defensive mechanism of CSRF. CSRF flaws exist in web
applications with a predictable action structure and which use
cookies, browser authentication or client side certificates to
authenticate users. This study will help to create awareness about
the CSRF attack.

Keywords— Web Application, Vulnerability, Attacks, Defensive
measures, Cross-Site Request forgery Introduction

I. INTRODUCTION
Use of internet is tremendously increasing with technology; it
is now used for each possible function that can be performed
online. Web applications are playing important role to provide
these functions. Web applications have become part of life of
human beings but with all these facilities they have also bring
some problems i.e. web application attacks. Web application
attacks create insecure environment for web application’s
users [1]. One of the web application attack is CSRF (Cross-
Site Request Forgery). Cross-Site Request Forgery attacks are
also known as Cross-Site Reference Forgery/ XSRF/ Session
Riding/Confused Deputy attacks.

In a CSRF attack, a malicious site instructs a victim’s

browser to send a request to an honest site, as if the request
were part of the victim’s interaction with the honest site,
leveraging the victim’s network connectivity and the
browser’s state, such as cookies, to disrupt the integrity of the
victim’s session with the honest site [2].

II. KEY CONCEPTS OF CROSS-SITE FORGERY

 Malicious requests are sent from a site that a user
visits to another site that the attacker believes the
victim is validated against.

 The malicious requests are routed to the target site
via the victim’s browser, which is authenticated
against the target site.

 The vulnerability lies in the affected web application,
not the victim’s browser or the site hosting the
CSRF.

III. CSRF IN COMPARISON TO XSS

XSS and CSRF are two types of computer security
vulnerabilities. XSS stands for Cross-Site Scripting.
CSRF stands for Cross-Site Request Forgery. In XSS
i.e. Cross Site Scripting a relatively older attack talks
about injecting malicious scripts in web pages which then
would served to other users over a period of time. The
malicious scripts in turn gains access to page content and
start misusing it[7]. In other words , the hacker takes
advantage of the trust that a user has for a certain website.
On the other hand, in CSRF the hacker takes advantage of
a website’s trust for a certain user’s browser.
Comparison between XSS and CSRF[5]:

TABLE I

COMPARISON BETWEEN CSRF AND XSS

S.
N0
.

Full Form XSS CSRF

1 Definition Cross-Site
Scripting

Cross-Site Request
Forgery

2 Dependency In XSS, a hacker
injects a malicious
client side script in
a website. This
script is added to
cause some form
of vulnerability to
a victim.

It takes advantage
of the targeted
website’s trust in a
user. A malicious
attack is designed
in such a way that
a user sends
malicious requests
to the target
website without
having knowledge
of the attack.

3 Requirement of
JavaScript

Injection of
arbitrary data by
data that is not
validated

On the
functionality and
features of the
browser to retrieve
and execute the

International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 4 – Jul 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page172

attack bundle
4 Condition Yes No
5 Vulnerability Acceptance of the

malicious code by
the sites

Malicious code is
located on third
party sites

A. How CSRF Attack works:

1. Victim browser visits a target website T and sends
login details username and password to T.

2. Targeted website T returns the login response with
session cookie.

3. Suppose victim visits a malicious site M and M
supplied malicious content to victim browser which
contains JavaScript code or an image tag that causes
victim browser to send an HTTP request to T.
Because the request is going to T, victim browser
appends the session cookie to the request.

4. On seeing the request, T infers from the cookie’s
presence that the request came from victim, so T
performs the requested operation on victim account,
but the victim is unaware until later or perhaps never.
So, this is a successful CSRF attack.

Fig. 1 This figure represents how CSRF attack works

B. CSRF Vulnerabilities
Many flaws are there which helps attackers and make their job
easy to satisfy their requirement. In this section we will take
review of such vulnerabilities presents in web applications [1].

1) HTTP session handling mechanism

Number of website required user authentication while
accessing it, which is most important requirement to carry
out user specific tasks as well as to provide privacy to
user’s data and information. To simplify this requirement
HTTP protocol provides facility of session and cookie,

which allow web server to differentiate the request
coming from different users. Once user gets authenticated,
this session cookie information gets passed in every
request from server to client and vice versa.

2) HTML Tags

CSRF attackers embed the request they want to execute in
HTML tags due to which attack become invisible and
while loading particular page (with page, it loads the all
elements present on page), request gets executed. Also
sometime it is embedded into the tags where it will get
execute only if user click on that tag’s user interface like
‘href tag’. In this case attacker forces the user to click on
such tags by showing text which attracts user e.g. “ upto
40% discount on footwear ” etc. There are so many tags
present in HTML which can send request to server, but
each and every tag is made for particular type of request
like for image file, JavaScript file etc.. HTML does not
check the tag source property contains the valid URL or
not, and CSRF attackers take advantage of this
vulnerability.

3) GET and POST method of form submission

Information in the form fields sends to the server by using
two methods GET and POST, where GET method
generate a request which contain all the information itself
in request and it is also visible to the user, so attacker can
make use of this easily available information to generate
valid request. It was suggested that to use POST instead
of GET method to stop this vulnerability. But POST
method is also not helped to protect web applications
from CSRF attack. Once attacker get all form fields he
can embed these fields into his web page, which he is
going to force the victim to open and can put the
JavaScript function which allow form to submit on
onload event.

4) Browser’s view Source option

There are various different ways by which attacker get
knowledge of functionality used by web application,
which helps attacker to generate valid request. Attacker
can himself log on the website and check the whole
functionality, also information about working of forms on
the web pages can be easily available by facility provided
by web browser using option ‘View Source’, Which
shows all the information of the fields present on forms,
validation for each field can be accessed by using
JavaScript files and much more information attacker can
collect. If web application using extra session variable on
each request to protect application from CSRF and if that
session information is saved in hidden field, using view
source option attacker can get the logic used to generate
this session field unless until it is not strongly generated
random token.

International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 4 – Jul 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page173

C. Some Specific Examples of Vulnerabilities on Websites
We found four major vulnerabilities on four different sites.
We believe ING Direct, Metafilter and YouTube, and the New
York Times have corrected the vulnerabilities[4].

All four sites appear to have fixed the problem.

1) ING Direct (ingdirect.com)
ING’s website has a vulnerability that allowed additional
accounts to be created on behalf of an arbitrary user.Also
funds can be transferred out of users’ bank accounts.

2) YouTube (youtube.com)
CSRF vulnerability was also in nearly every action a user
could perform on YouTube. An attacker could have added
videos to a user’s "Favorites," added himself to a user’s
"Friend" or "Family" list, sent arbitrary messages on the
user’s behalf, flagged videos as inappropriate, automatically
shared a video with a user’s contacts, subscribed a user to a
"channel" (a set of videos published by one person or group)
and added videos to a user’s "QuickList" (a list of videos a
user intends to watch at a later point).

3) MetaFilter (metafilter.com)
A vulnerability existed on Metafilter that allowed an
attacker to take control of a user’s account. A forged request
could be used to set a user’s email address to the attacker’s
address. A second forged request could then be used to
activate the "Forgot Password" action, which would send
the user’s password to the attacker’s email address.

4) The New York Times (nytimes.com)
A vulnerability in the New York Time’s website allows an
attacker to find out the email address of an arbitrary user.
This takes advantage of the NYTimes’s "Email This"
feature, which allows a user to send an email about a story
to an arbitrary user. This emails contains the logged-in
user’s email address. An attacker can forge a request to
active the "Email This" feature while setting his email
address as the recipient. When a user visit’s the attacker’s
page, an email will be sent to the attacker’s email address
containing the user’s email address. This attack can be used
for identification (e.g., finding the email addresses of all
users who visit an attacker’s site) or for spam. This attack is
particularly dangerous because of the large number of users
who have NYTimes’ accounts and because the NYTimes
keeps users logged in for over a year.

D. CSRF DEFENSES

As CSRF become popular various defensive measures against
it were suggested, but none of these is able to defense against
CSRF completely. But these help to minimize the risk of
CSRF up to certain extent [6].

1) Token
The classic solution to CSRF has been a per session token
known as the synchronizer token design pattern.

The basic flow using this solution:
Step 1: When the user logs in, a randomized string (token)
is then placed in the user session
Step 2: On every form for a non-idempotent request
(essentially meaning any request that changes the server-
side state – which should be your HTTP POSTs), the
token is placed in the form when it is submitted
Step 3: The request handler for the non-idempotent
request validates that the submitted token matches the
token stored in the session. If either of the tokens is
missing, or if they do not match, do not process the
transaction.

In the past, this per-session token solution has served
pretty well for most CSRF situations, but it can be time-
consuming to implement and it also creates opportunities
for forgetting validation on some requests.

Another solution that uses the token pattern is
the ESAPI project, which has built-in CSRF protection,
However, ESAPI’s CSRF solution is tied to the
authentication scheme.

2) CSRFGuard

A very good option offering solid protection against
CSRF is the OWASP CSRFGuard project. This library
makes it relatively easy to build CSRF protection into
your application by simply mapping a filter and updating
a configuration file. This is certainly a resource worth
checking out.

3) Stateless CSRF Protection

When you cannot – or do not want to – maintain the user
token in the server-side session state, this is a seemingly
good solution. The idea is to allow the client side to
create a cookie with the CSRF token (which is then
submitted on every request), and to then include the token
as a request parameter. Because an attacker can not read
both the cookie and the request parameter, then all the
server side should have to do is validate that the token in
the cookie and the request parameter match on another.
This solution, to my knowledge, has yet to be widely
reviewed or tested, but it is a great example of an elegant

International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 4 – Jul 2014

 ISSN: 2231-2803 http://www.ijcttjournal.org Page174

solution to a difficult problem. Only time will tell if this
is the go-forward solution for stateless CSRF protection.

IV. CONCLUSIONS
In this survey paper we have discussed CSRF

vulnerabilities which help to understand different attack
scenarios and various examples of vulnerabilities detected
on different websites. We have described how CSRF is
different from XSS attack. And also the defense
mechanism to protect web application against CSRF
attacks. Complete protection against CSRF is not
available and our discussed defensive techniques need
more improvement so that they can completely protect
the application. Web developers need to understand these
vulnerabilities so that they can protect web applications
from all the side effects..

Causal Productions permits the distribution and

revision of these templates on the condition that Causal
Productions is credited in the revised template as follows:
“original version of this template was provided by
courtesy of Causal Productions
(www.causalproductions.com)”.

REFERENCES
[1] Rupali D. Kombade, Dr. B.B. Meshram,” CSRF Vulnerabilities and

defence technique”, I. J. Computer Network and Information Security,
February 2012.

[2] Adam Barth, Collin Jackson, John C. Mitchell, “ Robust Defenses for
Cross-Site Request Forgery” , Oct.2008.

[3] William Zeller and Edward W. Felten, “ Cross-Site Request Forgeries:
Exploitation and Prevention,” The New York Times, 2008.

[4] Bill Zeller (2008) Popular Websites Vulnerable to Croos-Site Request
Forgery Attacks webpage on Freedom to Tinker. [Online]. Available:
https://freedom-to-tinker.com/blog/wzeller/popular-websites-
vulnerable-cross-site-request-forgery-attacks/

[5] Difference Between XSS and CSRF webpage on
DifferenceBetween.info. [Online]. Available:
http://www.differencebetween.info/difference-between-xss-and-csrf

[6] Niraj Bhatt (2010) Cross Site Scripting (XSS) vs. Cross Site Request
Forgery (CSRF) webpage on Wordpress.com. [Online]. Available:
http://nirajrules.wordpress.com/2010/01/16/cross-site-scripting-xss-vs-
cross-site-request-forgery/

[7] John Melton (2012) CSRF prevention in java webpage on WhiteHat
Security. [Online]. Available:
https://blog.whitehatsec.com/tag/synchronizer-token /

