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1 ABSTRACT 
 

                       Due to the nature of spatial queries,  an 
LBS  needs the user  position in order to pro- cess 
her requests. On the other hand,  revealing exact 
user  locations to a (potentially untrusted) LBS may 
pinpoint their identities  and breach their privacy. To 
address this issue,  spatial  anonymity  techniques 
obfuscate user  locations, forwarding to the LBS a 
sufficiently large region instead. Existing  methods  
explicitly target  processing in the  Euclidean 
space, and  do  not  apply  when  proximity to the  
users is defined  according to network distance 
(e.g., driving time through the roads of a city). In 
this paper,  we propose a framework for location based 
services.  We  design location  obfuscation 
techniques  that  (i) provide anonymous LBS  
access to  the  users,  and  (ii) allow  efficient  
query processing at  the  LBS  side.  Our  
techniques exploit  existing  network database  
infrastructure, requiring  no  specialized storage 
schemes  or functionalities.  We  experimentally 
compare  alternative  designs in real road networks  
and demonstrate the effectiveness of our  
techniques. We will  find  out the best location 
based route. 
 
2. INTRODUCTION 

 
     
 
 

interests and shopping needs, resulting in a flood of unsolicited 
advertisements through e-coupons and personal messages. 
The latter obfuscates her location, replacing it with an 
anonymizing spatial region (ASR) that encloses u. The ASR 
is then forwarded to the LS. Ignoring where exactly u is, the 
LS retrieves (and reports to the AZ) a candidate  set (CS) 
that is guaranteed to contain the  query  results for  any  
possible user  location inside the ASR. The AZ receives the 
CS and reports to u the subset of candidates that corresponds 
to her original query. In order for the AZ to produce valid 
ASRs, the users send location updates whenever they move 
(through their secure connection). The described model is 
shown in Figure 1. 

 
An LBS makes spatial data available to the users through 
one or more location servers (LS) that index and answer 
user queries on them. Examples of spatial queries could be 
“Where is the closest hospital to my current location?” or 
“Which pharmacies are open within a 1 km radius?”. In order 
for the LS to be able to answer such questions, it needs to 
know the position of the querying user. 

Our contributions can be summarized as follows: 
*We propose an edge ordering anonymization approach for 
users in road networks, which guarantees K -anonymity 
under the strict reciprocity requirement (described later). 

* We identify the crucial concept of border nodes, an 
important indicator of the CS size and of the query 
processing cost at the LS. 

*  We  consider  various  edge  orderings, and  
qualitatively assess their query performance based 
on border nodes. 

 possible  by  various  means, such as publicly available 
information (e.g., city maps and telephone directories),.   

An LBS makes spatial data available to the users   
through one or more location servers (LS) that index and  
answer user queries on them. Examples of spatial queries 
could be “Where is the closest hospital to  
There  exist  many  algorithms  for  efficient  spatial  query 
processing, but the main challenge in the LBS industry is of 
a different nature. In particular, users are reluctant to use 
LBSs, since revealing their position may link to their 
identity. Even though a user may create a fake ID to 
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access the service, her location alone may disclose her 
actual identity. Linking a  position  to  an  individual  is   
3 RELATED WORK 
 
3.1 Location based Services in Networks 
Basic Notation.  In general, a road network can be 
modeled as a weighted graph G  = (N, E).  N  
contains the network nodes, while E is the set of 
edges. Nodes n in N model road intersections, 
locations of road turns, or positions where traffic 
conditions change (e.g., a street gets narrower). On 
the other hand, every edge e connects two nodes and 
is associated with a non-negative weight w(e). Weight 
w(e) may represent, for instance, the traveling time 
from one node to the other. Figure 
2 shows an example of a road network. 
Query Processing by Network Expansion. Users 

are often interested in location-based queries such as r-
range and kNN queries, in the context of a road 
network. Given a distance threshold r and a user 
location u, the r-range  query returns all objects 
within (network) distance r from u. On the other hand, 
the kNN query retrieves the k objects that are closest 
to u. In the rest of the paper, the term distance refers to 
the network distance, and the r-range and kNN queries 
refer to their network versions (unless otherwise 
specified). 

Network expansion  [30]  is  a  well-known  
technique  for 
evaluating r-range and kNN queries. Starting from 
the user location u,  it discovers objects on 
encountered edges while traversing the network like 
Dijkstra’s algorithm, until the query results (i.e., data 
objects of interest) are found. Suppose that, in 
Figure 2, user u issues a range query with r = 9. 
First, we access the adjacency index to identify edges 
within the query range, following the steps in Table 
1. A min-heap H  is employed for organizing entries 
of the form (ni , dN (u, ni )) (for  encountered nodes  
ni )  in  ascending order  of  distance dN (u, ni ).  In 
our example, the edge n2 n3     containing u  is 
initially identified, and its end-nodes n2    and n3    
(both  with distance 2) are inserted into H . In each 
iteration, the node ni with the minimum distance is 
de-heaped from H , its incident edges ni nj   are 
recorded, and its adjacent unvisited nodes nj 
(having dN (u, nj ) within the range) are inserted 
into H . 
 

3.2   Location-based Queries 
Recently, considerable research interest has 
focused on pre- venting  identity inference in  

location-based services. Stud- ies  in  this area [17], 
[14], [28], [23] typically assume the model  described  
in  Section  1,  proposing  spatial  cloaking (i.e., location 
obfuscation) techniques. In the following, we describe  
existing  techniques  for  ASR  computation  (at  the AZ) 
and query processing (at the LS). At the end, we cover 
alternative location privacy approaches and discuss why 
they are inappropriate to our problem setting. 

Spatial Cloaking at the AZ. In general, the AZ applies 
the concept of K -anonymity [33] to hide the querying 
user loca- tion u. The idea is to compute an anonymizing 
spatial region (ASR), containing u and at least K − 1 
other user locations. This offers privacy protection in the 
sense that the actual user position u cannot be 
distinguished from others in the ASR, even when a 
malicious LS is equipped/advanced enough to possess all 
user locations. This spatial K -anonymity model is most 
widely used in location privacy research/applications, 
even though alternative models are emerging. 

Casper [28] is the first work on efficient and scalable 
AZ implementation for ASR computation. A quad-tree is 
utilized for indexing user locations and deriving ASRs. 
Suppose that the AZ needs to compute a 2-anonymous 
region (i.e., K =2) for querying user u1   in Figure 3(a). 
The AZ first locates the leaf quad that contains u1   and 
traverses the tree upwards until it identifies a region 
covering at least K  users (including u1 ). In this case, the 
AZ derives rectangle R1,2,3 (containing three users) as 
the 2-anonymous region of u1 . 
 

Alternative  Location  Privacy Approaches.  There 
exist location privacy approaches other than spatial 
anonymity. For instance, [20], [15] apply private 
information retrieval to process nearest neighbor queries. 
Based on cryptographic tech- niques, they guarantee that 
an adversary cannot infer the user’s location  u  within 
polynomial time of a  security parameter (e.g., key 
length). [20] is theoretical in nature, whereas [15] 
proposes a practical algorithm with O(

√
n)  communication 

cost. However, query processing is particularly slow, 
and the method is inapplicable to range and kNN 
queries (with k > 1). 
 
 

4 PROBLEMDEFINITION 
 

We propose an location based services framework, targeted 
at road network databases. We adopt the trusted anonymizer 
model (i.e., the use of the AZ as a mediator between users 
and the LS), as illustrated in Figure 1. This choice is due to 
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(i) the proliferation of this model in existing 
We  assume that  the  users  u  ∈   U  and  the  
data  objects 

o ∈  O  lie/move in a road network, as described in 
Section 
2.1. We consider the generic network distance 
definition where the edge weights are non-negative 
and they do not have to be proportional to the 
Euclidean length of the corresponding road segment. 
For instance, they could be traveling times from 
endpoint to endpoint (i.e., depending on each road’s 
congestion level, speed limit, number of lanes, etc). 
To simplify our discussion, we consider undirected 
(i.e., two-way) edges, but our techniques apply with 
trivial modifications to directed ones (e.g., one-way 
roads). We focus on static networks, with fixed edge 
weights. However, edge updates (e.g., 
weight/traveling time increase due to an accident) can 
be dealt with easily, provided that the AZ and the LS 
are informed of the network changes. 

In this paper, we focus on two important location-
based queries on road networks; the r-range and the 
kNN query described  previously.  For  the  latter  
type,  we  denote  by kN N dist(u)  the  network  
distance  of  the  k-th  NN.  We consider snapshot 
queries (i.e., queries that are evaluated once and 
terminate), as opposed to queries that require constant 
update of their results (e.g., [9]).  

 
 

5NETWORK-BASED  ANONYMI ZATION 

In this section, we present the cloaking algorithm of 
our NAP framework. Our primary objective is to 
guarantee reciprocity- based anonymity. In NAP, the 
AZ anonymizes u with a set of line segments/edges 
instead of a spatial region (ASR). 

The crux of our cloaking method is to utilize a global 
edge ordering; i.e., an ordered sequence that contains all 
network edges exactly once. The edge ordering is setting-
sensitive, i.e., it specifies which end-node of the edge 
precedes the other. We refer to the position and setting 
of an edge in the ordering as the edge order and the 
edge setting, respectively. To avoid confusion, the setting 
of an edge depends solely on the ordered sequence, and 
has nothing to do with the direction (in the case of 
directed networks) of the road segment it models. 
Figure 
5(a) shows a road network, and an ordering of its edges. 
The number next to each edge indicates its order and the 
arrow its setting. 
We follow the above global edge/user ordering 
approach, because a local one could lead to privacy 
breach in a way similar to Figure 3(a) for Casper. 

Specifically, upon intercep- tion of an AEL generated by our 
method, one cannot infer who among the users in the 
corresponding bucket was the querying one. In other words, the 
AEL for any user in the same bucket is identical, and therefore an 
adversary cannot pinpoint the query originator with a probability 
higher than 1/K (recall that each bucket contains K  or more 
users). Hence, our cloaking method satisfies reciprocity. 
Reciprocity, in turn, is a sufficient condition for anonymity [23] 
and, thus, NAP guarantees  K - anonymity to the querying users. 

In the rest of this section, we describe edge ordering 
strate- gies (Section 4.1). Then, we present particular 
techniques for the anonymization procedure (Section 
4.2). Finally, we analyze the properties of the proposed 
edge orderings  
5.1    Border Nodes and Edge Ordering 
To ensure reciprocity we can use any global edge ordering; 
e.g., we could use a random permutation of network edges. 

both of which are inside the AEL. Hence, n8   is not a 
border node. 

Border nodes have an important property. It follows 
from Definition 1 that any shortest path from a point 
inside the AEL to some object outside the AEL passes 
through some border node. Based on this property, 
Theorem 1 below constitutes the foundation of CS 
computation in NAP. 

Theorem 1:  Assume that  the  LS receives  an  AEL 
for  a kNN (r-range) query with parameter  k (r, 
respectively). An inclusive and minimal CS is formed as 
the union of 

•  the objects that fall on the AEL edges 
•  the kNN objects of all border nodes (the objects 

within distance r from any border node, 
respectively). 

 
Proof: We focus on the kNN case, as the proof 

for r- range queries follows the same lines. We prove 
inclusiveness by contradiction. Suppose that there is 
some object o among the  k  NNs  of  u  that  is  not  in  
the  CS.  The  CS  includes all objects on AEL edges, so 
o must fall outside the AEL. User  u  lies  inside  the  
AEL  and,  thus,  the  shortest  path from  u  to  o  passes  
through  some  border  node  n;  i.e.,  it holds  that  dN (u, 
o)  = dN (u, n)  + dN (n, o)  (A).  The  CS includes the 
k  NNs of n,  so (i) o must lie further from n than its 
k-th NN, i.e., dN (n, o)  > kN N dist(n) (B), and (ii)  
there are  at  least k  objects o0   (where o0    = o)  within 
distance dN (u, n) + kN N dist(n) from u  in the  CS,  
i.e., kN N dist(u) ≤ dN (u, n) + kN N dist(n) (C). By  
adding factor  dN (u, n)  to  both sides of  inequality (B),  
we  derive dN (u, n) + dN (n, o) > dN (u, n) + kN N 
dist(n), which ac- cording to (A) and (C) (applied to the 
left and right side of the inequality, respectively) leads to 
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dN (u, o) > kN N dist(u). The latter 
contradicts the original hypothesis that o is 
one of the k NNs of u. Thus, CS is inclusive. 
From Theorem 1 it follows that the CS size 
and the (AEL- based) processing cost at the 
LS increase with the number of border nodes 
in the AEL. To compute an optimal ordering 
(i.e., an ordering that achieves the minimum 
number of border nodes for any user) is 
impossible, since the same ordering must serve 
different user-specific anonymity degrees K . 
Therefore, we use heuristic-based algorithms.1 

Random  orderings.  We describe two naı̈ve orderings, 
RE and RN, used as baseline approaches. RE 
(random edge ordering) is a random permutation of 
the network edges; their settings are also decided at 
random. On the other hand, RN (random node 
ordering) first forms a random permutation of 
network nodes. Then, it scans the permutation and for 
each considered node ni , it includes its incident 
edges ni nj  (with setting from ni  to nj ) into the 
produced ordering; previously encountered edges are 
ignored to avoid duplicates. 

Hilbert-based orderings.  The rationale behind this 
approach is that nodes/edges close in Euclidean space 
are likely to be close in terms of network distance. In 
turn, this means that consecutive  edges in  the  
ordering are  likely  to  share end- nodes. HE (Hilbert 
edge ordering) and HN (Hilbert node ordering), work 
in the same way as RE and RN, respectively, the 
difference being that edges and nodes are considered 
in Hilbert order (in HE, the Hilbert values of the edge 
midpoints are used as their sorting keys). We 
establish the convention that the settings are from left 
to right and, in case of vertical edges, from down to 
up. Intuitively, HE/HN are adaptations of the HilbASR 
(Euclidean) cloaking to road networks2 . Hilbert- 
based orderings (as opposed to the previous two 
categories) are inapplicable to environments where 
the Cartesian coordinates of nodes/users are unknown 
or undefined (see Section 5.3). 

Edge ordering is performed once when 
the AZ is set up for 
the first time. Upon termination, the 

computed orders/settings 
 

5.2    Anonymization Procedure 
Given an edge ordering, the next question is how AEL 
com- putation can be implemented efficiently at the 
AZ. Parameter K  is not known in advance and varies, 
since different users have different anonymity 
requirements, and even queries by the  same user 

may specify different  K ,  depending on  the nature of the 
queried data. As buckets are defined according to K , they 
cannot be explicitly materialized. Instead, the AZ employs an 
index that keeps the users sorted on their order and allows efficient 
AEL computation for arbitrary K . The index is an aggregate B-
tree (similar to an aggregate R-tree [29]), whose internal nodes 
keep for each child the number of users in the corresponding sub-
tree. Figure 6 shows this tree in the example of Figure 5(a). For 
each user (e.g., u6 ) we store the ID of the edge it falls on (n9 n2 ), 
the edge’s order (7), and its distance from the edge’s first end-node 
(|n9 u6 |). The latter two values are used (primarily the edge order 
and secondarily the distance from the first end-node) as the sorting 
key of the tree. In Figure 6 the numbers in the shaded boxes 
correspond to the aggregate information maintained, i.e., the 
cardinalities of the sub-trees rooted thereof. Note that we use a B-
tree instead of a B+ -tree (i.e., user information is also stored in 
internal nodes), because it is faster for in-memory indexing [27]. 

5.3    Analysis of Edge Orderings 
The number of border nodes is an important indicator of 
the CS size and of the LS processing cost. To provide an 
insight on the behavior of our proposed edge orderings, 
we analyze their numbers of border nodes in a simple 
road network. A typical road network branches from the 
city center (e.g., the root) and exhibits a self-similar 
structure. We decompose the network into junctions and 
road  sections. The junctions are nodes of degree higher 
than 2. The sections are paths (i.e., sets of connected 
edges) between two consecutive junctions that  pass 
strictly through non-junction nodes. We  treat the 
decomposed network as a tree with parameters: the 
fanout f , and the average number of edges per road 
section l. Figure 

7 depicts a road network with f = 2 and l = 2. 
An edge is said to be at level m  if its path to the 
root passes through m − 1 junctions; there are l · f m  

edges at level m. To simplify our analysis, we assume 
that there is exactly one user per edge (the general case is 
obtained by scaling K accordingly). Thus, the AEL of a 
query contains K  edges for any edge ordering.     

 
6.1 Single Query Processing 

 
Range  query   optimizations.   If the query type is r-
range, border node expansion (in step 4) does not need 
to proceed to AEL edges, because the corresponding 
objects are either on some AEL edge (and, thus, retrieved 
by step 2) or, if they are outside the AEL, they are 
discovered by the expansion of another border node. An 
additional optimization particular to the range query type 
is to combine steps 2 and 4 so that CS  objects are  
collected by  querying the  ORT  only  once. Specifically, 
after step 1, we expand the network (using only the 
adjacency index) for every border node up to distance r, 
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and then query the ORT to retrieve the 
objects that fall in some of the acquired edges 
or inside the AEL. An additional optimization 
is that when the expansion of a border node n 
visits (i.e., de-heaps) a  previously  expanded  
node n0 ,  then expansion needs not proceed to 
(i.e., en-heap) the adjacent nodes of n0 , since 
the objects reachable through n0  are inserted 
into the CS by n0 ’s expansion. 

 
6.2    Batch Query 
Processing 
In general, the LS processes queries in discrete 
timestamps, and multiple AEL-based queries may 
be arriving in the same timestamp. In this case, 
the queries are evaluated in a batch. 
 
 
Rule 1.  Among  queries  in  Qr    (QN N )  only  the  
one  with the largest parameter rmax   (kmax , 
respectively) needs  to be processed, since its result is 
by definition a superset  of  that for any other query in 
Qr  (QN N ). 
 

Rule 2. The rmax  range query is evaluated before the 
kmax NN one (recall that range search is simpler/faster 
than kNN). Let Sr   be the set of objects retrieved by 
the rmax   range  search and |Sr | be their number. If 
|Sr | ≥ kmax , then no  further processing is 
necessary for QN N , as Sr   is a  superset  of any kNN 
result for QN N . Otherwise (i.e., |Sr | < kmax ), we 
need to additionally retrieve kmax − |Sr | more NNs; 
the expansion continues from the point where the rmax  
range search stopped, starting with Sr   as the set of 
NNs  found so far and reusing the search heap of the 
range search. 
 

 
6.3 Alternative Storage Schemes 

 

NAP processing can be applied to any network storage 
scheme, as long as it provides the weights and the 
connectivity of the edges, and allows retrieval of the 
objects that fall on a given edge. To exemplify this, we 
use as a case study an alternative, widely used storage 
scheme [36] 
 
7 EXPERIMENTAL  EVALUATION 
 
In this section, we evaluate the robustness and 
scalability of our proposed methods on a real road 
network. Our algorithms were implemented in C++ 
and experiments were executed on a Pentium D 
2.8GHz PC. We measured the average of the following 
performance values over a query workload of 100 

queries: (i) anonymization time and refinement time at the 
anonymizer AZ, (ii) I/O time and CPU time for query pro- cessing 
at the location server LS, and (iii) the communication cost (in 
terms of transmitted points) for the anonymizing edge list AEL 
and the candidate set CS. Note that each edge in AEL is 
counted as two points. 
7.1    Experiment Setup 
 

We  use  the  real  road  network  of  San Francisco, obtained from 
[7]. By default, our experiments use a subnetwork with 50000 
edges. Weights of the edges are set to their lengths. We 
generate |U | users and |O| objects. The locations of users and 
objects follow either uniform distribution (by default) or 
Gaussian distribution4 . At the LS, the disk page is 4KBytes and 
each index structure (edge R-tree, ORT, etc) is associated with a 
memory buffer with capacity set to 5% of its disk size. Table 
3 summarizes the investigated parameters and their examined 
values, with the defaults shown bold. Parameter r is expressed 
as a multiple of the average edge weight. 
 
 
7.2    Robustness Experiments 
In  this  section,  we  illustrate  the  achieved  anonymity  
and study the performance of our methods for different 
orderings, location privacy models, and user/object 
distributions. 

Anonymity  strength.  NAP is theoretically guaranteed 
to honor reciprocity and provide K -anonymity. Figure 9 
empir- ically demonstrates this fact, i.e., that no user in the 
AEL is more than 1/K  likely to have issued the query. 
We generate 

1000 random queries with K  = 40 and record the 
position of the querying user within the AEL according to 
ordu   (we include results only for DF as those for other 
orderings are almost  identical). Figure 9(a) plots the 
querying frequency per user position in the AEL. The 
dashed line, labeled “safe bound”, corresponds to 
probability 1/K = 0.025. There are more than K = 40 
positions (up to 48) because the AEL may contain over K 
users. Figure 9(b) provides another viewpoint, considering 
the median AEL position as slot 0. 
 

Effect of the proposed  orderings.  Table 4 shows the 
cost of the orderings presented in Section 4.1 for kNN 
queries, by  fixing  the  parameters  to  their  default  values.  
Observe that the AEL size accounts for only a small fraction 
of the communication cost and it is insensitive to the 
particular ordering used. In RE, the AEL contains edges that 
are widely distributed in the network, leading to high 
processing cost (at LS) and communication cost due to the 
large CS size. RN places close to each other edges that 
share a common end- node and, thus, its cost is much 
lower than RE. Between the traversal-based orderings, DF 
outperforms BF because edges along a path are arranged 
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next to each other, so the AEL contains many 
connected edges.   

 
 

7.3Scalabilit Experiments 
 

In this section, we investigate the scalability of 
NAP with respect to various factors. To provide 
an indication of the space requirements, we note 
that for the largest tested data sizes (i.e., |U 
|=200000 and |O|=1024000), the AZ uses only 
12.5 MBytes of main memory (including the 
network graph) and the LS needs a total of 23.5 
MBytes hard disk storage.  End-to-end time.  
Before a lower level study, we present an 
experiment on the overall response latency. 
Specifically, from the user’s viewpoint, the end-
to-end time captures the elapsed time between 
issuing a query and obtaining the results. It 
includes the processing time at AZ, the 
computation time at LS, and the communication 
time between AZ and LS. Figure 
13 shows the end-to-end time as a function of the 
anonymity degree K , assuming a communication 
bandwidth of 10Mbps. 
 
 
Batch  processing experiment. In the next experiment, 
we investigate the processing of queries in batches (as 
opposed to one-by-one). Within the same batch, half of 
the queries are of kNN type and the others are range 
queries. Their selectivities (k  and  r)  are  randomly  
chosen  among  the  corresponding values 
 
 8 CONCLUSION 

 
          NAP relies on a global user ordering and 
bucketization that satisfies reciprocity  and  
guarantees  K -anonymity.  We  identify  the ordering 
characteristics that affect subsequent processing, and 
qualitatively  compare alternatives. Then, we 
propose query evaluation techniques that exploit 
these characteristics. In addition to user privacy, NAP 
achieves low computational and communication costs, 
and quick responses overall. It is readily deployable, 
requiring only basic network operations. 

      
  In the traditional spatial anonymity model, the data 

owner (e.g., a location-based service) makes its data 
available using  location server. It may, however, be the 
case that the owner is outsourcing its database to a 
third-party (and, thus, untrusted) location server. A 
challenge here is how to encrypt the owner’s data so 
that they are hidden from the location server, while it  

can still process anonymous queries. Another interesting 
question is how (anonymous) users could verify that the location 
server did not tamper with the original owner data. 
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