
International Journal of Computer Trends and Technology- March to April Issue 2011

ISSN:2231-2803 - 1 - IJCTT

A Cost-efficient Approach for Dynamic and
Geographically-diverse Replication of Components in

Cloud Computing
1N.Pughazendi, 2C.Bhanu prakash

1Faculty, M.C.A, Panimalar Engineering College, Chennai
2 P.G Scholar, M.C.A, Panimalar Engineering College, Chennai

Abstract- A cost-efficient approach for dynamic and
geographically-diverse replication of components in a cloud
computing infrastructure that effectively adapts to load
variations and offers service availability guarantees .In our
approach, inter-dependencies(traffic and workflow) among
components, their processing overhead and server
capabilities are implicitly taken into account by means of
server rent prices .we intend to explore our economic
paradigm for the self-tuning in the cloud of service
components with heavy data dependencies.
Keywords: components ;net benefit; replication; agent;
webservice

I. INTRODUCTION
A successful online application should be able to handle traffic
spikes and flash crowds efficiently. Moreover, the service
provided by the application needs to be resilient to all kinds of
failures (e.g. software stales, hardware, rack or even
datacenter failures, etc.). A naive solution against load
variations would be static over-provisioning of resources,
which would result into resource underutilization for most of
the time. Resource redundancy should be employed to
increase service reliability and availability, yet in a cost
effective way. Most importantly, as the size of the cloud
increases its administrative overhead becomes unmanageable.
The cloud resources for an application should be self-managed
and adaptive to load variations or failures.
 Cloud computing is a pay-per-use model for enabling
available, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
servers, storage, applications, services) that can be rapidly
provisioned and released with minimal management effort or
service provider interaction. This cloud model promotes
availability.
However, with static resource allocation, a cluster system
would be likely to leave 50% of the hardware resources (i.e.
CPU, memory, disk) idle, thus baring unnecessary operational
expenses without any profit (i.e. negative value flows).
Moreover, as clouds scale up, hardware failures of any type
are unavoidable

II. LITERATURE SURVEY

Literature survey is the most important step in software
development process. Before developing the tool it is
necessary to determine the time factor, economy n company
strength. Once these things r satisfied, ten next steps is to
determine which operating system and language can be used
for developing the tool. Once the programmers start building
the tool the programmers need lot of external support. This

support can be obtained from senior programmers, from book
or from websites. Before building the system the above
consideration r taken into account for developing the proposed
system.
We have to analysis the Cloud Computing Outline Survey:
Cloud computing providing unlimited infrastructure to store
and execute customer data and program. As customers you do
not need to own the infrastructure, they are merely accessing
or renting; they can forego capital expenditure and consume
resources as a service, paying instead for what they use.

Key characteristics:
Agility improves with users' ability to rapidly and inexpensive
lyre-provision technological infrastructure resources.
Application Programming interface(API) accessibility to
software that enables machines to interact with cloud software
in the same way the user interface facilitates interaction
between humans and computers. Cloud computing systems
typically use rest-based APIs.
Cost is claimed to be greatly reduced and in a public cloud
delivery model capital expenditure is converted to operational
expenditure. This ostensibly lowers barriers to entry, as
infrastructure is typically provided by a third-party and does
not need to be purchased for one-time or infrequent intensive
computing tasks.
Device and location independence enable users to access
systems using a web browser regardless of their location or
what device they are using (e.g., PC, mobile phone). As
infrastructure is off-site (typically provided by a third-party)
and accessed via the Internet, users can connect from
anywhere.
Multi-tenancy enables sharing of resources and costs across a
large pool of users thus allowing for:
Centralization of infrastructure in locations with lower costs
(such as real estate, electricity, etc.)
Peak-load capacity increases (users need not engineer for
highest possible load-levels)
Reliability is improved if multiple redundant sites are used,
which makes well designed cloud computing suitable for
business continuity and disaster recovery.
Scalability via dynamic ("on-demand") provisioning of
resources on a fine-grained, self-service basis near real-time,
without users having to engineer for peak loads. Performance
is monitored and consistent and loosely coupled architectures
are constructed using web services as the system interface.
Security could improve due to centralization of data, increased
security-focused resources, etc., but concerns can persist about

International Journal of Computer Trends and Technology- March to April Issue 2011

ISSN:2231-2803 - 2 - IJCTT

loss of control over certain sensitive data, and the lack of
security for stored kernels. Security is often as good as or
better than under traditional systems, in part because providers
are able to devote resources to solving security issues that
many customers cannot afford. However, the complexity of
security is greatly increased when data is distributed over a
wider area or greater number of devices and in multi-tenant
systems which are being shared by unrelated users. In
addition, user access to security audit logs may be difficult or
impossible. Private cloud installations are in part motivated by
users' desire to retain control over the infrastructure and avoid
losing control of information security.
Maintenance of cloud computing applications is easier,
because they do not need to be installed on each user's
computer. They are easier to support and to improve, as the
changes reach the clients instantly.
Cloud Architecture :

Figure 1.Cloud sample Architecture

Cloud architecture, the systems architecture of the software
systems involved in the delivery of cloud computing, typically
involves multiple cloud components communicating with each
other over application programming interfaces, usually web
services and 3-tier architecture .This resembles the Unix
philosophy of having multiple programs each doing one thing
well and working together over universal interfaces.
Complexity is controlled and the resulting systems are more
manageable than their monolithic counterparts.
The two most significant components of cloud computing
architecture are known as the front end and the back end. The
front end is the part seen by the client, i.e. the computer user.
This includes the client’s network (or computer) and the
applications used to access the cloud via a user interface such
as a web browser. The back end of the cloud computing
architecture is the ‘cloud’ itself, comprising various
computers, servers and data storage devices.

III. SYSTEM ANALYSIS

Existing system:
Successful online application should be able to handle traffic
spikes and flash crowds efficiently. Moreover, the service
provided by the application needs to be resilient to all kinds of
failures (e.g. software stales, hardware, rack or even
datacenter failures, etc.). A naive solution against load
variations would be static over-provisioning of resources; this
would result into resource underutilization for most of the

time. Resource redundancy should be employed to increase
service reliability and availability, yet in a cost-effective way.
Most importantly, as the size of the cloud increases its
administrative overhead becomes unmanageable. The cloud
resources for an application should be self managed and
adaptive to load variations or failures.
Proposed system:
Building an application that both provide robust guarantees
against failures (hardware, network, etc.) and handles
dynamically a load spike is a non-trivial task. We have
developed a simple web application for selling e-tickets
(print@home).Composed by 4 independent components:
(i.e.) web front- end, user manager, ticket manager, e-ticket
generator.
Each component can be regarded as a stateless, standalone and
self-contained web service. Figure 2 depicts the application
architecture. A token (or a session ID) is assigned to each
customer’s browser by the web front-end and is passed to
each component along with the requests. This token is used as
a key in the key-value database to store the details of the
client’s shopping cart, such as the number of tickets ordered.
Note that even if the application uses the concepts of sessions,
the components themselves are stateless (i.e. they do not need
to keep an internal state between two requests).

Figure 2 .A Distributed Application using different components.

IV. EVALUATION

Experimental Setup:
 To evaluate the performance of the proposed application, We
employ two different test bed settings: a single application
setup consisting of 7 servers and a multi application setup
consisting of 15 servers. In the former setup, the cloud
resources serve 1 application and in the latter one 3
applications. The hardware specification of each server is Intel
Core i7 920 @ 2.67 GHz, 8GBRam, Linux 2.6.32-trunk-
amd64. We run two databases MySQL5.1 and Cassandra
0.5.0) as well as one generator of client requests for each
application (FunkLoad1.10,http://funkload.nuxeo.org/) on
their own dedicated servers Thus, the cloud consists of 4 and
10 servers in the single application and the multi-application

International Journal of Computer Trends and Technology- March to April Issue 2011

ISSN:2231-2803 - 3 - IJCTT

setup respectively. We assume that the components of the
application may require 1 up to all servers in the cloud.
 We simulate the behavior of a typical user of the e-ticket
application of Section II by performing the following actions:
1) request the main page that contains the list of entertainment
events; 2) request the details of an event A; 3) request the
details of an event B; 4) request again the details of the event
A; 5) login into the application and view user account; 6
update some personal information; 7) buy a ticket for the
event A; 8) download the corresponding ticket in PDF. A
client continuously performs this list of actions over a period
of 1 minute. An epoch is set to 15 seconds and an agent sends
gossip messages every 5 seconds. Moreover, the default
routing policy is the random-based policy.
We consider two different placements of the components:

 A static approach where each component is assigned
to a server by the system administrator.

 A dynamic approach where all components are
started on a single server and dynamically migrate
replicate stop according to the load or the hardware
failures.

Results:
First, we employ the single-application experimental setup to
compare our approach with static placements of the
components, where we consider two cases: i) each different
component is hosted at a different dedicated server; ii) full
replication, where every component is hosted at every server.
The response time of the 95% percentile of the requests is
depicted in Figure 3. In the static placement (i), where a
component runs on its own server, the response time is lower
bounded by that of the slowest component (in our case, the
service for generating PDF tickets).
 Thus, the response time increases exponentially when the
server hosting this component is overloaded. In the case of full
replication [static placement ii)], the requests are balanced
among all servers, keeping the latency relatively low, even
when the amount of concurrent users is significant.
 In the dynamic placement approach, all components are
hosted at a single server at startup: then, when the load
increases, a busy component is allowed to replicate, and
unpopular components may replicate to a less busy server. Our
economic approach achieves better performance than full
replication, because the total amount of CPU available in the
cloud is used in an adaptive manner by the components:
processing intensive (or “heavy”) components migrate to the
least loaded servers and heavily used components are assigned
more resources than others.
 Therefore, the cloud resources are shared according to the
processing needs of components and no cloud resources are
wasted by over-provisioning.
Also, as the cloud resources are properly utilized by the
economic approach, the application throughput (i.e the number
of request served per second) that it achieves outperforms
static placements, as depicted in Figure4.

V.IMPLEMENTATION

A web front-end, which is the entry point of the application
and serves the HTML pages to the end user.
A user manager for managing the profiles of the customers.
The profiles are stored in a highly scalable, eventually
consistent, distributed, structured key-value store.
A ticket manager for managing the amount of available tickets
of an event. This component uses a relational database
management system.
An e-ticket generator that produces e-tickets in PDF format
(print@ home).
Server agent
The server agent is a special component that resides at each
server and is responsible for managing the resources of the
server according to our economic-based approach.
 Routing table
A component may be hosted by several servers; therefore we
consider 4 different policies that a server s may use for
choosing the replica of a component:
a proximity-based policy: thanks to the labels attached to each
server, the geographically nearest replica is chosen;
a rent-based policy: the least loaded server is chosen; this
decision is based on the rent price of the servers.
a random-based policy: a random replica is chosen.

International Journal of Computer Trends and Technology- March to April Issue 2011

ISSN:2231-2803 - 4 - IJCTT

a net benefit-based policy: the geographically closest and least
loaded replica. For every replica of the component residing at
server j, we compute a weight.

VI. CONCLUSIONS

 Our approach offers high availability guarantees by
maintaining a certain number of the various components in
geographically diverse locations.We proposed an economic,
lightweight approach for dynamic accommodation of load
spikes for composite web services deployed in clouds.
Application components act as individual optimizers and
autonomously replicate, migrate or stop based on their
economic fitness. Inter-dependencies (traffic and workflow)
among components, their processing overhead and server
capabilities are implicitly taken into account by means of
server rent prices. As a future work, we intend to explore our
economic paradigm for the self-tuning in the cloud of service
components with heavy data dependencies.

REFERENCES
[1]“TheApacheCassandraproject,”http://cassandra.apache.org/
[2] L. Lamport, “The part-time parliament,” ACM
Transactionson Computer Systems, vol. 16, pp. 133–169,
1998.
[3] N. Bonvin, T. G. Papaioannou, and K. Aberer, “Cost-
efficient and differentiated data availability guarantees in data
clouds,” in Proc. of the ICDE, Long Beach, CA, USA, 2010.
[4] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O.
Kephart, and W. S. Stornetta, “Spawn: A distributed
computational economy,” IEEE Transactions on Software
Engineering, vol. 18, pp. 103–117, 1992.
[5] O.Regev and N. Nisan, “The popcorn market. online
marketsfor computational resources,” Decision Support
Systems, vol. 28, no. 1-2, pp. 177 – 189, 2000.
[6] A. Helsinger and T. Wright, “Cougaar: A robust
configurable multi agent platform,” in Proc. of the IEEE
Aerospace Conference, 2005.
[7] J. Brunelle, P. Hurst, J. Huth, L. Kang, C. Ng, D. C.
Parkes, M. Seltzer, J. Shank, and S. Youssef, “Egg: an
extensible and economics-inspired open grid computing
platform,” in Proc. of the GECON, Singapore, May 2006.
[8] J. Norris, K. Coleman, A. Fox, and G. Candea, “Oncall:
Defeating spikes with a free-market application cluster,” in
Proc.of the International Conference on Autonomic
Computing, New York, NY, USA, May 2004.
[9] C. Pautasso,T. Heinis, and G. Alonso, “Autonomic
resource provisioning for software business processes,”
Information and Software Technology, vol. 49, pp. 65–80,
2007.
[10] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D.
Kuebler, H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef,
“Web services on demand: Wsla-driven automated
management,” IBM Syst. J., vol. 43, no. 1, pp. 136–158, 2004.

