
 International Journal of Computer Trends and Technology                                             Volume 72 Issue 3, 37-45, March 2024 

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I3P106                                                   © 2024 Seventh Sense Research Group®  

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

 

System Integration, From Middleware to APIs 
 

Prasenjit Banerjee 
 

Success Architect Director at Salesforce, USA. 

 

Corresponding Author : prasenjit.banerjee@salesforce.com  

 
Received: 15 January 2024                 Revised: 26 February 2024                  Accepted:  15 March 2024                   Published: 28 March 2024 

 

Abstract - Nowadays any customer journey, whether it is banking or financial services, retail or healthcare, goes through several 

software systems. Transactions as simple as using a credit card to make a purchase or sending an offer to the customer for a 

personal loan often involve the orchestration of a myriad of systems. While some systems are deployed in the cloud, others are 

legacy on-premises systems that maintain customer transactional history. Connecting these systems to make sure that they 

exchange data and logic in a way that makes the overall process smooth and meaningful can be achieved in a lot of ways. The 

technology behind System Integration has evolved over time and has taken a paradigm shift from the way it was done in the past 

to the way it is approached now. For a lack of standardization, in the field of system integration, many organizations have taken 

radically different approaches towards it and such experiments have led to a diverse range of outcomes. It is possible to look at 

those different outcomes and objectively assess which approach is better, more robust and scalable than the other. In this study, 

I have tried to draw several examples from my 16 years of experience to make an objective evaluation of how each of those 

approaches compare against each other. What are the common challenges faced during System Integration, and what are the 

broad common patterns that have evolved as best practices that the industry has embraced. 

 

Keywords -   Middleware, API, Client-Server, MVC, Enterprise Service Bus. 

  

1. Introduction 
The Term middleware was first used at the NATO Science 

Committee conference in Garmisch1. At that time, the term 

was used to define a computer system that needs to access 

information from another computer’s operating system. The 

concept did not solicit much attention for the next two decades. 

In the early 1990s, In the time when Mainframe computers 

were widely prevalent in business applications, SABRE 

referred to the term Middleware while pointing to the 

decoupling of TP monitors from the CICS systems2. Until the 

use of commercial systems for distributed computing, the term 

Middleware was only a concept that did not find much 

practical usage. While mainframe computers used terminals 

and huge servers, they never used the concept of Middleware 

as we understand and know it today. With the 

commercialization of distributed computing systems, a wide 

gamut of different computer systems architecture and 

technology evolved. Each of these systems helped the industry 

solve a specific problem. For example, let’s take a simple 

example of opening a bank account.  

 

It starts right from customers being targeted by the bank 

with a plethora of offers. These offers are derived based on the 

customer’s demographics, purchase history, etc. After 

receiving the offer from various neighborhood banks to open 

bank accounts, let’s say the customer chooses to apply to one 

of them, possibly because their offer was the most lucrative for 

the customer given her situation. The customer can apply for 

this account online using her home internet connection. The 

bank acknowledges the offer based on the offer reference 

number and takes all the necessary details from the customer 

to open the account. Then, after identity and income 

verification, the customer is provided with the account details 

and a pre-printed debit card.  

 

Let’s now understand how this use case is accomplished 

with the systems information technology systems available to 

the bank.  The bank gets the prospect’s information, which it 

uses to target the customer. When the customer accepts the 

offer, The bank uses a website that welcomes the customers to 

apply with all the demographic, identity and income details for 

the bank account creation. The bank then verifies the identity 

of the customer. The bank then allows or denies the customer 

based on the income and identity verification results. Let’s say 

the bank allows the prospect, given that the information was 

accurate and create a profile for the customer, a bank account 

and sends a debit card to his/her home address. Let’s stop here 

for the purpose of simplicity and understand what systems 

were at play here. 

 

The bank is probably using a third-party Ad tech 

aggregator system to get customer information, which it is 

using to target the customer. This Ad Tech Firm is scuffing the 

data from a host of different systems, which includes the 

internet, customers’ browsing history, customers’ geo-location 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Prasenjit Banerjee / IJCTT, 72(3), 37-45, 2024 

 

38 

tracking, if enabled, etc. Next the bank is using a Marketing 

System to send a blast of emails to all the prospects who may 

possibly convert to a customer. Thank Bank is using a web 

application to build a website that allows the customer to apply 

for an account. Then the bank is leveraging some government 

agency’s identity and income verification system to verify the 

identity of the customer. The bank is creating the customer’s 

profile in the Customer Relationship Management system 

(CRM)3.  

 

The bank is using a Core banking system4 to open the bank 

account and generate the account number. It uses a statements 

and letters dispatch system to send regulatory information to 

the customers, including statements and notices. So, with this 

very straightforward example of the customer’s journey, the 

customer’s information is travelling through 9 distributed 

systems. Now previously these could have been simplified and 

processed by a single monolithic application. But a monolithic5 

application is crippled in the sense that it does not have very 

many ways to extract data from other systems only if they are 

not built leveraging the same technology stack or, as was the 

case, from the same specific vendor. 

 

 

2. Monolithic Systems Vs Distributed Systems 
The evolution of computer systems for large commercial 

use started with the Mainframe systems. Although several 

companies started creating these systems, it was IBM who 

monopolized the business with their research and contribution 

in advancing the technology. With the commercialization of 

the Windows operating system and the spread of the 

Unix/Linux operating system6, PCs came into use in the early 

1990s and transformed the landscape. The Distributed 

software systems were built on commodity PC hardware; they 

used limited computer and memory and were able to build 

software systems using programming languages such as C, 

C++, Java7, etc. that catered to various affordable business 

needs. This democratization of PCs led to the rise of 

distributed computing. While distributed software systems 

catered to the needs of many different businesses and 

essentially created a more intuitive and user-friendly 

experience that is not just limited to computer scientists, it 

created an enormous need to connect these systems for the 

exchange of data that could elevate the experiences of the users 

in many ways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 A logical diagram differentiating a monolithic system from a distributed system 

 

3. Client-Server Programming8 
In Mainframes, with the proliferation of the use of 

computers beyond the computation of general ledgers and 

reconciliation purposes, financial institutions were eager to 

make the use of computers ubiquitous. They wanted Bank 

tellers to use the computers, but there was a problem. Bank 

tellers working for banks are often non-technical people and 

cannot be expected to interact with computers as scientists or 

researchers would do. For this use case, IBM introduced 

Terminals; Terminals (Clients) were lighter interfaces that 

allowed the mainframe IT systems to capture data and respond 

to commands while Servers would process the command and 

respond to the terminals. Thus, Client-Server Programming 

was introduced. Although this is not a decoupling of systems 

by any means, this was the first step that got people to believe 

that multiple computers serving the same or different purposes 

can possibly be orchestrated to drive greater value. 

 

4. Distributed Architectures 
Mainframe applications are monolithic systems. They are 

big applications written in CICS or COBOL. These systems 

would have the business logic and data closely knit together. It 

had all the systems, including the database, sometimes 

embedded into the same physical hardware or co-located and 

tightly coupled. The tight coupling had some advantages. 

Because the hardware was co-located, it had very low latency 

and so was able to support a high volume of transactions 

despite relatively low compute and memory as we have now-

Mainframe 

Monolithic System 

Web server SQL Database 

view 

Distributed System 



Prasenjit Banerjee / IJCTT, 72(3), 37-45, 2024 

 

39 

a-days. But because everything was closely packed, it had 

several disadvantages. It was limited in scope as it was not able 

to integrate with low-cost PCs seamlessly, so affordability was 

low. It was very specifically tied to a single vendor, and so had 

the vendor lock-in and all the disadvantages of a market when 

dealing with a monopoly business. To break free, distributed 

computing showed the light, and Distributed architecture 

evolved to show the way. Distributed architecture is a lightly 

coupled architecture that allows computers serving different 

functions to be logically and physically separated from each 

other and communicate over common networking protocols 

such as TCP/IP9.  

 

5. MVC Architecture 
The 3-tier architecture became popular and came to be 

known as the MVC architecture or Model-View-Controller 

(MVC) Architecture10.  In MVC architecture, there is a model, 

which is a representation of an entity. Referring to our 

example, the model is the entity which represents the 

customer. Now the attributes of the customer describe the 

model. So, the name, address, phone number, email, etc., are 

all the attributes of the customer entity. Likewise, there will be 

several entities that will define the models to be used in the 

application. Usually, the database to persist customer 

information is a replication of the model in a tabular format 

that helps to store that information. Next is the View, which is 

the user interface. Usually, in any application, there is a user 

interface for each channel of experience, so websites for 

browsers, mobile apps for Mobile, Point of Sales (POS) 

devices for point of sales and so on.  Controller is the 

component that resembles the Server of the client-server 

programming. It was a module with all the business logic; it 

would process the commands/ requests coming from the 

views, and it would structure the information that can be 

contained in the model and send it back. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2 A logical diagram with the flow of control in MVC Architecture 

 

6. Evolution of Distributed Systems 
With the proliferation of distributed computer systems, 

the need to connect these systems to exchange data and 

business logic soon became apparent. But there was a 

challenge. These distributed systems are built in different 

technology stacks and so some common protocols had to be 

established to connect these systems directly. Remote 

procedure call (RPC) was one of the technologies that is 

heavily used even today to communicate from one system to 

another. However, the proliferation of the internet, which was 

largely an outcome of distributed architecture, brought us a 

host of different technology stacks and a myriad of different 

approaches to connecting systems.  

 

6.1. The Evolution of Middleware 

After The first generation of middleware systems was 

conceptualized as sending and receiving packets of 

information to and from different systems; these could be 

unicast or multicast. Messages. Unicast is analogous to a term 

we use nowadays called point-to-point and Multicast is 

analogous to a concept called Broadcast. This architecture was 

called Message Oriented Middleware (MOM)11. WebSphere 

(later brought by IBM) were the first to commercialize these 

as products.  

 

7. Message Broker Architecture12 
With several systems trying to communicate with each 

other, directly connecting these systems created a spaghetti 

mesh over time. Plus, there was no control over the traffic 

volume. So, it could be easily possible for one system to 

initiate too many requests to the other system, thereby causing 

the other system to become slow to process those messages and 

eventually unresponsive. Transactional consistency was also 

missing. Suppose multiple systems are directly reaching out to 

each other. In that case, it is possible that they are extracting 

the different states of the same transaction, and thereby, 

systems may not be in an eventually consistent state. So, it was 

important to have a central system, often called a message 

broker, that is responsible for channeling the messages to each 

system and will be responsible for the governance. This is also 

called the hub and the spoke model or later came to be known 

as the Enterprise Service Bus Architecture13. 

 

8. The Enterprise Service Bus (ESB) Pattern 
By this time, financial service companies have built out a 

plethora of applications, either procured or developed using 

open-source technologies that cater to a variety of needs. Other 

industry verticals are rapidly catching up with the commercial 

use of computers in their business beyond the research areas, 

given the gains in efficiency the financial companies were 

experiencing. There was a strong demand and market for 

standards for connecting these systems in a scalable way. IBM 

came up with a couple of different products to address the 

needs of the market. One was the WebSphere application 

server and the WebSphere Message Queue, popularly called 

IBM MQ. They allowed applications to serialised14 packets of 

information called messages that adhere to certain protocols. 

 

Model 

view Controller 

Model View Controller 

ARchitecture 



Prasenjit Banerjee / IJCTT, 72(3), 37-45, 2024 

 

40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Message broker architecture with 2 common patterns, the point-to-point and broadcast pattern 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Enterprise Service Bus pattern with distributed applications connecting to a common Service Bus for message transportation and routing. It 

allows for orchestration and transformation of messages as well 

 

The broker is the hub at the center and takes care of the 

distribution, retry, error handling and governance of these 

message exchanges between these systems. Distribution of 

these brokers was developed by open-source projects (the 

ActiveMQ from Apache software foundation) and became 

very popular in the use of commercial applications. (Figure 1) 

 

The centralization of the infrastructure served to avoid the 

spaghetti mess of interconnected systems and provided a 

structure. The centralization allowed for the reuse of those 

systems as necessary. For example, in our bank account 

opening example, the successful opening of the bank account 

can be broadcasted to a few downstream applications such as 

a) Issuance of the Debit card, b) sending a welcome email, c) 

sending an email to capture privacy policy and d) capturing 

communication and notification preferences. This could be 

achieved using a single flow instead of wiring out all the 

systems directly. 

 

As enterprises scaled the adoption of computer 

information systems, the number of systems and applications 

within a typical enterprise grew exponentially, and so did the 

Publisher 

Consumer 

Consumer 

Consumer 

Publisher Consumer 

Message broker 

Broadcast Pattern 

point-to-point 

Transformation discovery Security Service Locator 

Interceptors Messaging Protocol binding 

Java 

Java 

Enterprise Service Bus 



Prasenjit Banerjee / IJCTT, 72(3), 37-45, 2024 

 

41 

volume of messages and interactions. The word “Enterprise” 

in the enterprise service bus was taken too literally as large and 

complex organizations onboarded thousands of applications 

into their ESB systems, creating some scale challenges. Any 

downtime for these systems meant a significant business 

impact. Introducing changes, updates, or bug fixes into the 

message broker system was risky for the same reasons as 

downtime. There were cost implications of running such 

parallel systems for disaster recovery and high availability. 

The development of system integrations was deemed complex 

because of scaling challenges and inherent complexities 

associated with these systems. There was no good way to 

discover the capabilities already built, so although the 

technology supported high reuse, it was practically nonexistent 

as developers were not aware of them or they had difficulty 

aligning on Model attributes that allowed for reuse. 

 

9. Service Oriented Architecture 
In the late 1990s and the early 2000s, with the 

proliferation of the internet, HTML came into the forefront and 

TCP/IP became the standard of communication between 

distributed systems in the internet—the need to communicate 

externally. While ESB was widely embraced and was in full 

swing, there was an attempt to overcome some of the 

drawbacks of the ESB architecture pattern with an 

alternative—Service Oriented Architecture15 (SOA). SOA 

started on the fringe of ESB and is embraced into organizations 

typically as a supplement to an ESB architecture pattern rather 

than an alternative. So, while ESB was used to integrate 

different applications by the transfer of messages orchestrated 

through a common hub, SOA allowed exposing the 

functionalities of the applications as a service using a standard 

Interface.  

 

This was quite revolutionary. It allowed large enterprise 

applications, built-in whatever technology stack (Java, 

Microsoft .Net), to communicate with any other systems, built-

in some other technology stack, to communicate with each 

other using a standard protocol (usually SOAP) over the 

TCP/IP network. The Service Oriented Architecture came up 

with the concept of a registry of these Services, which would 

allow the services to be easily discovered from a centralized 

location. Universal Description, Discovery, and Integration 

(UDDI18) became the standard specification for describing and 

enlisting web services, built as part of the Service oriented 

architecture. Simple Object Access Protocol (SOAP) allowed 

the web services to publish a specification that other services 

or applications could use. While this was not designed to 

replace the ESB architecture pattern, it allowed greater 

adaptability and faster time to market and yet allowed for 

reuse, avoiding the hard wiring of interconnected applications. 

10. Rest APIS 
While SOAP services are still here, the industry swiftly 

adopted a lighter and easier approach to communicate over the 

web using the same HTTP protocol that is popularly used to 

communicate over the internet. REST web services16 are 

lightweight. Does not mandate a strict adherence to standards 

and specifications, although it is always good to have one. 

REST, because of its adherence to HTTP protocol, became 

popular very quickly and found wide adoption amongst 

Internet applications. Nowadays these web services are better 

known as Application Program Interface (APIs). 

 

11. Microservices Architecture 
As wide adoption of Information technology-enabled 

services became mainstream, there was an exponential growth 

of products and services available to all industries. Some were 

specifically catering to financial services, while others were 

cross cutting and applied to all industries. The heterogeneous 

growth of services challenged the large monolithic enterprise 

applications, which were coined legacy applications. Legacy 

applications have their share of challenges. It was difficult to 

keep pace with innovation, given the time it takes to make 

changes and test it rigorously to get it live. Also, the new set 

of technologies was built with the latest advancements in 

programming languages, considering the enhanced memory 

and computer of the 21st-century hardware. It was a little 

difficult for the legacy technologies to keep pace with them.   

 

Microservices17 architecture evolved as a popular choice. 

Microservices were first introduced by Netflix as the 

alternative technology that they were using to support their 

unusual business needs to be able to stream high-quality video 

over the internet that is catalogued and cached based on 

frequency. Microservices is about taking atomic 

functionalities and exposing them as lightweight Services. So, 

functionalities within the same applications can be exposed 

securely as services. These Services are then governed for 

security, throughput, etc., through a service proxy. (Istio or 

envoy).  

 

The benefit of this architecture is that it allows for 

independent development and deployment of services without 

touching the related services. It is easy to scale these services 

independently without scaling the whole ecosystem of 

applications. Service-to-service communication can be 

seamlessly achieved via APIs. Microservices follow a polyglot 

model, which means that each service can be developed in any 

technology stack. 

 

Microservices architecture took a big leap with the 

adoption of cloud technologies. Several organizations are on 

their path to migrate legacy monolithic applications to cloud 

and microservices architecture is widely adopted to be 

successful.  While microservices are the latest and most 

advanced approach that software development communities 

have to offer, it is important to understand that if the 

organization is not mature with its API management and 

governance or if they do not have robust CICD capabilities, 

they may face roadblocks for implementing microservices 

architecture. 



Prasenjit Banerjee / IJCTT, 72(3), 37-45, 2024 

 

42 

12. Event-Driven Architecture 
To complete the circle of evolution, at the start, we had 

message-oriented Middleware (MOM); this concept has made 

a comeback in a whole new way as event driven architecture. 

In Event Driven Architecture, we have the message producers, 

which produces 1 or more streams of events and the event 

consumers, who subscribe to these streams of events. 

Microservices and EDA work in tandem to deliver great 

scalable results.  

 
The best part of the event-driven architecture (EDA) is 

that they are asynchronous in nature. We have a lot of practical 

use cases which benefit from the asynchronous nature of the 

transaction. So, let’s go back to our example: if someone is 

successfully able to open a bank account, sending them a 

welcome email does not have to happen synchronously, 

meaning it can be delayed for a few minutes without much 

business impact. Such transactions may be decoupled from the 

original transaction that verifies the identity to open the bank 

account. The asynchronous nature of the transaction, or in 

other words, the ability to proceed without having to wait for 

a response, has helped achieve enormous scale and the ability 

to follow through with a better customer experience. 

 

13. System Integration 
While we now have many different choices for integrating 

systems, such as implementing an Enterprise Service Bus 

(ESB), Service Oriented Architecture (SOA), Microservices 

architecture or even an Event-driven architecture (EDA), it is 

important to understand how to evaluate them based on the 

objective metrics. In a large organization with many different 

lines of business that have grown organically or inorganically, 

it isn't easy to apply a one-size-fits-all model. There may 

already be a mix of all these architectures adopted based on the 

necessities or by business units based on their level of 

maturity. But, it is important to put things into perspective to 

understand what a better approach is and how an organization 

can approach it. 

 

 
Fig. 5 Proliferation of applications in delivering a complete 

customer experience 

 

We often see organizations hardwired systems directly, 

often under the pressure of completing the project faster. It is 

absolutely evident that while it gives slightly less turnaround 

time, it is not the right thing to do as it uses repetitive code, 

takes time, is fragile and increases technical debt. Over a 

period of time, these implementations become very complex 

and difficult to maintain. They are also not reusable, so 

anytime any 2 or more systems are integrated, the past 

integrations that have already been created of such systems are 

of no use. So, over a period, the time to deliver a project does 

not get any faster. 

 

 
Fig. 6 Point-to-point integration over time creates a spaghetti 

mess of a network that is difficult to maintain and hard to reuse 

 

There is nothing wrong with Implementing an ESB. But, 

implementing an ESB is complex, it takes time, and it is hard 

to maintain. ESB can also introduce a single point of failure, 

and modern distributed architectures may not find that 

favorable. 
 

Service Oriented Architectures (SOA) are typically 

implemented using synchronous SOAP APIs; this was a great 

advancement to expose web services over legacy monolithic 

systems but fell short in terms of Service discovery and the 

lightweight nature of its counterpart, REST APIs. 
 

REST APIs, Microservices and Event-Driven 

architectures are all very relevant to modern application 

development. However, careful considerations need to be 

given as to what is implemented where and how it is being 

implemented. 
 

Now that we have discussed the complete evolution of 

System Integration, it is important to understand how an 

organization can be successful in achieving its system 

Integration. A good understanding of these technologies is not 

sufficient to implement these technologies at scale. It is 

important to recognize that the right combination of people, 

processes and technology is important to meaningfully 

integrate the systems and unlock the value of all the underlying 

systems. Let us start backwards and look at what each element 

has to offer to build a composable enterprise with flexible 

integrations. 

 

14. The Technology Platform 
To create a business that can weather the effects of 

constant change, it is important that services are built as 



Prasenjit Banerjee / IJCTT, 72(3), 37-45, 2024 

 

43 

building blocks (as APIs or microservices as appropriate). 

However, they are easy to plug and unplug with other systems 

as necessary. Moreover, these connections are nimble and 

standardized over HTTP as much as feasible.  
 

These APIs or microservices can be synchronous or 

asynchronous in nature, depending on the nature of the 

business outcomes and priorities. Event-driven architecture 

can be built using Kafka, which in turn supports event 

streaming options.  These events-driven systems can be built 

as Async APIs. Decoupling the request and the response can 

help in scaling the service and elevate customer experience. 

 

The process plays a pivotal role in making this happen. It 

involves laying out a change management procedure that starts 

with business needs trickling down in the format of API 

specifications. The API specification documents the functions 

of the business services and models the attributes and the 

behavior. APIs are decoupled from the business process but 

are modelled around functionalities and an orchestration of 

APIs should help to accomplish business functions.  

 

The APIs designed must be published into a catalogue that 

is accessible to the entire organization. This will promote 

reuse. API specifications should allow mock testing for use 

case validation of new businesses. Once the APIs are 

developed in any technology platform of choice, they should 

be flexible to be deployed on any platform of choice. This 

could be on-premises or cloud. However, the design and 

development of APIs should not be an impending factor in the 

choice of deployment options. It should allow cloud native 

deployment by adhering to 12-factor standards. 

 
Fig. 6 A integration of systems using APIs as a building block of 

connectivity that allows for reuse 

 
Fig. 7 APIs can be classified as System, Process and Experience; System APIs allow connecting to systems, Process APIs allow for 

Orchestration and Experience APIs cater to the specific channel 

14.1. API Specification 

An API specification is usually written in a declarative 

language such as OAS 3.0, which is the de facto industry 

standard. API specification helps an API client, the user of the 

API, understand the API functions and attributes of the 

structure of the request and response. It also gives information 

about the publisher of the API, its security policies, etc. This 

type of document establishes the identity of the API and 

ensures trust. 



Prasenjit Banerjee / IJCTT, 72(3), 37-45, 2024 

 

44 

14. 2. API Management / API Governance 

It is important to establish the security and governance for 

every APIs. This is typically established via organizational 

policies and enforced with API management solutions 

available in the market or some open-source solutions such as 

Istio or Envoy. At an organizational level, these policies 

should define the security standards that are linked with the 

organization’s Identity management provider.  

 
Each APIs, based on their business needs, must fall into a 

throughput layer so that they are adequately resourced to serve. 

These SLA tiers would restrict the APIs to overwhelm the 

underlying systems of records that the APIs interact with in 

case of excessive traffic. 

 
If the APIs are deployed on-premises or cloud, they 

should be well guarded with perimeter security either by a 

(Web access firewall) WAF or Shielded via DDoS attacks.  

14. 3. API Discovery 

Every organization needs to make a conscious attempt to 

publish an API developer portal. This is nothing but a 

catalogue of all the published APIs within the organization. At 

the bare minimum, this API catalogue must be accessible to all 

the employees of the organization. This would democratize 

access to every employee and allow them to understand the 

API already available. If the use case allows for external 

collaboration, either the same or a separate instance of the API 

portal with a limited number of external-facing APIs must be 

exposed to the external world. 

 

15. A Composable Enterprise 
“A composable enterprise is an organization that delivers 

business outcomes and adapts to the pace of business change. 

It does this through the assembly and combination of packaged 

business capabilities (PBCs).” - Gartner. In today’s world, an 

average customer’s data transcends through 35 applications for 

any single business event or transaction. A typical mid-sized 

organization uses 935 different applications to store customer 

data or implement a business logic that is leveraged in some 

way or the other. – Forrester 

 
The idea of a composable enterprise does not have to start 

big. It can start from a single project a from a single business 

unit and can slowly expand after initial success or validation 

and slowly be adopted across the enterprise. It is not necessary 

nor required to align to a single technology stack. Integrations 

and APIs or microservices can be built on any technology 

stack.  

 
Moreover, last but most important are the people who can 

make this happen. Any organization, irrespective of its size 

and complexity, must have an API Strategy. The API strategy 

will not be the same for every enterprise. Every organization 

is on a path to digital transformation. Every organization has 

some technical debt that has been acquired either organically 

or inorganically.  

 

The API strategy will define the goals that the 

organization can set forth to achieve with an effective system 

integration. The API strategy goals will be achieved through 

an effective API Program. This API program is focused 

towards creating APIs as products, carefully curated and 

maintained and not created as project collaterals. Lastly, these 

APIs are owned by product owners, who design, secures, and 

maintain the product from abuse.

  

References 
[1] Michael Castelle, “Middleware’s Message: The Financial Technics of Codata,” Philosophy & Technology, vol. 34, pp. 33-55, 2011. 

[CrossRef] [Google Scholar] [Publisher Link] 

[2] Steve Vinoski, “An Overview of Middleware,” 9th Ada-Europe International Conference on Reliable Software Technologies, Palma de 

Mallorca, Spain, vol. 3063, pp. 35-51, 2004. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Aydin Rashidi, “Customer Relationship Management and its Use in Insurance Industry,” International Journal of Insurance, pp. 1-20, 

2012. [CrossRef] [Google Scholar] 

[4] Fikri Aydemir, and Fatih Başçiftçi, “Building a Performance Efficient Core Banking System Based on the Microservices Architecture,” 

Journal of Grid Computing, vol. 20, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Mohsen Mosleh, Kia Dalili, and Babak Heydari, “Distributed or Monolithic? A Computational Architecture Decision Framework,” IEEE 

Systems Journal, vol. 12, no. 1, pp. 125-136, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[6] N.H. Giri, V.N. Nandgaonkar, and Rahul Gosavi, “Virtual Operating System for Windows to Linux Migration,” 2017 International 

Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, pp. 2125-2127, 2017. [CrossRef] 

[Google Scholar] [Publisher Link] 

[7] Subarna Shakya et al., “Distributed High-Performance Computing Using JAVA,” 2017 International Conference on Computing, 

Communication and Automation (ICCCA), Greater Noida, India, pp. 742-747, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Rolou Lyn R. Maata et al., “Design and Implementation of Client-Server Based Application Using Socket Programming in a Distributed 

Computing Environment,” 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 

Coimbatore, India, pp. 1-4, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1007/s13347-019-00379-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Middleware%E2%80%99s+Message%3A+the+Financial+Technics+of+Codata+&btnG=
https://link.springer.com/article/10.1007/s13347-019-00379-2
https://doi.org/10.1007/b97913
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Overview+of+Middleware+-+Steve+Vinoski+Published+by+Springer&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-24841-5_3
http://dx.doi.org/10.13140/RG.2.1.1874.9288
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Customer+Relationship+Management+and+its+use+in+Insurance+Industry&btnG=
https://doi.org/10.1007/s10723-022-09624-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Building+a+Performance+Efficient+Core+Banking+System+Based+on+the+Microservices+Architecture+&btnG=
https://link.springer.com/article/10.1007/s10723-022-09624-z
https://doi.org/10.1109/JSYST.2016.2594290
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distributed+or+Monolithic%3F+A+Computational+Architecture+Decision+Framework+&btnG=
https://ieeexplore.ieee.org/abstract/document/7539535
https://doi.org/10.1109/ICECDS.2017.8389825
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Virtual+operating+system+for+Windows+to+Linux+migration+&btnG=
https://ieeexplore.ieee.org/abstract/document/8389825
https://doi.org/10.1109/CCAA.2017.8229920
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distributed+high-performance+computing+using+JAVA&btnG=
https://ieeexplore.ieee.org/abstract/document/8229920
https://doi.org/10.1109/ICCIC.2017.8524573
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+Implementation+of+Client-Server+Based+Application+Using+Socket+Programming+in+a+Distributed+Computing+Environment+&btnG=
https://ieeexplore.ieee.org/abstract/document/8524573


Prasenjit Banerjee / IJCTT, 72(3), 37-45, 2024 

 

45 

[9] Hong RiLi, “Research and Application of TCP/IP Protocol in Embedded System,” 2011 IEEE 3rd International Conference on 

Communication Software and Networks, Xi'an, China, pp. 584-587, 2011. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Andreas Holzinger, Karl Heinz Struggl, and Matjaž DebevcApplying, “Model-View-Controller (MVC) in Design and Development of 

Information Systems: An Example of Smart Assistive Script Breakdown in an e-Business Application,” 2010 International Conference 

on e-Business (ICE-B), Athens, Greece, pp. 1-6, 2010. [Google Scholar] [Publisher Link] 

[11] Mohammad Kazem Haki, and Maia Wentland Forte, “A Service Oriented Enterprise Architecture Framework,” 2010 6th World Congress 

on Services, Miami, FL, USA, pp. 391-398, 2010. [CrossRef] [Google Scholar] [Publisher Link] 

[12] Guangxuan Chen et al., “Research of JMS-Based Message Oriented Middleware for Cluster,” 2013 International Conference on 

Computational and Information Sciences, Shiyang, China, pp. 1628-1631, 2013. [CrossRef] [Google Scholar] [Publisher Link 

[13] Hafiyyan Putra Pratama, Ary Setijadi Prihatmanto, and Agus Sukoco, “Implementation Messaging Broker Middleware for Architecture 

of Public Transportation Monitoring System,” 2020 6th International Conference on Interactive Digital Media (ICIDM), Bandung, 

Indonesia, pp. 1-5, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Min Luo, and Liang-Jie Zhang, “Practical SOA: Service Modeling, Enterprise Service Bus and Governance,” 2008 IEEE Congress on 

Services Part II (Services-2 2008), Beijing, China, pp. 13-14, 2008. [CrossRef] [Google Scholar] [Publisher Link] 

[15] Tobias Simon et al., “A Lightweight Message-Based Inter-Component Communication Infrastructure,” 2013 Fifth International 

Conference on Computational Intelligence, Communication Systems and Networks, Madrid, Spain, pp. 145-152, 2013. [CrossRef] [Google 

Scholar] [Publisher Link] 

[16] Ridhima Mishra et al., “Transition from Monolithic to Microservices Architecture: Need and Proposed Pipeline,” 2022 International 

Conference on Futuristic Technologies (INCOFT), Belgaum, India, pp. 1-6, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Mehdi Bahrami, and Wei-Peng Chen, “Composing Web API Specification from API Documentations through an Intelligent and 

Interactive Annotation Tool,” 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, pp. 4573-4578, 2019. 

[CrossRef] [Google Scholar] [Publisher Link] 

[18] Yongxin Feng, and Qin Li, “The Distributed UDDI System Model Based on Service-Oriented Architecture,” 2016 7th IEEE International 

Conference on Software Engineering and Service Science (ICSESS), Beijing, pp. 585-589, 2016. [CrossRef] [Google Scholar] [Publisher 

Link] 

[19] Ian Thomas Newcombe, “Mainframe Relevance in Modern IT: How a 50+ Year Old Computing Platform Can Still Play a Key Role in 

Today’s Businesses,” University of New Hampshire, Durham, pp. 1-44, 2016. [Google Scholar] [Publisher Link] 

[20] Campbell-Kelly Martin, and Daniel D. Garcia-Swartz, From Mainframes to Smartphones: A History of the International Computer 

Industry, Harvard University Press, pp. 1-220, 2015. [CrossRef] [Google Scholar] [Publisher Link] 

[21] Tasneem Salah et al., “The Evolution of Distributed Systems Towards Microservices Architecture,” 2016 11th International Conference 

for Internet Technology and Secured Transactions (ICITST), Barcelona, Spain, pp. 318-325, 2016. [CrossRef] [Google Scholar] [Publisher 

Link] 

[22] Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino, “An Analysis of Public REST Web Service APIs,” IEEE Transactions on 

Services Computing, vol. 14, no. 4, pp. 957-970, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[23] Dominic Lindsay et al., “The Evolution of Distributed Computing Systems: From Fundamental to New Frontiers,” Computing, vol. 103, 

pp. 1859-1878, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

 

https://doi.org/10.1109/ICCSN.2011.6014961
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+and+application+of+TCP%2FIP+protocol+in+embedded+system&btnG=
https://ieeexplore.ieee.org/abstract/document/6014961
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Applying+Model-View-Controller+%28MVC%29+in+design+and+development+of+information+systems%3A+An+example+of+smart+assistive+script+breakdown+in+an+e-Business+application+Andreas+Holzinger&btnG=
https://ieeexplore.ieee.org/abstract/document/5740449
https://doi.org/10.1109/SERVICES.2010.39
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Service+Oriented+Enterprise+Architecture+Framework+%28SOEAF%29&btnG=
https://ieeexplore.ieee.org/abstract/document/5577265
https://doi.org/10.1109/ICCIS.2013.426
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+of+JMS+based+message+oriented+middleware+for+cluster&btnG=
https://ieeexplore.ieee.org/abstract/document/6643344
https://ieeexplore.ieee.org/document/9339673/
https://ieeexplore.ieee.org/document/9339673/
https://doi.org/10.1109/ICIDM51048.2020.9339673
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementation+Messaging+Broker+Middleware+for+Architecture+of+Public+Transportation+Monitoring+System&btnG=
https://ieeexplore.ieee.org/abstract/document/9339673
https://doi.org/10.1109/SERVICES-2.2008.54
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Practical+SOA%3A+Service+Modeling%2C+Enterprise+Service+Bus+and+Governance+&btnG=
%5bCrossRef%5d%20%5bGoogle%20Scholar%5d%20%5bPublisher%20Link%5d
https://doi.org/10.1109/CICSYN.2013.18
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Lightweight+Message-Based+Inter-Component+Communication+Infrastructure+Tobias+Simon&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Lightweight+Message-Based+Inter-Component+Communication+Infrastructure+Tobias+Simon&btnG=
https://ieeexplore.ieee.org/abstract/document/6571357
https://doi.org/10.1109/INCOFT55651.2022.10094556
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Transition+from+Monolithic+to+Microservices+Architecture%3A+Need+and+proposed+pipeline&btnG=
https://ieeexplore.ieee.org/abstract/document/10094556
https://doi.org/10.1109/BigData47090.2019.9006355
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=WATAPI%3A+composing+web+API+specification+from+API+documentations+through+an+intelligent+and+interactive+annotation+tool&btnG=
https://ieeexplore.ieee.org/abstract/document/9006355
https://doi.org/10.1109/ICSESS.2016.7883138
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+distributed+UDDI+system+model+based+on+service-oriented+architecture+&btnG=
https://ieeexplore.ieee.org/abstract/document/7883138
https://ieeexplore.ieee.org/abstract/document/7883138
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mainframe+Relevance+in+Modern+IT%3A+How+a+50%2B+year+old+computing+platform+can+still+play+a+key+role+in+today%E2%80%99s+businesses+-+Ian+Thomas+NewcombeUniversity+of+New+Hampshire&btnG=
https://scholars.unh.edu/honors/266/
https://doi.org/10.4159/9780674286535
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=From+Mainframes+to+Smartphones%3A+A+History+of+the+International+Computer+Industry+&btnG=
https://www.degruyter.com/document/doi/10.4159/9780674286535/html
https://doi.org/10.1109/ICITST.2016.7856721
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+evolution+of+distributed+systems+towards+microservices+architecture&btnG=
https://ieeexplore.ieee.org/abstract/document/7856721
https://ieeexplore.ieee.org/abstract/document/7856721
https://doi.org/10.1109/TSC.2018.2847344
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Analysis+of+Public+REST+Web+Service+APIs&btnG=
https://ieeexplore.ieee.org/abstract/document/8385157
https://doi.org/10.1007/s00607-020-00900-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Customer+Relationship+Management+and+its+use+in+Insurance+Industry+-Aydin+Rashidi&btnG=
https://link.springer.com/article/10.1007/s00607-020-00900-y

