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Abstract - Deploying machine learning models for various analytics and data applications at an enterprise scale brings 

diverse challenges. This paper breaks down these challenges and details the critical MLOps antipatterns - the practices to 

avoid while deploying the machine learning models. Like design patterns formalize software engineering wisdom, antipatterns 

help us recognize and communicate problematic methodologies. Some of these antipatterns stem from technical errors, while 

others arise from a lack of understanding of the context of ML usage. This paper aims to facilitate better documentation, 

collaboration, and faster problem resolution by establishing a common language around these antipatterns. In addition to 

outlining the antipatterns, the study provides solutions and best practices and suggests a path to a more mature MLOps 

approach.
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1. Introduction 
While major advancements have been made in 

machine learning algorithms and models, significant gaps 

remain in managing operational complexities during real-

world deployment. Studies show that over 50% of ML 

projects never make it to production [1]. This reveals a 

critical research gap in frameworks holistically addressing 

model governance, monitoring, and refinement through 

the entire machine learning lifecycle [2]. This perspective 

has led to the emergence of MLOps (Machine Learning 

Operations), a field dedicated to managing the entire 

lifecycle of ML models - from deployment and 

performance monitoring to ensuring the stability of 

production systems. Our work addresses this gap by 

providing a broader investigation into antipatterns 

spanning data, model development, deployment oversight, 

and evolution. Before delving into the antipatterns and the 

best practices, the study summarizes the key components 

of MLOps, which start from data extraction and 

preparation, model development, model training, tuning 

and deployment, and using the model and monitoring its 

performance. 

 

 

Fig. 1 Different phases of an MLOps lifecycle 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
about:blank
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Antipatterns, much like design patterns in software 

engineering, provide a shared language to identify and 

communicate flawed practices. By recognizing and 

understanding antipatterns, ML teams can move beyond 

finger-pointing and work together to find effective 

solutions quickly. This work aligns with, yet complements, 

the efforts of [3], which explores MLOps through the 

concept of hidden technical debt. While [3] offers valuable 

software engineering insights, the authors take a broader 

view by focusing on data pipelines, the decision-making 

processes that rely on ML outputs, and the critical 

feedback loop that should be used to refine ML systems. 

Crucially, the study recognizes that the success of ML 

systems depends on multiple stakeholders, not just the ML 

developers.  

The key contributions of this paper are:  

● An Antipattern Vocabulary: it provides a list of 

antipatterns commonly encountered in ML pipelines, 

especially within financial analytics. While some of 

these may seem obvious after the fact, the authors 

believe that by formally documenting them, the study 

can foster a deeper understanding and improve the 

maturity of ML systems.  

● Enterprise-Scale MLOps Recommendations: the 

article offers practical recommendations for 

documenting and managing MLOps at scale. 

 

2. ANTIPATTERN: Disconnected 

Development and Operations 
2.1. Problem 

Data scientists develop models in isolated 

environments (e.g., laptops, notebooks) without 

collaboration with IT or operations. This leads to major 

challenges during production deployment due to 

compatibility, environment, and scalability issues. 

 
1.2. Bad Practice Example 

In this case, the data scientist is likely working in an 

isolated environment with specific library versions, 

hardware configurations, and dependencies. This model 

file, when handed off to production, can lead to 

compatibility and runtime issues. 

 

***************************************

***************************************

*********/ 

* Title: Xgboost in Python – Guide for Gradient 

Boosting 

* Author: Chauhan, G 

* Date: 2021 

* Availability: 

https://machinelearninghd.com/xgboost-in-python-

guide-for-gradient-boosting/ 

* 

***************************************

***************************************

*********/ 

# Data Scientist's development environment (e.g., local 

notebook) 

import pandas as pd 

import numpy as np 

import sklearn  

# ... Data loading, model development (not shown for 

brevity)  

# Save the model using pickle (or similar) 

import pickle 

with open("my_model.pkl", "wb") as f: 

 pickle.dump(model, f) 

1.3. Solution 

Foster DevOps principles in ML workflows. Use tools 

that bridge the gap between development and production 

using environment parity, version control for data and 

code, and standardized deployment processes. The image 

below illustrates the challenge and some possible solutions 

[4]: 

 

 
Fig. 2  Challenges and best practices in training ML model 

 

Below is the best practice where the dependencies are 

explicitly listed in their development environment. This 

helps bridge the gap towards the production environment. 

#Development with a requirements.txt file: 

pandas==1.3.0  # Use specific versions to match the 

production environment 

numpy==1.22.1 

scikit-learn==1.0.2 

#Containerization with a Dockerfile: 

#This Dockerfile defines a reproducible environment 

specifying the dependency #versions, base OS image, and 

runtime instructions. 

#Code snippet 

FROM python:3.9-slim  # Base image with Python 

WORKDIR /app  # Set the working directory 
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# Copy the dependency list to the container 

COPY requirements.txt requirements.txt   

# Install dependencies before adding the model code for 

efficiency 

RUN pip install -r requirements.txt    

# Copy the model training code to the container 

COPY train_model.py train_model.py   

# Define the command to execute to train the model 

CMD ["python", "train_model.py"] 

 

3. ANTIPATTERN: Manual Experimentation 

and Tracking 

3.1. Problem 

Relying on manual spreadsheets or inconsistent 

methods to track experiments, hyperparameters, model 

versions, and results. This makes it extremely difficult to 

reproduce results, compare model performance, and 

understand lineage. 

 

3.2. Bad Practice Example 

In this case, the data scientist is likely working in an 

isolated environment with specific library versions, 

hardware configurations, and dependencies. This model 

file, when handed off to production, can lead to 

compatibility and runtime issues. 

 

# ... train multiple models using a for loop, keeping track 

in a notebook or manually 

for learning_rate in [0.01, 0.05, 0.1]: 

for num_layers in [2, 3, 4]: 

 # ... train the model (code not shown) 

 # ... log the results manually to a spreadsheet or 

notebook  

3.3. Solution 

Adopt experiment-tracking tools that automatically log 

metadata, model artifacts, and performance metrics. 

Centralize and visualize results across teams to facilitate 

collaboration and rapid comparison. The diagram below 

illustrates the triggers that cause models to change, the 

antipattern to maintain those changes and the best practices 

[7].  

 

Below is an example of how to monitor metrics in 

mlflow.  
import mlflow 

# ... Within your model training function  

with mlflow.start_run():  

 mlflow.log_param("learning_rate", 

learning_rate) 

   mlflow.log_param("num_layers", num_layers) 

  # ... train the model (code not shown) 

  mlflow.log_metric("accuracy", accuracy) 

 
Fig. 3  Triggers that cause models to change and the corresponding 

best practices 

4. ANTIPATTERN: Lack of Security and 

Governance 

4.1. Problem 

Ignoring security best practices for sensitive data, 

model access, and change control. This can result in data 

breaches, unauthorized access, and model manipulation, 

leading to regulatory compliance issues. 

 

4.2. Bad Practice Example 

In this case, the data scientist is likely working in an 

isolated environment with specific library versions, 

hardware configurations, and dependencies. This model 

file, when handed off to production, can lead to 

compatibility and runtime issues. 

# ... Model training on a single machine 

# ... Access credentials are hardcoded in plain text 

import some_cloud_sdk 

client = some_cloud_sdk.Client("my_username", 

“my_password”)  

4.3. Solution 

Enforce strong authentication and authorization, 

implement role-based access control mechanisms, monitor 

model behavior for security anomalies, and regularly audit 

ML systems for vulnerabilities [7]. Create policies around 

data handling, model usage, and regulatory compliance. 

Some of the typical attacks on the machine learning 

models, along with the potential solutions, are listed  below 

[7]: 

 

4.3.1. Online Adversarial Attack 

Attacker changes the online continuous stream of 

training data. 

Best Practice: Data Versioning, Data Security controls 
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4.3.2. Distributed Denial of Service Attack 

The attacker disrupts model operations by sending 

complicated problems.  

 

Best Practice: A resilient production model service 

architecture can stand up to sudden spikes in service 

requests. 

 

4.3.3. Data Phishing Privacy Attack 

Hackers break confidentiality by reverse-engineering 

the datasets. 

Best Practice: Data Encryption, Data access controls, 

encrypted input and encrypted model exposed to the users. 
 

4.3.4. Adversarial Machine Learning Attack 

Attacker changes the input data 

 

Best Practice: Model Monitoring, Data and Model 

Access Controls, Addition of intentional noise in training. 

 

4.3.5. Data Poisoning Attack 

Attacker changes the training data 

 

Best Practice: Model Monitoring, Data and Model 

Access Controls, model drift controls. 

 

A good practice of using secrets management and 

environment variables is exemplified below: 

 

import os 

import some_cloud_sdk 

username = os.getenv('CLOUD_USERNAME') 

password = os.getenv('CLOUD_PASSWORD') 

client = some_cloud_sdk.Client(username, password)  

5. ANTIPATTERN: Ad-hoc Model 

Deployment and Monitoring 
5.1. Problem 

Deploying models in a haphazard manner without 

proper performance monitoring, health checks, or rollback 

procedures. This can cause downtime, unexpected 

behavior, and severe customer-facing issues. 

 

5.2. Bad Practice Example 

In this case, the data scientist is likely working in an 

isolated environment with specific library versions, 

hardware configurations, and dependencies. This model 

file, when handed off to production, can lead to 

compatibility and runtime issues. 

 

Below is a code example:  

# ... Manually copy the model to the production server over 

a file share 

# ... Spin up a custom Flask application on a dedicated 

server 

# ... No health checks or monitoring 

client = some_cloud_sdk.Client("my_username", "my 

password")  

5.3. Solution 

Establish a robust CI/CD (Continuous 

Integration/Continuous Delivery) pipeline for model 

deployment. Include automated testing, health checks, A/B 

testing, canary deployments, and rollback mechanisms to 

minimize disruptions and quickly revert to stable versions 

in case of problems. 

 

The table below illustrates some metrics to monitor 

and what actions to take [4]: 

Table 1. Metrics and actions for models 

What to monitor Actions to take 

Data Schema Variation Alert if input data schema 

mismatches with training 

data schema [4]. 

Whether the training and 

serving features compute 

the same value. 

Log a traffic sample. 

Calculate statistical 

metrics (min, max, avg. 

value, % of missing 

values, etc.) on training 

and sample features [4]. 

Numerical stability of the 

model. 

Alert for 

nulls/infinity/undefined 

[4]. 

Degradation of the 

predictive quality of the 

ML model. 

Measure statistical bias in 

predictions. 

Computational 

performance of an ML 

system. 

Measure the model 

performance, along with 

CPU memory utilization 

[4]. 

 

A code example for deployment is below:  

***********************************************

****************************************/ 

* Title: MLFlow Models 

* Availability: 

https://mlflow.org/docs/2.3.1/models.html 

***********************************************

****************************************/ 

# During Development 

import mlflow.pyfunc 
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mlflow.pyfunc.save_model(path="my_model", 

python_model=model)  

# Deployment using CI/CD process 

mlflow models serve -m ./my model -p 5001  # Serve 

model with API 

Example 2: monitoring using MLFlow : 

#setup 

conda env create --file conda.yaml 

conda activate mlflow-model-monitoring 

#train and register 2 models 

python custom_model_train.py 

#This will create two registered models: sklearn-monitor 

and sklearn-monitor-custom 

#start model server 

mlflow models serve --port 5002 --model-uri 

models:/sklearn-monitor/production 

#start proxy server 

python proxy_server.py --port 5001 --mlflow-model-

server-uri http://localhost:5002/invocations --log_dir out 

#The proxy server forwards the request to the actual model 

server and then logs the input and output data as a CSV 

file. 

#example predictions: 

curl -X POST \ 

  -H "accept: application/json" \ 

  -H "Content-Type:application/json" \ 

  -d '{ "columns": [ "alcohol", "chlorides", "citric acid", 

"density", "fixed acidity", 

                     "free sulfur dioxide", "pH", "residual sugar", 

"sulphates", 

                     "total sulfur dioxide", "volatile acidity" ], 

        "data": [[ 7,   0.27, 0.36, 20.7, 0.045, 45, 170, 1.001,  

3,    0.45,  8.8 ], 

 [ 6.3, 0.3,  0.34,  1.6, 0.049, 14, 132, 0.994,  3.3,  0.49,  

9.5 ] ] }' \ 

http://localhost:5001/invocations 

Each request for scoring will generate a CSV file 

containing the input data and the prediction. The following 

example shows data for three requests. The CSV file is 

written to the local directory specified in 

MLFLOW_MONITORING_DIR 

6. ANTIPATTERN: Lack of Ethical 

Considerations 
6.1. Problem 

Not actively considering the ethical implications, 

fairness, or bias present in data and models. This can lead 

to discriminatory outputs, reputational damage, and a loss 

of trust. The diagram below illustrates how bias in the 

models can prevail across the various MLops stages: 

 

6.2. Bad Practice Example 

In this case, the data scientist is likely working in an 

isolated environment with specific library versions, 

hardware configurations, and dependencies. This model 

file, when handed off to production, can lead to 

compatibility and runtime issues. 

# Training a model on a dataset that has potential biases 

or sensitive features 

# ... (Model training code that does not evaluate fairness or 

biases) 

6.3. Solution 

Incorporate fairness and explainability checks into the 

ML pipeline. Evaluate models on different demographic 

groups, monitor feedback and bias reports, and provide 

clear explanations as to how model outputs are generated 

to foster transparency and accountability.  
 

 
Fig. 4 Root cause and metrics to measure bias in data engineering 

phases of MLOps 

 
Fig. 5 Root cause and metrics to measure bias in machine learning 

phases of MLOps 

The code example below uses SHAP-  Shapley 

Additive Explanations to identify the weighting of the 

features on the label, explain the reasoning behind the 

prediction, and enhance the mode explainability. [7]

http://localhost:5001/invocations
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***************************************

***************************************

*********/ 

* Title: Shapley Additive Explanations: Unveiling 

the Black Box of Machine Learning 

* Author: Gomede, E 

* Date: 2023 

* Availability: 

https://medium.com/@evertongomede/shapley-additive-

explanations-unveiling-the-black-box-of-machine-

learning-477ba01ffa07 

* 

***************************************

***************************************

*********/ 
import shap 

import numpy as np 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

# Generate synthetic data for demonstration purposes 

np.random.seed(0) 

X, y = shap.datasets.adult() 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, random_state=42) 

# Train a simple model (Random Forest Classifier) 

model = RandomForestClassifier(n_estimators=100, 

random_state=42) 

model.fit(X_train, y_train) 

# Create an explainer object 

explainer = shap.Explainer(model, X_train) 

# Calculate SHAP values for a single instance (e.g., the 

first instance in the test set) 

sample_idx = 0 

shap_values = 

explainer.shap_values(X_test.iloc[sample_idx, :]) 

# Calculate SHAP values for the entire test set 

shap_values_all = explainer.shap_values(X_test) 

# Visualize a summary plot for the entire test set 

shap.summary_plot(shap_values_all, X_test, 

feature_names=X.columns) 

# You can also visualize individual predictions 

shap.initjs() 

shap.force_plot(explainer.expected_value[1], 

shap_values_all[1][sample_idx], X_test.iloc[sample_idx, 

:]) 

7. ANTIPATTERN:  Lack of Data Versioning 
7.1. Problem 

Using static datasets without tracking changes or not 

thoroughly validating data quality before model training. 

This leads to data drift, model performance degradation, 

and unexpected outcomes in production. 

 

7.2. Bad Practice Example 

In the example below, a static file is being used 

without any versioning:  

 

***************************************

***************************************

*********/ 

* Title: How to Create a Machine Learning Model 

in Python for Sales Prediction 

* Author: Pandata 

* Date: 2023 

* Availability: https://anello.substack.com/p/how-

to-create-a-machine-learning 

* 

***************************************

***************************************

*********/ 
 

import pandas as pd 

# Load data from a CSV file without any versioning  

data = pd.read_csv("data/customer_data.csv") 

# ... perform data cleaning and training (not shown) 

7.3. Solution 

Implement rigorous data versioning and quality 

control mechanisms. Track the evolution of data, identify 

schema changes, and maintain a history of 

transformations—automate data quality checks to ensure 

consistency and catch anomalies early in production. 
 

Below is an example of using data versioning:  

import pandas as pd 

import dvc.api 

# Retrieve the specific version of the data using DVC 

with dvc.api.open( 

        'data/customer_data.csv', 

        repo='<your_repo_location>',  # Could be a remote 

repository 
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        rev='<version_tag_or_hash>'    

) as fd: 

    df = pd.read_csv(fd) 

8. Conclusion 

MLOps is important for managing and maintaining 

machine learning models in real-world applications. By 

establishing the best practices and tools within the CI/CD 

(Continuous Integration/Continuous Delivery) 

environment, MLOps aims to prevent 'technical debt' and 

ensure the smooth integration and deployment of ML 

models alongside other software components.  

 

The fundamental tenets of MLOps include iterative 

development, automation, versioning, testing, 

reproducibility, and continuous monitoring to accelerate 

ML adoption and deliver intelligent software efficiently.
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