
 International Journal of Computer Trends and Technology Volume 72 Issue 2, 9-15, February 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I2P102 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

MLOps Antipatterns and Mitigation Approaches

Ankit Virmani1, Manoj Kuppam2

1AI Advisor, Virufy Inc.,
2Site Reliability lead, Medline Industries.

1Corresponding Author : nktvirmani@gmail.com

Received: 15 December 2023 Revised: 21 January 2024 Accepted: 05 February 2024 Published: 19 February 2024

Abstract - Deploying machine learning models for various analytics and data applications at an enterprise scale brings

diverse challenges. This paper breaks down these challenges and details the critical MLOps antipatterns - the practices to

avoid while deploying the machine learning models. Like design patterns formalize software engineering wisdom, antipatterns

help us recognize and communicate problematic methodologies. Some of these antipatterns stem from technical errors, while

others arise from a lack of understanding of the context of ML usage. This paper aims to facilitate better documentation,

collaboration, and faster problem resolution by establishing a common language around these antipatterns. In addition to

outlining the antipatterns, the study provides solutions and best practices and suggests a path to a more mature MLOps

approach.

Keywords - MLOps, Python, Security, Data, Deployment, DevOps.

1. Introduction
While major advancements have been made in

machine learning algorithms and models, significant gaps

remain in managing operational complexities during real-

world deployment. Studies show that over 50% of ML

projects never make it to production [1]. This reveals a

critical research gap in frameworks holistically addressing

model governance, monitoring, and refinement through

the entire machine learning lifecycle [2]. This perspective

has led to the emergence of MLOps (Machine Learning

Operations), a field dedicated to managing the entire

lifecycle of ML models - from deployment and

performance monitoring to ensuring the stability of

production systems. Our work addresses this gap by

providing a broader investigation into antipatterns

spanning data, model development, deployment oversight,

and evolution. Before delving into the antipatterns and the

best practices, the study summarizes the key components

of MLOps, which start from data extraction and

preparation, model development, model training, tuning

and deployment, and using the model and monitoring its

performance.

Fig. 1 Different phases of an MLOps lifecycle

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
about:blank

Ankit Virmani & Manoj Kuppam / IJCTT, 72(2), 9-15, 2024

10

Antipatterns, much like design patterns in software

engineering, provide a shared language to identify and

communicate flawed practices. By recognizing and

understanding antipatterns, ML teams can move beyond

finger-pointing and work together to find effective

solutions quickly. This work aligns with, yet complements,

the efforts of [3], which explores MLOps through the

concept of hidden technical debt. While [3] offers valuable

software engineering insights, the authors take a broader

view by focusing on data pipelines, the decision-making

processes that rely on ML outputs, and the critical

feedback loop that should be used to refine ML systems.

Crucially, the study recognizes that the success of ML

systems depends on multiple stakeholders, not just the ML

developers.

The key contributions of this paper are:

● An Antipattern Vocabulary: it provides a list of

antipatterns commonly encountered in ML pipelines,

especially within financial analytics. While some of

these may seem obvious after the fact, the authors

believe that by formally documenting them, the study

can foster a deeper understanding and improve the

maturity of ML systems.

● Enterprise-Scale MLOps Recommendations: the

article offers practical recommendations for

documenting and managing MLOps at scale.

2. ANTIPATTERN: Disconnected

Development and Operations
2.1. Problem

Data scientists develop models in isolated

environments (e.g., laptops, notebooks) without

collaboration with IT or operations. This leads to major

challenges during production deployment due to

compatibility, environment, and scalability issues.

1.2. Bad Practice Example

In this case, the data scientist is likely working in an

isolated environment with specific library versions,

hardware configurations, and dependencies. This model

file, when handed off to production, can lead to

compatibility and runtime issues.

*********/

* Title: Xgboost in Python – Guide for Gradient

Boosting

* Author: Chauhan, G

* Date: 2021

* Availability:

https://machinelearninghd.com/xgboost-in-python-

guide-for-gradient-boosting/

*

*********/

Data Scientist's development environment (e.g., local

notebook)

import pandas as pd

import numpy as np

import sklearn

... Data loading, model development (not shown for

brevity)

Save the model using pickle (or similar)

import pickle

with open("my_model.pkl", "wb") as f:

 pickle.dump(model, f)

1.3. Solution

Foster DevOps principles in ML workflows. Use tools

that bridge the gap between development and production

using environment parity, version control for data and

code, and standardized deployment processes. The image

below illustrates the challenge and some possible solutions

[4]:

Fig. 2 Challenges and best practices in training ML model

Below is the best practice where the dependencies are

explicitly listed in their development environment. This

helps bridge the gap towards the production environment.

#Development with a requirements.txt file:

pandas==1.3.0 # Use specific versions to match the

production environment

numpy==1.22.1

scikit-learn==1.0.2

#Containerization with a Dockerfile:

#This Dockerfile defines a reproducible environment

specifying the dependency #versions, base OS image, and

runtime instructions.

#Code snippet

FROM python:3.9-slim # Base image with Python

WORKDIR /app # Set the working directory

Ankit Virmani & Manoj Kuppam / IJCTT, 72(2), 9-15, 2024

11

Copy the dependency list to the container

COPY requirements.txt requirements.txt

Install dependencies before adding the model code for

efficiency

RUN pip install -r requirements.txt

Copy the model training code to the container

COPY train_model.py train_model.py

Define the command to execute to train the model

CMD ["python", "train_model.py"]

3. ANTIPATTERN: Manual Experimentation

and Tracking

3.1. Problem

Relying on manual spreadsheets or inconsistent

methods to track experiments, hyperparameters, model

versions, and results. This makes it extremely difficult to

reproduce results, compare model performance, and

understand lineage.

3.2. Bad Practice Example

In this case, the data scientist is likely working in an

isolated environment with specific library versions,

hardware configurations, and dependencies. This model

file, when handed off to production, can lead to

compatibility and runtime issues.

... train multiple models using a for loop, keeping track

in a notebook or manually

for learning_rate in [0.01, 0.05, 0.1]:

for num_layers in [2, 3, 4]:

 # ... train the model (code not shown)

 # ... log the results manually to a spreadsheet or

notebook

3.3. Solution

Adopt experiment-tracking tools that automatically log

metadata, model artifacts, and performance metrics.

Centralize and visualize results across teams to facilitate

collaboration and rapid comparison. The diagram below

illustrates the triggers that cause models to change, the

antipattern to maintain those changes and the best practices

[7].

Below is an example of how to monitor metrics in

mlflow.
import mlflow

... Within your model training function

with mlflow.start_run():

 mlflow.log_param("learning_rate",

learning_rate)

 mlflow.log_param("num_layers", num_layers)

 # ... train the model (code not shown)

 mlflow.log_metric("accuracy", accuracy)

Fig. 3 Triggers that cause models to change and the corresponding

best practices

4. ANTIPATTERN: Lack of Security and

Governance

4.1. Problem

Ignoring security best practices for sensitive data,

model access, and change control. This can result in data

breaches, unauthorized access, and model manipulation,

leading to regulatory compliance issues.

4.2. Bad Practice Example

In this case, the data scientist is likely working in an

isolated environment with specific library versions,

hardware configurations, and dependencies. This model

file, when handed off to production, can lead to

compatibility and runtime issues.

... Model training on a single machine

... Access credentials are hardcoded in plain text

import some_cloud_sdk

client = some_cloud_sdk.Client("my_username",

“my_password”)

4.3. Solution

Enforce strong authentication and authorization,

implement role-based access control mechanisms, monitor

model behavior for security anomalies, and regularly audit

ML systems for vulnerabilities [7]. Create policies around

data handling, model usage, and regulatory compliance.

Some of the typical attacks on the machine learning

models, along with the potential solutions, are listed below

[7]:

4.3.1. Online Adversarial Attack

Attacker changes the online continuous stream of

training data.

Best Practice: Data Versioning, Data Security controls

Ankit Virmani & Manoj Kuppam / IJCTT, 72(2), 9-15, 2024

12

4.3.2. Distributed Denial of Service Attack

The attacker disrupts model operations by sending

complicated problems.

Best Practice: A resilient production model service

architecture can stand up to sudden spikes in service

requests.

4.3.3. Data Phishing Privacy Attack

Hackers break confidentiality by reverse-engineering

the datasets.

Best Practice: Data Encryption, Data access controls,

encrypted input and encrypted model exposed to the users.

4.3.4. Adversarial Machine Learning Attack

Attacker changes the input data

Best Practice: Model Monitoring, Data and Model

Access Controls, Addition of intentional noise in training.

4.3.5. Data Poisoning Attack

Attacker changes the training data

Best Practice: Model Monitoring, Data and Model

Access Controls, model drift controls.

A good practice of using secrets management and

environment variables is exemplified below:

import os

import some_cloud_sdk

username = os.getenv('CLOUD_USERNAME')

password = os.getenv('CLOUD_PASSWORD')

client = some_cloud_sdk.Client(username, password)

5. ANTIPATTERN: Ad-hoc Model

Deployment and Monitoring
5.1. Problem

Deploying models in a haphazard manner without

proper performance monitoring, health checks, or rollback

procedures. This can cause downtime, unexpected

behavior, and severe customer-facing issues.

5.2. Bad Practice Example

In this case, the data scientist is likely working in an

isolated environment with specific library versions,

hardware configurations, and dependencies. This model

file, when handed off to production, can lead to

compatibility and runtime issues.

Below is a code example:

... Manually copy the model to the production server over

a file share

... Spin up a custom Flask application on a dedicated

server

... No health checks or monitoring

client = some_cloud_sdk.Client("my_username", "my

password")

5.3. Solution

Establish a robust CI/CD (Continuous

Integration/Continuous Delivery) pipeline for model

deployment. Include automated testing, health checks, A/B

testing, canary deployments, and rollback mechanisms to

minimize disruptions and quickly revert to stable versions

in case of problems.

The table below illustrates some metrics to monitor

and what actions to take [4]:

Table 1. Metrics and actions for models

What to monitor Actions to take

Data Schema Variation Alert if input data schema

mismatches with training

data schema [4].

Whether the training and

serving features compute

the same value.

Log a traffic sample.

Calculate statistical

metrics (min, max, avg.

value, % of missing

values, etc.) on training

and sample features [4].

Numerical stability of the

model.

Alert for

nulls/infinity/undefined

[4].

Degradation of the

predictive quality of the

ML model.

Measure statistical bias in

predictions.

Computational

performance of an ML

system.

Measure the model

performance, along with

CPU memory utilization

[4].

A code example for deployment is below:

**/

* Title: MLFlow Models

* Availability:

https://mlflow.org/docs/2.3.1/models.html

**/

During Development

import mlflow.pyfunc

Ankit Virmani & Manoj Kuppam / IJCTT, 72(2), 9-15, 2024

13

mlflow.pyfunc.save_model(path="my_model",

python_model=model)

Deployment using CI/CD process

mlflow models serve -m ./my model -p 5001 # Serve

model with API

Example 2: monitoring using MLFlow :

#setup

conda env create --file conda.yaml

conda activate mlflow-model-monitoring

#train and register 2 models

python custom_model_train.py

#This will create two registered models: sklearn-monitor

and sklearn-monitor-custom

#start model server

mlflow models serve --port 5002 --model-uri

models:/sklearn-monitor/production

#start proxy server

python proxy_server.py --port 5001 --mlflow-model-

server-uri http://localhost:5002/invocations --log_dir out

#The proxy server forwards the request to the actual model

server and then logs the input and output data as a CSV

file.

#example predictions:

curl -X POST \

 -H "accept: application/json" \

 -H "Content-Type:application/json" \

 -d '{ "columns": ["alcohol", "chlorides", "citric acid",

"density", "fixed acidity",

 "free sulfur dioxide", "pH", "residual sugar",

"sulphates",

 "total sulfur dioxide", "volatile acidity"],

 "data": [[7, 0.27, 0.36, 20.7, 0.045, 45, 170, 1.001,

3, 0.45, 8.8],

 [6.3, 0.3, 0.34, 1.6, 0.049, 14, 132, 0.994, 3.3, 0.49,

9.5]] }' \

http://localhost:5001/invocations

Each request for scoring will generate a CSV file

containing the input data and the prediction. The following

example shows data for three requests. The CSV file is

written to the local directory specified in

MLFLOW_MONITORING_DIR

6. ANTIPATTERN: Lack of Ethical

Considerations
6.1. Problem

Not actively considering the ethical implications,

fairness, or bias present in data and models. This can lead

to discriminatory outputs, reputational damage, and a loss

of trust. The diagram below illustrates how bias in the

models can prevail across the various MLops stages:

6.2. Bad Practice Example

In this case, the data scientist is likely working in an

isolated environment with specific library versions,

hardware configurations, and dependencies. This model

file, when handed off to production, can lead to

compatibility and runtime issues.

Training a model on a dataset that has potential biases

or sensitive features

... (Model training code that does not evaluate fairness or

biases)

6.3. Solution

Incorporate fairness and explainability checks into the

ML pipeline. Evaluate models on different demographic

groups, monitor feedback and bias reports, and provide

clear explanations as to how model outputs are generated

to foster transparency and accountability.

Fig. 4 Root cause and metrics to measure bias in data engineering

phases of MLOps

Fig. 5 Root cause and metrics to measure bias in machine learning

phases of MLOps

The code example below uses SHAP- Shapley

Additive Explanations to identify the weighting of the

features on the label, explain the reasoning behind the

prediction, and enhance the mode explainability. [7]

http://localhost:5001/invocations

Ankit Virmani & Manoj Kuppam / IJCTT, 72(2), 9-15, 2024

14

*********/

* Title: Shapley Additive Explanations: Unveiling

the Black Box of Machine Learning

* Author: Gomede, E

* Date: 2023

* Availability:

https://medium.com/@evertongomede/shapley-additive-

explanations-unveiling-the-black-box-of-machine-

learning-477ba01ffa07

*

*********/
import shap

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

Generate synthetic data for demonstration purposes

np.random.seed(0)

X, y = shap.datasets.adult()

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

Train a simple model (Random Forest Classifier)

model = RandomForestClassifier(n_estimators=100,

random_state=42)

model.fit(X_train, y_train)

Create an explainer object

explainer = shap.Explainer(model, X_train)

Calculate SHAP values for a single instance (e.g., the

first instance in the test set)

sample_idx = 0

shap_values =

explainer.shap_values(X_test.iloc[sample_idx, :])

Calculate SHAP values for the entire test set

shap_values_all = explainer.shap_values(X_test)

Visualize a summary plot for the entire test set

shap.summary_plot(shap_values_all, X_test,

feature_names=X.columns)

You can also visualize individual predictions

shap.initjs()

shap.force_plot(explainer.expected_value[1],

shap_values_all[1][sample_idx], X_test.iloc[sample_idx,

:])

7. ANTIPATTERN: Lack of Data Versioning
7.1. Problem

Using static datasets without tracking changes or not

thoroughly validating data quality before model training.

This leads to data drift, model performance degradation,

and unexpected outcomes in production.

7.2. Bad Practice Example

In the example below, a static file is being used

without any versioning:

*********/

* Title: How to Create a Machine Learning Model

in Python for Sales Prediction

* Author: Pandata

* Date: 2023

* Availability: https://anello.substack.com/p/how-

to-create-a-machine-learning

*

*********/

import pandas as pd

Load data from a CSV file without any versioning

data = pd.read_csv("data/customer_data.csv")

... perform data cleaning and training (not shown)

7.3. Solution

Implement rigorous data versioning and quality

control mechanisms. Track the evolution of data, identify

schema changes, and maintain a history of

transformations—automate data quality checks to ensure

consistency and catch anomalies early in production.

Below is an example of using data versioning:

import pandas as pd

import dvc.api

Retrieve the specific version of the data using DVC

with dvc.api.open(

 'data/customer_data.csv',

 repo='<your_repo_location>', # Could be a remote

repository

Ankit Virmani & Manoj Kuppam / IJCTT, 72(2), 9-15, 2024

15

 rev='<version_tag_or_hash>'

) as fd:

 df = pd.read_csv(fd)

8. Conclusion

MLOps is important for managing and maintaining

machine learning models in real-world applications. By

establishing the best practices and tools within the CI/CD

(Continuous Integration/Continuous Delivery)

environment, MLOps aims to prevent 'technical debt' and

ensure the smooth integration and deployment of ML

models alongside other software components.

The fundamental tenets of MLOps include iterative

development, automation, versioning, testing,

reproducibility, and continuous monitoring to accelerate

ML adoption and deliver intelligent software efficiently.

References
[1] Jaime Hampton, Half of AI Models Never Make It To Production: Gartner, Datanami.com, 2022. [Online]. Available:

https://www.datanami.com/2022/08/22/half-of-ai-models-never-make-it-to-production-gartner/

[2] A. Kumar, S. Gupta, and P. Rai, “Explainable AI in Practice: From Academia to Industry,” Proceedings of the ACM India Joint

International Conference on Data Science and Management of Data, pp. 17-26, 2021.

[3] D. Sculley et al., “Hidden Technical Debt in Machine Learning Systems,” NIPS'15: Proceedings of the 28th International

Conference on Neural Information Processing Systems, vol. 2, pp. 2503-2511, 2015. [Google Scholar] [Publisher Link]

[4] Larysa Visengeriyeva et al., MLOps Principles, Web.Archive.org. [Online]. Available:

https://web.archive.org/web/20210620182858/https:/ml-ops.org/content/mlops-principles

[5] ML Model Security – Preventing the 6 Most Common Attacks, Excella, 2021. [Online]. Available:

https://www.excella.com/insights/ml-model-security-preventing-the-6-most-common-attacks

[6] Vitomir Jovanović, Mlflow-Model-Monitoring, Dev Genius, 2022. [Online]. Available: https://blog.devgenius.io/mlflow-for-

model-monitoring-cb8b2177b67a

[7] Everton Gomede, Shapley Additive Explanations: Unveiling the Black Box of Machine Learning, Medium, 2023. [Online].

Available: https://medium.com/@evertongomede/shapley-additive-explanations-unveiling-the-black-box-of-machine-learning-

477ba01ffa07

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hidden+Technical+Debt+in+Machine+Learning+Systems&btnG=
https://dl.acm.org/doi/10.5555/2969442.2969519

