
International Journal of Computer Trends and Technology Volume 72 Issue 11, 220-227, November 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I11P123 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Modern API Design: AI-First Architecture, Event-Driven

Patterns, and Zero-Trust Security

Ganapathy Subramanian Ramachandran

Professional in Cloud Computing, Networking, and Security, California, USA.

Corresponding Author : ganapathys.ramachandran@gmail.com

Received: 09 October 2024 Revised: 10 November 2024 Accepted: 26 November 2024 Published: 30 November 2024

Abstract - This paper presents a comprehensive framework for modern API design that addresses the challenges of integrating

machine learning operations into traditional and contemporary API architectures. The proposed approach combines three key

elements: an AI-first architecture design for efficient vector operations and model serving capabilities alongside traditional data

operations, event-driven patterns that enhance ML workflows and standard request-response interactions, and zero-trust security

principles adaptable to both ML workloads and conventional API usage. The research demonstrates how these architectural

patterns can be effectively implemented to create APIs that support traditional web services and modern computational workload

operations while maintaining system scalability, security, and performance.

Keywords - Event-driven architecture, Zero-trust security, AI integration, Feature store, Model serving, Vector operations,

Distributed systems, Scalable systems, Edge computing, Real-time processing, Batch processing, Stream processing, Continuous

authentication, Context-aware security, ML model security, AI-first design, Edge AI, Federated learning, Scalability, High

throughput, Low latency.

1. Introduction
Over the years, developers have relied heavily on

traditional API approaches, such as REST, GraphQL, and

RPC, to power web services. However, as applications

become more data-intensive and complex, conventional

methods show their limitations [1]. Three main challenges

have become particularly apparent when building modern

applications: First, complex data operations and high-

performance computing present unique challenges that

traditional APIs struggle to address [2]. The computational

complexity of similarity searches across high-dimensional

vectors and requirements for efficient data processing demand

specialized processing pipelines beyond simple data retrieval

and storage [3,4]. Second, real-time data processing and

analysis pose significant architectural challenges. Traditional

APIs, designed for simple data retrieval and storage, need

more infrastructure for complex computations and real-time

processing [5].

The complexity of modern computational workflows

introduces new challenges in infrastructure design and scaling

[6]. Third, streaming data processing capabilities in traditional

APIs are limited by their request-response nature [7]. Modern

distributed applications require continuous data streams for

real-time processing and analytics, a challenge that traditional

request-response patterns need help to address efficiently [8].

Transitioning from synchronous to asynchronous patterns has

become crucial for high-performance systems, particularly for

handling continuous data streams and long-running

computations [9]. This paper presents a comprehensive

framework that addresses these challenges through three

principles across different API styles: (1) a next-generation

architecture design optimized for high-dimensional data

operations and efficient processing, (2) event-driven patterns

that enable efficient real-time processing and state

management, and (3) a zero-trust security framework for

modern distributed systems. The proposed approach integrates

these elements to create a robust foundation for building

secure, scalable, and efficient APIs.

2. Literature Review and Industry State
API architectures have evolved significantly over time.

While REST APIs, first described in Fielding's dissertation

[10], created the basis for modern web services, they face new

limitations as AI workloads grow. Leading tech companies

have tackled these challenges through innovative solutions:

Google developed gRPC to enhance streaming capabilities

through Protocol Buffers. At the same time, Netflix created

Falcor to optimize data fetching with its JSON Graph model.

2.1. Current Industry Solutions

2.1.1. Vector Operation Handling

Adopting HNSW (Hierarchical et al.) graphs [11] has

transformed how database services handle vector operations.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ganapathys.ramachandran@gmail.com

Ganapathy Subramanian Ramachandran / IJCTT, 72(11), 220-227, 2024

221

These graphs deliver impressive performance metrics - they

can search through millions of vectors in less than 10

milliseconds, representing a 90% improvement over

conventional brute-force search methods. MongoDB's Atlas

Vector Search [12] merges traditional database queries with

vector search capabilities, enabling sophisticated applications

such as recommendation systems

2.1.2. Event-Driven Architectures

Kafka's implementation demonstrates the capabilities of

modern event architecture at scale [13]. Production

deployments have shown that event-driven systems can

successfully maintain data consistency while expanding

horizontally to meet growing demands.

AWS EventBridge [14] takes this concept further,

illustrating how serverless event routing can significantly

reduce operational complexity in distributed systems.

2.1.3. AI-First Architecture

The emergence of large-scale AI platforms has revealed

innovative approaches to managing substantial inference

workloads [15]. Systems like TensorFlow [16] highlight a

crucial architectural insight - organizations can achieve more

efficient resource utilization and improved performance by

separating AI-serving infrastructure from conventional API

operations.

2.1.4. Security Implementations

The effectiveness of context-aware security over

conventional methods has been demonstrated through

Google's BeyondCorp implementation [17]. In a parallel

development, Azure's API Management for ML [18] has

established practical methods for safeguarding AI models

while maintaining robust input validation protocols.

2.2. Emergency Trends

Three key trends stand out in current implementations:

2.2.1. Hybrid Architectures

Organizations are succeeding with hybrid systems that

merge traditional and vector operations in unified API

frameworks. These setups optimize resource usage across

mixed workloads [19].

2.2.2. Automated Scaling

New autoscaling systems use ML to predict resource

needs, offering more sophisticated solutions than basic

threshold-based scaling [20].

2.2.3. Edge Processing

Edge computing shows promise for latency-sensitive

operations. Cloudflare's work demonstrates how edge

deployment can significantly reduce bandwidth needs for AI-

enabled APIs [21].

3. AI-First Architecture Implementation
Building effective AI-driven systems requires

fundamentally different architectural choices than traditional

APIs. Let us examine the core components and patterns that

enable high-performance ML operations.

3.1. Core Components

3.1.1. Feature Store Architecture

The feature store architecture incorporates two distinct

components: an online store that enables rapid feature retrieval

during inference operations and an offline store that maintains

historical feature values essential for model training. These

components are unified through a synchronization layer,

which ensures data consistency between stores. Real-world

production implementations have demonstrated that this

architectural approach delivers substantial improvements in

both feature computation performance and the overall

effectiveness of model training processes.

3.1.2. Model Serving Pipeline

The model-serving pipeline is another crucial component

of the AI-first architecture. This pipeline must handle the

complex requirements of model deployment, versioning, and

inference with high reliability and performance.

The pipeline follows a multi-stage approach:

1) Model Registration: New models are registered with

metadata, version information, and runtime requirements.

2) Version Control: A sophisticated versioning/rollback

system manages model versions and their dependencies.

3) Deployment Management: Automated deployment

processes (blue-green approach) handle model

distribution and resource allocation.

4) Serving Layer: A high-performance serving layer

manages model inference with load balancing and

monitoring.

This architecture (Figure 1) follows patterns like

TensorFlow Serving's design principles for model serving and

scalability.

3.2. Integration Patterns

The effectiveness of an AI-first architecture depends

heavily on how well its components integrate with existing

systems. Two critical integration patterns emerge as essential:

vector operations and batch processing.

3.2.1. Vector Operation Integration

Vector operations demand specialized endpoints. Key

implementations include:

• Dynamic index selection based on dimensions and query

patterns

• Automatic timeout handling

• Memory management for large vectors

Ganapathy Subramanian Ramachandran / IJCTT, 72(11), 220-227, 2024

222

Fig. 1 Model serving pipeline architecture

These optimizations consistently achieve sub-100ms response

times for million-scale vector datasets [23].

3.2.2. Batch Processing Integration

Batch processing capabilities are essential for handling

high throughput scenarios efficiently. Sophisticated batch

processing patterns balance throughput with resource

utilization and system stability. The batch processor balances

throughput with system stability through:

• Intelligent chunking of large batches

• Backpressure mechanisms

• Comprehensive result aggregation

• Timeout handling for extended operations

Organizations using this approach report up to 300%

improvement in processing throughput while maintaining

stability under heavy loads [24].

4. Event-Driven Architecture Patterns
4.1. Core Components

The event-driven architecture (Figure 2) is organized into

three distinct layers: input, processing, and storage. Event

sources in the input layer generate a continuous stream of data

that requires immediate processing. These events flow

through the processing layer, where specific business logic

transforms and analyzes the incoming data. Finally, the

storage layer systematically preserves the processed

information for future use and reference.

4.1.1. Input Layer

• Event Sources generate continuous data streams

• Event Bus implements message routing and distribution

mechanisms

• Publisher-subscriber patterns enable loose coupling

between components

4.1.2. Processing Layer

• Event Processors handle core business logic

• ML Pipeline executes model inference and feature

computation

• Vector Processor manages similarity searches and

embedding operations

Fig. 2 Event-driven architecture components

Event Sources

Event Processors

State Store

Event Bus

ML Pipeline

Model Store

Vector Processor

Vector Store

Processing Layer

Storage Layer

Model Registry

Version Controller

Deployment Manager

Serving Layer

Serving Endpoint

Load Balancer

Management Layer

Ganapathy Subramanian Ramachandran / IJCTT, 72(11), 220-227, 2024

223

4.1.3. Storage Layer

• State Store maintains system state through event logs

• Model Store manages ML artifacts and versioning

• Vector Store provides specialized storage for high-

dimensional vectors

4.2. Event Processing Implementation

The Event Processor orchestrates comprehensive event

lifecycles through multiple mechanisms. It begins with event

enrichment and validation processes, followed by dynamic

handler registration capabilities.

To ensure system resilience, it implements circuit breaker

patterns for effective failure management [25]. The system's

reliability is further enhanced through retry policies that utilize

exponential back-off strategies for handling temporary

disruptions.

4.3. State Management and Consistency

The implementation builds upon event sourcing as its

core architectural principle. At its foundation lies an append-

only event log that functions as the authoritative system of

record. Materialized views provide streamlined access to

current system states while snapshotting mechanisms

optimize storage utilization and processing performance. The

architecture maintains data consistency through clearly

defined transaction boundaries throughout the system.

4.4. System Benefits

This architecture enables:

• Independent scaling of components

• Loose coupling for improved resilience

• Optimized handling of different data types

• Real-time processing capabilities

5. Zero-Trust Security Framework
5.1. Key Principles

The zero-trust security framework is built upon three

fundamental principles: assume breach, least privilege access,

and continuous authentication and authorization [26].

• Assume Breach: Every access attempt requires

verification regardless of the source.

• Least Privilege Access: Access rights are minimized to

required functionality.

• Continuous Authentication and Authorization: Ongoing

verification of identity and context throughout sessions.

5.2. Framework Components

5.2.1 Identity and Access Management (IAM)

The IAM component manages authentication using multi-

factor protocols and implements role-based access control

with attribute-based policies [27]. Device attestation verifies

hardware and software configurations before granting access.

5.2.2. Data Protection

This component implements AES-256 encryption for data

at rest and TLS 1.3 for transit security [28]. Fine-grained

permissions control data access while comprehensive auditing

tracks usage patterns.

5.2.3. Threat Detection

Real-time monitoring uses both rule-based and ML-based

detection methods. The system analyzes security telemetry

from application logs, network traffic, and user behavior to

identify potential threats [29].

5.3. ML-Specific Security Considerations

5.3.1. Model Security

Digital signatures verify model integrity, while input

validation protects against adversarial attacks [30]. The

framework includes detection mechanisms for identifying

malicious input patterns.

5.3.2. Data Security

The framework implements data encryption and secure

access patterns to prevent unauthorized inference [31].

Federated learning enables collaborative model training while

preserving data privacy [32].

5.3.3. Model Governance

Risk assessment and bias detection tools ensure

responsible model deployment [33]. Role-based workflows

control model updates while continuous monitoring tracks

model behavior.

5.4. Security Integration

The security framework is integral to the system, ensuring

robust protection and compliance across various components.

It integrates seamlessly with the API gateway, enabling

authentication mechanisms that safeguard access.

Additionally, it works in conjunction with the event

processing layer to perform telemetry analysis, identifying

potential threats in real-time. The framework supports the

storage layer to protect data through encryption and access

controls. Moreover, the framework incorporates security

measures within the machine learning (ML) pipeline to protect

models against vulnerabilities such as adversarial attacks.

6. Proposed System Architecture
6.1. Architecture Overview

The architecture presented (Figure 3) addresses

fundamental limitations in contemporary API design through

three key principles: AI-first integration, advanced event

processing, and contextual security validation. Unlike

traditional approaches that treat machine learning capabilities

as external services, this architecture incorporates vector

operations and models as primary architectural components.

Ganapathy Subramanian Ramachandran / IJCTT, 72(11), 220-227, 2024

224

Fig. 3 Complete system architecture

6.1.1. AI-First Integration Framework

The architecture adopts an AI-first approach, seamlessly

integrating with traditional data operations to enhance system

functionality. It includes an integrated feature store that

leverages dual storage capabilities to support both online and

offline data access. Additionally, the architecture provides a

unified Machine Learning (ML) model serving pipeline,

ensuring efficient deployment and management of models.

Moreover, it facilitates cohesive workflow management,

enabling streamlined coordination between ML processes and

standard API operations.

6.1.2. Advanced Event-Driven Processing Model

The event processing system transcends conventional

publish/subscribe (pub/sub) patterns by incorporating

advanced capabilities tailored for Machine Learning (ML)

workflows. It enables real-time feature computation while

ensuring rigorous validation to maintain data quality. The

system also supports stateful processing, allowing it to

effectively manage the complex requirements of ML

workflows. Additionally, it implements adaptive resource

allocation strategies to optimize performance and scalability

under varying workloads.

6.1.3. Security Framework

The security implementation applies zero-trust principles,

tailored explicitly for Machine Learning (ML) workloads, to

ensure robust protection across the system. It incorporates

model validation and integrity verification processes to

safeguard models from tampering or corruption. Furthermore,

context-aware access control mechanisms are employed to

regulate permissions dynamically based on the specific

requirements of each interaction.

The framework also includes systematic ML-specific

threat detection capabilities, enabling proactive identification

and mitigation of vulnerabilities unique to ML systems.

6.2. Implementation Framework

The architecture implements its AI-first approach through

three distinct but interconnected layers: the API, Event

Processing, and AI Processing Layer. Each layer is designed

to support traditional API operations and ML workloads

seamlessly.

6.2.1 API Layer

The API Layer is the primary interface facilitating

external interactions within the system. It integrates routing

mechanisms to support traditional and machine learning (ML)

endpoints, ensuring seamless communication.

Additionally, the layer is designed for ML-aware request

handling and validation, improving the system's reliability. It

offers compatibility with multiple protocols, including REST,

GraphQL, and gRPC, broadening its applicability across

various platforms. Furthermore, the API Layer enables real-

time feature validation and computation, enhancing the

system's responsiveness and accuracy.

API Gateway

Event Bus

Feature Store

Auth Service

Event Processors

Model Serving

State Store

Vector Engine

Online Store Offline Store Vector Store

Context

Validator

Threat

Detector

Zero Trust AP

I

Event Proc.

AI Proc.

Storage

Security

Direct Flow

Data Stream

Ganapathy Subramanian Ramachandran / IJCTT, 72(11), 220-227, 2024

225

6.2.2 Event Processing Layer

The Event Processing Layer manages asynchronous

operations within machine learning systems. It achieves this

by implementing ML-specific event patterns and workflows,

enabling the efficient processing of real-time feature

computation pipelines. Additionally, it supports continuous

monitoring and validation of models to ensure reliability and

performance. Furthermore, the layer facilitates effective state

management for various machine-learning operations.

6.2.3. AI Processing Layer

AI Processing Layer serves as the system's central

intelligence and comprises three main components. First, the

Feature Store utilizes a dual storage architecture to enable

online and offline access, ensures feature consistency, and

facilitates real-time feature computation. Second, the Model

Serving component supports blue-green deployment

strategies, manages model versioning and lifecycle processes,

and enables A/B testing to compare model performance.

Finally, the Vector Engine is designed for high-dimensional

vector operations, optimizing similarity search tasks and

ensuring efficient index management.

6.2.4. Storage Layer

The storage implementation leverages specialized data

stores, each designed to accommodate specific data types and

usage scenarios. The online store is optimized for managing

current operational data, ensuring low-latency access for real-

time applications. In contrast, the offline store is dedicated to

handling historical and training data, supporting analytical

workloads, and machine learning (ML) model development.

A vector store is also employed to efficiently store high-

dimensional vectors, which are essential for similarity search

and other ML-driven operations.

6.2.5. Security Layer

The security implementation adheres to zero-trust

principles, ensuring a comprehensive and proactive approach

to safeguarding Machine Learning (ML) workflows. It

emphasizes the continuous validation of ML operations to

maintain system reliability and prevent unauthorized

activities.

Context-aware access control mechanisms dynamically

regulate permissions based on the specific context of each

interaction. The implementation also includes ML-specific

threat detection to identify and mitigate vulnerabilities unique

to ML environments. Additionally, model integrity

verification is employed to protect against tampering and

ensure the trustworthiness of deployed models.

7. Analysis
The proposed architecture demonstrates several

significant advantages in handling modern API requirements,

particularly in four key areas: flexibility, extensibility,

scalability, and security.

7.1. Operational Benefits

The proposed architecture delivers key operational

advantages through its integrated approach to AI operations.

The system's flexibility enables adaptation to diverse ML

workloads through dynamic resource allocation and support

for synchronous and asynchronous operations. This flexibility

extends beyond essential resource management, including

intelligent workload distribution and adaptive processing

patterns that accommodate varying computational demands.

Extensibility is achieved through the architecture's modular

design, which enables incremental addition of capabilities

without disrupting existing operations. The standardized

interfaces between components facilitate the integration of

new technologies as they emerge while allowing the

independent evolution of individual components. This

approach ensures the architecture can adapt to advancing ML

technologies and changing operational requirements. Security

integration represents a fundamental advancement over

traditional approaches. The architecture ensures

comprehensive protection of data and models by

implementing fine-grained access control at the operation

level and maintaining continuous validation of ML

workflows. The security framework adapts zero-trust

principles specifically for ML operations, providing threat

detection mechanisms tailored to AI workloads. The

architecture's scalability characteristics are implemented

across multiple dimensions. Horizontal scaling capabilities

enable independent scaling of ML processing units and

distributed feature computation. Resource management is

handled through dynamic allocation mechanisms that respond

to ML workload demands, with automated scaling triggers and

intelligent load balancing across processing units. Data

distribution is managed through sharded vector storage,

distributed feature stores, and replicated model-serving,

ensuring efficient data access patterns at scale.

7.2. Comparative Analysis

The architecture provides a theoretical framework for

future implementation and empirical evaluation.

Table 1. Comparative analysis

Feature
Traditional

Solutions

Proposed

Architecture

AI Operations
Separate ML

services

Integrated

processing

Event

Processing

Basic event

handling
ML-aware events

Security
Generic API

security

ML-specific

security

Scalability
Component

level scaling

Unified scaling

across layers

Data

Distribution

Single store

focused

Multi-store

optimization

Resource

Management
Static allocation

Dynamic ML

aware allocation

Ganapathy Subramanian Ramachandran / IJCTT, 72(11), 220-227, 2024

226

8. Conclusion
This research presents an architectural framework that

addresses the growing complexity of integrating AI operations

into modern API systems. The proposed architecture advances

the field through three key innovations: an AI-first integration

approach that treats ML operations as primary architectural

components, an event-driven processing framework

optimized for ML workflows, and a comprehensive security

model adapted for AI workloads. The architecture's primary

contribution lies in its unified approach to handling traditional

API operations and ML workflows within a single cohesive

framework. This integration eliminates the complexity and

overhead typically associated with maintaining separate

systems for ML operations and standard API functionality.

The event-driven processing framework enables sophisticated

ML workflows while maintaining system flexibility and

extensibility. The security framework adapts zero-trust

principles specifically for ML operations, providing

comprehensive protection without compromising system

performance. The architecture provides a foundation for

building scalable, secure, and maintainable AI-enabled

systems through its layered approach, encompassing API,

Event Processing, AI Processing, Storage, and Security layers.

The multi-store data architecture and dynamic resource

allocation mechanisms enable efficient handling of diverse

workloads, while the modular design facilitates system

evolution as ML technologies advance. Future research

directions include empirical evaluation of the architecture's

performance characteristics, investigation of advanced scaling

mechanisms for specific ML workloads, and development of

additional security measures for emerging ML threats. The

framework presented here is a theoretical foundation for

implementing robust, AI-enabled API systems that can evolve

with advancing technology while maintaining operational

efficiency and security.

References
[1] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D. Lawrence, “Challenges in Deploying Machine Learning: A Survey of Case Studies,”

ACM Computing Surveys, vol. 55, no. 6, pp. 1-29, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[2] J. Johnson, M. Douze and H. Jégou, "Billion-Scale Similarity Search with GPUs," in IEEE Transactions on Big Data, vol. 7, no. 3, pp.

535-547, 1 July 2021, doi: 10.1109/TBDATA.2019.2921572.

[3] Kim Hazelwood et al., “Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective,” 2018 IEEE International

Symposium on High Performance Computer Architecture (HPCA), Vienna, Austria, pp. 620-629, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[4] Daniel Crankshaw et al., “Clipper: A Low-Latency Online Prediction Serving System,” Proceedings of the 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2017. [Google Scholar] [Publisher Link]

[5] Chaoyun Zhang, Paul Patras, and Hamed Haddadi, “Deep Learning in Mobile and Wireless Networking: A Survey,” IEEE

Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2224-2287, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[6] Samyam Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” SC20: International

Conference for High Performance Computing, Networking, Storage and Analysis, Atlanta, GA, USA, pp. 1-16, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[7] Paris Carbone et al., “State Management in Apache Flink®: Consistent Stateful Distributed Stream Processing,” Proceedings of the VLDB

Endowment, vol. 10, no. 12, pp. 1718–1729, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[8] Shivaram Venkataraman et al., “Drizzle: Fast and Adaptable Stream Processing at Scale,” SOSP '17: Proceedings of the 26th Symposium

on Operating Systems Principles, Shanghai China, pp. 374–389, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[9] Chen Li et al., “The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-scale, Unbounded,

Out-of-order Data Processing,” Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1792–1803, 2015. [CrossRef] [Google Scholar]

[Publisher Link]

[10] Roy Thomas Fielding, “Architectural Styles and the Design of Network-based Software Architectures,” Ph.D. dissertation, Department of

Information Computer Science, University of California, Irvine, CA, USA, 2000. [Google Scholar] [Publisher Link]

[11] Yu A. Malkov, and D.A. Yashunin, “Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small

World Graphs,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 4, pp. 824-836, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[12] MongoDB, MongoDB Atlas Vector Search. [Online]. Available: https://www.mongodb.com/products/platform/atlas-vector-search

[13] Kafka, Documentation. [Online]. Available: https://kafka.apache.org/documentation/

[14] Amazon Web Services, Amazon EventBridge Developer Guide. [Online]. Available: https://aws.amazon.com/eventbridge/

[15] OpenAI, OpenAI API Documentation, 2020. [Online]. Available: https://openai.com/blog/openai-api/

[16] Google LLC, "TensorFlow Serving Documentation," 2021. [Online]. Available: https://www.tensorflow.org/tfx/guide/serving

[17] Google Cloud, BeyondCorp: A New Approach to Enterprise Security. [Online]. Available: https://cloud.google.com/beyondcorp

[18] Microsoft Corporation, Azure API Management Documentation, Microsoft Technical Documentation. [Online]. Available:

https://azure.microsoft.com/en-us/services/api-management/

https://doi.org/10.1145/3533378
https://scholar.google.com/scholar?q=Challenges+in+Deploying+Machine+Learning:+A+Survey+of+Case+Studies&hl=en&as_sdt=0,5
https://dl.acm.org/doi/full/10.1145/3533378
https://doi.org/10.1109/HPCA.2018.00059
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Applied+Machine+Learning+at+Facebook%3A+A+Datacenter+Infrastructure+Perspective&btnG=
https://ieeexplore.ieee.org/abstract/document/8327042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clipper%3A+A+Low-Latency+Online+Prediction+Serving+System&btnG=
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://doi.org/10.1109/COMST.2019.2904897
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Learning+in+Mobile+and+Wireless+Networking%3A+A+Survey&btnG=
https://ieeexplore.ieee.org/abstract/document/8666641
https://doi.org/10.1109/SC41405.2020.00024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ZeRO%3A+Memory+optimizations+Toward+Training+Trillion+Parameter+Models&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ZeRO%3A+Memory+optimizations+Toward+Training+Trillion+Parameter+Models&btnG=
https://ieeexplore.ieee.org/abstract/document/9355301
https://doi.org/10.14778/3137765.3137777
https://scholar.google.com/scholar?q=State+management+in+Apache+Flink%C2%AE:+consistent+stateful+distributed+stream+processing&hl=en&as_sdt=0,5
https://dl.acm.org/doi/abs/10.14778/3137765.3137777
https://doi.org/10.1145/3132747.3132750
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Drizzle%3A+Fast+and+Adaptable+Stream+Processing+at+Scale&btnG=
https://dl.acm.org/doi/abs/10.1145/3132747.3132750
https://doi.org/10.14778/2824032.2824076
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+dataflow+model%3A+a+practical+approach+to+balancing+correctness%2C+latency%2C+and+cost+in+massive-scale%2C+unbounded%2C+out-of-order+data+processing&btnG=
https://dl.acm.org/doi/abs/10.14778/2824032.2824076
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Architectural+Styles+and+the+Design+of+Network-based+Software+Architectures&btnG=
https://www.proquest.com/openview/fc2d064044b971dda476dfb429a2b344/1?pq-origsite=gscholar&cbl=18750&diss=y
https://doi.org/10.1109/TPAMI.2018.2889473
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+and+Robust+Approximate+Nearest+Neighbor+Search+Using+Hierarchical+Navigable+Small+World+Graphs&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+and+Robust+Approximate+Nearest+Neighbor+Search+Using+Hierarchical+Navigable+Small+World+Graphs&btnG=
https://ieeexplore.ieee.org/abstract/document/8594636
https://www.mongodb.com/products/platform/atlas-vector-search
https://kafka.apache.org/documentation/
https://aws.amazon.com/eventbridge/
https://openai.com/blog/openai-api/
https://cloud.google.com/beyondcorp
https://azure.microsoft.com/en-us/services/api-management/

Ganapathy Subramanian Ramachandran / IJCTT, 72(11), 220-227, 2024

227

[19] Kabir Nagrecha, and Arun Kumar, “Hydra: A System for Large Multi-Model Deep Learning,” arXiv, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[20] Alexey Ilyushkin et al., “An Experimental Performance Evaluation of Autoscaling Policies for Complex Workflows,” ICPE '17:

Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, L'Aquila Italy, pp. 75-86, 2017. [CrossRef]

[Google Scholar] [Publisher Link]

[21] Cloudflare Workers Documentation. [Online]. Available: https://workers.cloudflare.com/

[22] J. Hermann, and M. Del Balso, Meet Michelangelo: Uber's Machine Learning Platform, Uber Engineering Blog, 2017. [Online]. Available:

https://eng.uber.com/michelangelo

[23] Herve Jégou, Matthijs Douze, and Cordelia Schmid, “Product Quantization for Nearest Neighbor Search,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 33, no. 1, pp. 117-128, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[24] Matei Zaharia et al., “Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing,” Proceedings of the

9th USENIX Conference on Networked Systems Design and Implementation (NSDI'12), 2012. [Google Scholar] [Publisher Link]

[25] Fabrizio Montesi, and Janine Weber, “Circuit Breakers, Discovery, and API Gateways in Microservices,” arXiv, 2016. [CrossRef] [Google

Scholar] [Publisher Link]

[26] Scott Rose et al., “Zero Trust Architecture,” NIST Special Publication 800-207, National Institute of Standards and Technology, 2020.

[CrossRef] [Publisher Link]

[27] Dick ardt, “The OAuth 2.0 Authorization Framework,” Internet Engineering Task Force (IETF), 2012. [Google Scholar]

[28] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,” Internet Engineering Task Force (IETF), 2018. [Google Scholar]

[Publisher Link]

[29] Robin Sommer, and Vern Paxson, “Outside the Closed World: On Using Machine Learning for Network Intrusion Detection,” 2010 IEEE

Symposium on Security and Privacy, Oakland, CA, USA, pp. 305-316, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[30] Maria-Irina Nicolae et al., “Adversarial Robustness Toolbox v1.0.0,” arXiv, pp. 1-34, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[31] Haokun Fang, and Quan Qian, “Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning,” Future

Internet, vol. 13, no. 4, pp. 1-20, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[32] Qiang Yang et al., “Federated Machine Learning: Concept and Applications,” ACM Transactions on Intelligent Systems and Technology,

vol. 10, no. 2, pp. 1-19, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[33] Solon Barocas, Moritz Hardt, and Arvind Narayanan, Fairness and Machine Learning, 2017. [Publisher Link]

https://doi.org/10.48550/arXiv.2110.08633
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hydra%3A+A+System+for+Large+Multi-Model+Deep+Learning&btnG=
https://arxiv.org/abs/2110.08633
https://doi.org/10.1145/3030207.3030214
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Experimental+Performance+Evaluation+of+Autoscaling+Policies+for+Complex+Workflows&btnG=
https://dl.acm.org/doi/abs/10.1145/3030207.3030214
https://workers.cloudflare.com/
https://eng.uber.com/michelangelo
https://doi.org/10.1109/TPAMI.2010.57
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Product+Quantization+for+Nearest+Neighbor+Search&btnG=
https://ieeexplore.ieee.org/abstract/document/5432202
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resilient+distributed+datasets%3A+a+fault-tolerant+abstraction+for+in-memory+cluster+computing&btnG=
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://doi.org/10.48550/arXiv.1609.05830
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Circuit+Breakers%2C+Discovery%2C+and+API+Gateways+in+Microservices&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Circuit+Breakers%2C+Discovery%2C+and+API+Gateways+in+Microservices&btnG=
https://arxiv.org/abs/1609.05830
https://doi.org/10.6028/NIST.SP.800-207
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Zero+Trust+Architecture&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+OAuth+2.0+Authorization+Framework&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Transport+Layer+Security+%28TLS%29+Protocol+Version+1.3&btnG=
https://www.rfc-editor.org/rfc/rfc8446
https://doi.org/10.1109/SP.2010.25
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Outside+the+Closed+World%3A+On+Using+Machine+Learning+for+Network+Intrusion+Detection&btnG=
https://ieeexplore.ieee.org/abstract/document/5504793
https://doi.org/10.48550/arXiv.1807.01069
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adversarial+Robustness+Toolbox+v1.0.0.&btnG=
https://arxiv.org/abs/1807.01069
https://doi.org/10.3390/fi13040094
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Privacy+Preserving+Machine+Learning+with+Homomorphic+Encryption+and+Federated+Learning&btnG=
https://www.mdpi.com/1999-5903/13/4/94
https://doi.org/10.1145/3298981
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Machine+Learning%3A+Concept+and+Applications&btnG=
https://dl.acm.org/doi/abs/10.1145/3298981
https://fairmlbook.org/

