
International Journal of Computer Trends and Technology Volume 72 Issue 11, 31-38, November 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I11P105 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

SAP HANA Workload Management: A Comprehensive

Study on Workload Classes

Puneet Aggarwal1, Amit Aggarwal2

1Department of Information & Technology, Deloitte LLP, Texas, United States of America.
2Department of Information & Technology, TCS, Michigan, United States of America.

1Corresponding Author : erpuneetaggarwal@gmail.com

Received: 20 September 2024 Revised: 23 October 2024 Accepted: 12 November 2024 Published: 29 November 2024

Abstract - This study investigates workload management challenges in SAP HANA’s in-memory columnar storage, specifically

focusing on the complexities of handling mixed OLTP and OLAP workloads. Traditional database management approaches often

fail to address SAP HANA’s unique architecture, which combines high-speed transaction processing with real-time analytics.

Drawing on research into mixed workload optimization (May et al., 2015) and SAP HANA’s architectural evolution (Färber et

al., 2017), this paper explores workload throttling, prioritization, and real-time monitoring strategies to optimize resource

allocation. Our findings offer practical guidance for database administrators managing critical business applications with high

data demands, such as finance and supply chain. Additionally, we examine tools and techniques for performance tracing in third-

party applications like Tableau (Tableau Software, 2023), providing an integrated perspective on maintaining optimal SAP

HANA performance under peak load conditions.

Keywords - SAP HANA Workload Management, In-Memory Database, Mixed Workloads, OLTP and OLAP, Resource

Allocation, Workload Throttling, Real-Time Monitoring, Database Performance Optimization, Admission Control, Workload

Classes, Tableau Integration.

1. Introduction
In today’s data-intensive business landscape,

organizations rely on robust and efficient database systems to

process and analyze large volumes of information in real time.

With its in-memory, columnar data storage, SAP HANA is a

preferred solution for enterprises needing high-performance

data handling. However, as these data demands grow,

managing workloads on SAP HANA poses unique challenges.

High-demand tasks—such as processing complex

transactions, generating comprehensive reports, and enabling

real-time analytics—can significantly strain CPU and memory

resources, potentially causing performance bottlenecks.

Traditional workload management techniques are often

insufficient for SAP HANA’s architecture, which is designed

to balance concurrent OLAP (Online Analytical Processing)

and OLTP (Online Transaction Processing) workloads within

a single system. To address these challenges, this study aims

to develop and assess workload management strategies

tailored to SAP HANA’s specific needs, focusing on the

following objectives:

• Analyze SAP HANA Workload Patterns: Understand

how mixed OLTP and OLAP workloads impact CPU and

memory usage, identifying key areas of resource

contention.

• Implement Workload Throttling: Explore workload

throttling techniques that regulate resource use,

preventing system overloads during peak processing

times.

• Prioritize Workloads and Allocate Resources: Establish

methods to prioritise critical tasks and receive adequate

resources, minimizing the risk of system slowdowns.

• Enhance Real-Time Monitoring and Admission Control:

Assess the use of performance monitoring tools and

introduce proactive workload management strategies to

optimize resource allocation and maintain system

stability.

This study provides database administrators with

practical strategies to enhance SAP HANA’s performance and

reliability in high-demand environments by achieving these

objectives. The research is especially relevant for sectors

where data processing demands are intensive, such as finance,

retail, and supply chain management, offering insights that can

help sustain peak performance even during periods of heavy

use.

1.1. Importance of the Study

As organizations navigate an increasingly data-driven

environment, processing large volumes of data in real time has

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Yash Patel / IJCTT, 72(11), 31-38, 2024

32

become critical. For industries like finance, retail,

manufacturing, and supply chain management, efficient data

handling is essential for maintaining competitive advantage

and operational stability. SAP HANA, known for its in-

memory architecture, is well-suited to meet these demands;

however, its performance can be hindered when managing

complex, high-demand workloads. Addressing these

challenges through effective workload management is

essential to harness the full potential of SAP HANA’s

capabilities.

Specific examples of data growth challenges include:

• Finance: Processing millions of transactions daily,

generating detailed financial reports, and supporting real-

time fraud detection.

• Retail: Managing large-scale inventory, processing high

volumes of sales transactions, and analyzing customer

behavior for personalized marketing.

• Manufacturing: Planning production schedules, ensuring

quality control, and coordinating logistics.

• Supply Chain: Coordinating demand and supply

planning, tracking shipments, and optimizing inventory

across multiple locations.

When computational resources become strained,

prioritizing and managing workloads effectively ensures

critical business tasks maintain priority while system

performance remains stable. This study contributes to the field

by developing and evaluating workload management

strategies designed specifically for SAP HANA’s in-memory

processing model, allowing database administrators to

improve performance under heavy load conditions. By doing

so, it provides insights and practical recommendations that

support both operational efficiency and business continuity.

2. Workload Management
In SAP HANA, workload management is essential to

ensure that system resources are allocated efficiently to handle

varying demands from different tasks. Administrators can

avoid resource contention, reduce bottlenecks, and maintain

system stability by actively managing workloads. Workload

management strategies in SAP HANA focus on optimizing

CPU and memory usage, prioritizing tasks, and ensuring that

both real-time transactions and analytical queries perform

effectively. Understanding the types of workloads in SAP

HANA is the first step toward implementing tailored

management strategies for optimal system performance.

2.1. Types of Workload in SAP HANA

SAP HANA handles diverse workload types, each with

distinct requirements and impacts on system resources.

Understanding these workloads is essential for optimizing

performance and ensuring that the database can handle

concurrent tasks without performance degradation. The

primary workload types in SAP HANA include:

2.1.1. OLAP Workload

Used primarily for reporting and analytics, OLAP (Online

Analytical Processing) workloads are common in data

warehousing and business intelligence applications, such as

reporting in BW (Business Warehouse) systems or SAP

Analytics Cloud. These tasks are typically resource-intensive,

requiring significant memory allocations and parallel

execution capabilities to process large datasets effectively.

2.1.2. OLTP Workload

OLTP (Online Transaction Processing) workloads focus

on real-time transaction processing, handling high volumes of

smaller, rapid database operations. Commonly used in ERP

systems like SAP S/4HANA and ECC 6.0, OLTP workloads

require low-latency access to data and consistent CPU

availability to support real-time processing with minimal

delay.

2.1.3. Mixed Workload

Many modern systems operate with a mixed workload

environment, combining both OLAP and OLTP processes.

For instance, ERP systems often integrate transactional

processing with analytical reporting functions. Mixed

workloads place high demands on both memory and CPU

resources, requiring sophisticated workload management to

balance competing tasks and maintain overall system

performance.

2.1.4. Internal Workloads

Internal workloads are generated by SAP HANA’s

system processes, including tasks like merges, backups, and

savepoints. Though not directly related to user-initiated tasks,

these processes are essential for database maintenance and

integrity. Internal workloads consume CPU and memory

resources, usually during scheduled maintenance windows, to

ensure consistent system performance and reliability. By

categorizing these workload types, administrators can better

allocate resources and apply targeted workload management

strategies to balance system demands effectively.

2.2. Ways to control HANA Workloads

Effective workload management in SAP HANA requires

the optimal allocation and utilization of critical system

resources, primarily CPU threads and memory.

Administrators can manage resource consumption, improve

performance, and maintain system stability by implementing

strategic controls. Key approaches include:

2.2.1. Memory Analysis and Global Limit

Efficient memory management is crucial for maintaining

SAP HANA's performance, especially under heavy workload

conditions. SAP HANA provides the global_allocation_limit

parameter, which sets a limit on the total memory the system

can utilize, ensuring that memory-intensive tasks do not

overwhelm available resources. By default, this limit is

calculated based on the system’s physical memory—typically

Yash Patel / IJCTT, 72(11), 31-38, 2024

33

set to 90% of the first 64GB and 97% for each additional GB

of memory. However, administrators can adjust these values

according to specific workload needs. In addition to the global

allocation limit, SAP HANA provides detailed memory

analysis tools to monitor how memory is being used across

different workloads. Administrators can identify potential

bottlenecks and adjust allocations to avoid performance issues

by assessing real-time memory usage. This proactive memory

management strategy enables administrators to balance

memory demands for both OLTP and OLAP tasks effectively,

reducing the risk of memory saturation and ensuring smooth

system operations.

Fig. 1 HANA memory areas (Allocation and heap memory limits)

2.2.2. CPU Threads

SAP HANA relies on multiple CPU threads to execute

tasks, leveraging a multi-threaded architecture to handle

diverse and concurrent workloads. Each SAP HANA process,

such as the indexserver and xsengine, operates with its own

set of threads to manage various operations efficiently. SAP

HANA threads are divided into two main types:

SQLWorker Threads

Primarily responsible for handling OLTP-like (Online

Transaction Processing) statements, SQLWorker threads are

typically used for straightforward, low-latency operations

executed in a single-threaded mode. When SQL statements are

more complex or become blocked, they are delegated to

JobWorker threads for execution. In the monitoring view

M_SERVICE_THREADS, these threads appear as

SqlExecutor.

JobWorker Threads

These threads handle complex or parallelized OLAP

(Online Analytical Processing) operations. By default, the

number of JobWorker threads corresponds to the number of

CPU cores available to the process. However, this count may

be adjusted if many SQLWorker threads consume CPU

resources concurrently. Administrators can configure

JobWorker behavior through parameters to align with

workload demands. In M_SERVICE_THREADS, JobWorker

threads are listed as JobWorker. To further manage thread

allocation, administrators can adjust several thread-related

parameters. For instance, the max_concurrency parameter

controls the number of concurrent statements allowed, while

max_sql_executors specifies the limit on threads that can

process SQL requests simultaneously.

By carefully configuring these parameters, administrators

can prevent excessive CPU contention, balance processing

loads across threads, and improve overall system

performance. Basic thread calculation is explained using a

screenshot from a laptop to make it easier for everyone; on

linux we can check using lscpu or other commands.

No of Threads = No of Socket * No Cores * Logical Processor

= 768 Threads

• Socket: A physical connection point on a motherboard

where a CPU can be inserted.

• Core: A processing unit within a CPU that can execute

instructions independently.

• Logical Processor: A software-based simulation of a

physical core, often enabled by hyper-threading

technology.

Yash Patel / IJCTT, 72(11), 31-38, 2024

34

Fig. 2 CPU thread count (Sockets * Cores * processor)

Peak Load Admission Control

To manage high system utilization and prevent overloads,

SAP HANA includes an admission control feature that

regulates database request execution during peak load times.

This feature, introduced in SAP HANA 2.0, enables

administrators to configure thresholds for queuing and

rejecting requests based on current CPU and memory

utilization levels. When system resources reach these set

limits, admission control can either queue incoming requests

for later execution or reject them outright, ensuring that

critical tasks already in progress receive the necessary

resources to complete successfully. Key parameters include

queue_cpu_threshold and queue_memory_threshold, which

define the levels at which requests are queued, as well as

reject_cpu_threshold and reject_memory_threshold, which

specify when requests are rejected to prevent system overload.

For instance, if CPU utilization reaches a defined threshold,

requests are temporarily held in a queue until resource

availability improves. Rejected requests fail with error codes

like “616: rejected by workload class configuration” or “1038:

service temporarily unavailable,” providing administrators

with clear indicators of system status. By configuring

admission control settings, administrators can maintain

system stability during times of high demand, prevent

resource contention, and ensure that essential workloads

maintain priority. This approach provides a buffer against

sudden spikes in demand, allowing SAP HANA to continue

operating efficiently under even the most resource-intensive

conditions.

2.3. Workload Management Using Workload Classes

In SAP HANA, workload management is achieved

through the use of workload classes, which allow

administrators to categorize and manage resources for specific

types of tasks. Each workload class can have defined limits

and priorities, enabling the system to dynamically adjust

resource consumption based on workload requirements. SAP

HANA administrators can effectively control resource

allocation and ensure optimal system performance by

mapping tasks to specific workload classes.

Key properties of workload classes include:

1) Priority: This parameter assigns priority levels to

statements within a workload class, helping the system

prioritize critical tasks during execution. Priority levels

range from 0 (lowest priority) to 9 (highest), with a

default of 5.

2) Statement Thread Limit: This property limits the number

of threads that can be used by a single statement,

preventing excessive parallelism. It can range from 0 (no

limit) to the number of logical cores in the system.

3) Statement Memory Limit: This property restricts the

amount of memory that a single statement within the

workload class can use, helping to prevent memory

overuse by any single task. It can be set to values up to

the global memory allocation limit.

4) Total Statement Thread Limit: This property specifies a

cumulative thread limit for all statements executing

within the workload class, balancing thread usage across

multiple tasks. This is particularly useful for controlling

overall system thread usage when multiple active

statements exist.

5) Total Statement Memory Limit: This property sets a

cumulative memory limit for all statements within the

workload class, helping prevent memory saturation. It

ensures that tasks within a workload class do not

collectively consume more than a set amount of memory.

6) Statement Timeout: This parameter defines the maximum

execution time for each query. If the query fails to

complete within this time frame, it will be terminated,

triggering an error (ERR_API_TIMEOUT).

7) Write Transaction Lifetime: This property limits the

maximum time an uncommitted write transaction can

remain open, ensuring that long-running transactions do

not lock resources indefinitely.

8) Idle Cursor Lifetime: This parameter limits the time a

cursor can remain idle. If a cursor is inactive beyond the

specified duration, it is terminated to free up system

resources.

Thread Limit Parameters: These parameters allow

administrators to control thread allocation per workload class,

helping balance CPU usage and prevent contention:

• max_concurrency: Sets the maximum number of

concurrent statements allowed on the system.

• max_concurrency_dyn_min_pct: Defines the minimum

percentage of maximum concurrency that must be

dynamically maintained.

• default_statement_concurrency_limit: Specifies the

default limit for concurrent statements in a workload

class.

• default_statement_concurrency_limit_rel: Sets the

default relative limit based on the system's overall

concurrency limit.

• default_statement_concurrency_max_limit: Establishes

the maximum limit for concurrent statements in a

workload class.

Yash Patel / IJCTT, 72(11), 31-38, 2024

35

• max_concurrency_hint: Provides a hint for the maximum

concurrency level to which a specific statement should

adhere.

• max_concurrency_hint_dyn_min_pct: Indicates the

minimum percentage of the max concurrency hint to be

dynamically maintained.

• max_sql_executors: Specifies the maximum number of

SQL executor threads for normal SQL request processing.

By configuring workload classes and their properties

effectively, SAP HANA administrators can ensure that

essential tasks receive appropriate resources, maintaining

optimal performance across different workloads.

2.4. Admission Control in Workload Classes

Admission control in SAP HANA workload classes

enables administrators to manage system performance by

setting resource utilisation thresholds, ensuring critical

operations can continue even under high-demand conditions.

This feature prevents the system from overloading by

controlling SQL request admission based on CPU and

memory usage.

Key admission control parameters include:

1) Admission Control Reject CPU Threshold and Admission

Control Reject Memory Threshold: These parameters

define the threshold levels (0-100%) at which SQL

requests are rejected. When CPU or memory usage

reaches the specified threshold, new SQL requests are

immediately rejected with an error message (e.g., "616:

rejected by workload class configuration").

2) Admission Control Queue CPU Threshold and

Admission Control Queue Memory Threshold: These

parameters set the levels (1-100%) at which SQL requests

are queued instead of being rejected outright.

Queued requests will be executed once resource usage

drops below the threshold. If a queued request cannot be

executed within the specified queue timeout, it is rejected with

an error message (e.g., "1038: service temporarily

unavailable").

Fig. 3 CPU threshold limit

For example, an administrator might configure the CPU

queue threshold at 80% and the CPU reject threshold at 90%.

Under this setup, when CPU utilization reaches 80%,

incoming SQL requests are placed in a queue. If CPU usage

rises to 90%, new requests are rejected outright to maintain

system stability.

For other admission control parameters, check 2186744.

Historic admission control details can be determined via SQL:

"HANA_LoadHistory_Services

Example Configuration for Admission Control:

CREATE WORKLOAD CLASS

"CriticalWorkloadClass"

SET 'PRIORITY' = '9',

 'STATEMENT MEMORY LIMIT' = '4',

 'STATEMENT THREAD LIMIT' = '10',

 'ADMISSION CONTROL QUEUE CPU

THRESHOLD' = '75',

 'ADMISSION CONTROL QUEUE MEMORY

THRESHOLD' = '85',

 'ADMISSION CONTROL REJECT CPU

THRESHOLD' = '90',

 'ADMISSION CONTROL REJECT MEMORY

THRESHOLD' = '95';

By configuring admission control, SAP HANA

administrators can better manage system loads, ensure that

essential processes receive priority, and maintain overall

stability during peak usage times. This feature provides a

proactive approach to workload management, allowing

critical tasks to proceed without disruption while protecting

the system from excessive load.

2.5. Query Timeout Precedence

In SAP HANA workload management, different timeout

settings can be applied at multiple levels, such as the global

setting, workload class level, and individual statements. The

system determines the effective timeout based on the smallest

valid timeout value across these settings, ensuring that query

execution is limited to the most restrictive time threshold set.

The following table illustrates how timeout precedence works:

Settings Value
Effective

Value

Query Timeout (global setting) 30

statement_timeout (ini file) 20 20

STATEMENT TIMEOUT

(Workload class)
15 15*

No matching workload class 0 (Disabled)

In this example, the effective timeout value would be 15

seconds, as it is the smallest timeout value defined within the

workload class. Other values are either higher or ignored

based on precedence rules. If a query exceeds this threshold,

https://me.sap.com/notes/2186744

Yash Patel / IJCTT, 72(11), 31-38, 2024

36

it will automatically timeout, ensuring that long-running

queries do not monopolize resources or negatively impact

system performance.

This precedence structure allows administrators to

enforce strict time limits for specific workload classes while

maintaining more lenient settings at the system level. By

configuring timeout parameters strategically, SAP HANA can

ensure efficient query execution and balanced resource usage

across all workloads.

2.6. Workload Key Attributes

Key Workload Attributes in SAP HANA define the

structure and hierarchy of processes within a session. Each

workload can be broken down into the following components:

• User Connection: Initiates the workload, creating a

unique connection ID.

• Session: A combination of the connection, thread, SQL

statement, and transaction. Multiple sessions may stem

from a single user connection, each operating

independently.

• Thread: Represents the worker process on the SAP

HANA side. Threads, such as SQLWorker and

JobWorker threads, execute the SQL statements and

handle specific tasks within the session.

Fig. 4 Flow of user sessions to connection to threads

The above hierarchy says the parameters apply

universally across all sessions, thanks to the default class

mapping (SYS_DEFAULT). User parameters will take

precedence over HDB parameters (*.ini). Workload classes

will override both HDB and user parameters. Ultimately,

statement hints will have the highest priority, superseding all

others.

Fig. 5 Hierarchy key parameters

2.7. Analyze and Control SAP Workloads

Analyzing SAP Workloads involves using monitoring

views and tools to identify performance bottlenecks and

optimize system usage. SAP HANA provides various views to

help administrators track activity and evaluate workload

patterns:

• M_ACTIVE_STATEMENTS: Displays currently active

SQL statements, enabling administrators to monitor real-

time workloads and identify heavy or resource-intensive

tasks.

• M_PREPARED_STATEMENTS: Lists prepared SQL

statements stored within the system, helping to optimize

frequently used queries and save on preparation time.

• M_EXPENSIVE_STATEMENTS: Identifies high-cost

statements that consume significant resources, allowing

administrators to adjust workload classes or apply

specific limits to control resource usage.

Additional views, such as M_SESSION_CONTEXT and

M_SERVICE_THREADS, offer insights into session-specific

variables and active service threads, providing a

comprehensive perspective on workload activity.

Administrators can also refer to SAP Note 2215929 for setting

session variables and workload classes to fine-tune

performance.

2.7.1. Controlling HANA Workloads

Controlling HANA Workloads on a User Level allows

administrators to apply workload management settings based

on specific user profiles. By tailoring workload class settings

and resource limits for individual users, SAP HANA ensures

that high-priority tasks have adequate resources while

balancing system load. Administrators can set parameters like:

• Max_Concurrency: Defines the maximum concurrent

tasks a user can execute.

• Statement_Timeout: Limits execution time for user-

initiated statements, helping prevent long-running queries

from impacting system performance.

User

Connection ID

Thread SQLWorker Thread Job Worker

SQL Statement
Read/Write Read

Transaction

DB

Param

User
Parameter

 Workload
Classes

Statement

Hints

Yash Patel / IJCTT, 72(11), 31-38, 2024

37

Fig. 6 Hierarchies of workload classes

Grouping workloads based on their characteristics and

resource requirements helps manage them more effectively.

This involves categorizing tasks into groups such as

transactional workloads, analytical workloads, peak workload

events, and industry-specific workloads. By grouping

workloads, administrators can apply tailored management

strategies to each group, ensuring optimal performance and

resource utilization. By implementing user-specific controls,

SAP HANA offers a more granular approach to workload

management, ensuring each user’s tasks align with available

resources.

2.7.2. Hierarchies of Workload Classes

Hierarchies of Workload Classes enable SAP HANA to

organize workload management through a multi-level

structure, where different resource limits apply to classes

within a hierarchy. Key aspects include:

• Inherited Limits: Child processes inherit cumulative

memory limits from parent workload classes, ensuring

that individual limits align with overall resource

constraints.

• Prioritization: Workload classes are prioritized based on

application needs, enabling critical workloads to be

processed first without compromising resources for

lower-priority tasks.

Administrators can efficiently manage resources across

complex environments with multiple processes and user

demands by leveraging workload class hierarchies. All child

processes will inherit the total memory limit. Each child can

have its own individual statement limits (for memory and

threads), but the total limit applies collectively. This means

that all child processes together share a 100GB limit, rather

than each child having an aggregated limit of 100 GB.

2.7.3. Monitoring Views for Workload Classes

SAP HANA provides several Monitoring Views to track

workload classes and manage resource utilization:

• WORKLOAD_CLASSES: Displays defined workload

classes, along with their memory, thread, and priority

configurations.

• WORKLOAD_MAPPINGS: Shows the mappings of

workloads to their respective classes, allowing

administrators to verify and modify class assignments.

• M_ACTIVE_STATEMENTS and

M_EXPENSIVE_STATEMENTS: Track active and

resource-intensive statements essential for identifying

high-demand processes.

• M_CONNECTIONS and M_SERVICE_THREADS:

Offer details on current connections and active threads,

giving insights into session-level and thread-level

resource usage.

These monitoring views enable administrators to keep

track of resource consumption across different workloads,

ensuring that system resources are allocated efficiently and

aligned with workload priorities.

3. Conclusion
This study on SAP HANA workload management

highlights the importance of strategically managing resources

to support diverse and intensive workloads in high-demand

environments. By implementing workload throttling,

workload class mappings, admission control, and dynamic

monitoring, SAP HANA administrators can ensure optimal

performance, even when processing complex OLTP and

OLAP tasks concurrently. By prioritizing critical workloads

and proactively managing CPU and memory usage, the

techniques outlined provide a comprehensive approach to

maintaining SAP HANA’s stability and efficiency.

Key findings from this study underscore that:

1. Performance Optimization: Effective workload

management significantly enhances SAP HANA’s ability

to handle high transaction volumes and real-time

analytics without resource contention.

2. Granular Control with Workload Classes: Using

workload classes, administrators can tailor resource

allocation to specific applications or user groups,

ensuring that critical processes receive priority.

3. Dynamic Resource Adjustment: Admission control and

monitoring views provide insights into resource usage

Child_S4_WLC1

Total Memory limit - 100

Stmt Memory limit - 40

Stmt Thread limit - 10

Child_S4_WLC2

Total Memory limit - 100

Stmt Memory limit - 30

Stmt Thread limit - 5

Child_S4_WLC3

Total Memory limit - 100

Stmt Memory limit - 60

Stmt Thread limit - 70

Parent_S4

Total Memory limit - 100

Yash Patel / IJCTT, 72(11), 31-38, 2024

38

patterns, allowing for dynamic adjustments in response to

changing workload demands.

These strategies enable organizations to fully leverage

SAP HANA’s capabilities for critical business applications,

enhancing productivity and supporting key operations in

finance, retail, manufacturing, and supply chain management.

Future Work
While this study provides foundational strategies for

managing workloads in SAP HANA, there are areas for

further exploration that could enhance workload management

practices. Future research could focus on the following:

1. Advanced Machine Learning for Workload Prediction:

Integrating machine learning models to predict workload

patterns could allow SAP HANA to adjust resources

proactively. Predictive analytics could identify peak

usage times or potential bottlenecks, allowing for

preemptive resource allocation adjustments.

2. Real-Time Dynamic Workload Management: Enhancing

real-time workload adjustment capabilities to

automatically adapt to fluctuating resource demands

across OLTP and OLAP tasks. This would include

dynamically fine-tuning admission control and workload

classes based on instantaneous load and system

conditions.

3. Expanded Workload Classification: Further categorizing

workloads based on specific business functions or user

groups could enable more precise resource control,

aligning workload management closely with business

objectives.

4. Security and Compliance Considerations: As data

security and regulatory requirements grow, the research

could explore workload management methods that

integrate security policies, ensuring that sensitive

workloads are prioritized and protected under strict access

and compliance controls.

Future work in these areas would provide SAP HANA

administrators with even more refined tools and strategies for

effective workload management, meeting the evolving needs

of organizations and further enhancing SAP HANA’s role in

high-stakes, data-intensive environments.

References
[1] What’s New in SAP HANA 2.0 SPS 07 in Administration and Monitoring, SAP Community Blog, 2023. [Online]. Available:

https://community.sap.com/t5/technology-blogs-by-sap/what-s-new-in-sap-hana-2-0-sps-07-in-administration-and-monitoring/ba-

p/13554753

[2] Managing Workload with Workload Classes, SAP Help Portal, 2023. [Online]. Available:

https://help.sap.com/docs/SAP_HANA_PLATFORM/6b94445c94ae495c83a19646e7c3fd56/5066181717df4110931271d1efd84cbc.h

tml

[3] FAQ: SAP HANA Workload Management, SAP Note 2222250, 2023. [Online]. Available:
https://userapps.support.sap.com/sap/support/knowledge/en/2222250

[4] FAQ: SAP HANA Memory, SAP Note 1999997, 2023. [Online]. Available: http://sapway.com/WILLSYS/HANA_Note/1999997-

FAQ%20SAP%20HANA%20Memory.pdf

[5] FAQ: SAP HANA Threads and Thread Samples, SAP Note 2114710, 2023. [Online]. Available:

https://userapps.support.sap.com/sap/support/knowledge/en/2114710

[6] HANA Workload Management Deep Dive – Part III, SAP Community Blog, 2023. [Online]. Available:
https://community.sap.com/t5/technology-blogs-by-members/hana-workload-management-deep-dive-part-iii/ba-p/13568799#mapping

[7] Managing Workload with Workload Classes in SAP HANA, SAP HANA Administration Guide, 2023. [Online]. Available:

https://help.sap.com/doc/eb75509ab0fd1014a2c6ba9b6d252832/2.0.03/en-US/SAP_HANA_Administration_Guide_en.pdf

[8] Memory Management and CPU Thread Allocation, SAP HANA Administration Guide, 2023. Retrieved from

https://help.sap.com/doc/eb75509ab0fd1014a2c6ba9b6d252832/2.0.07/en-US/SAP_HANA_Administration_Guide_en.pdf

https://community.sap.com/t5/technology-blogs-by-members/hana-workload-management-deep-dive-part-iii/ba-p/13568799#mapping

