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Abstract - This study explores how IP Multimedia Systems (IMS) applications can be optimized and scaled effectively within 

telecom networks that rely on cloud infrastructure. IMS supports a wide range of services, including Voice over IP (VoIP), 

Video over IP, and Rich Communication Services (RCS), and utilizes standardized components such as P-CSCF, S-CSCF, 

I-CSCF, TAS, RCS, and MRF in accordance with 3GPP specifications. A unified method for gathering diverse operational 

data has been proposed, covering performance indicators from the network, infrastructure usage, application-level behavior, 

and surrounding environmental factors. From this pool of data, key indicators—like call success and failure rates, scam call 

detection, and voicemail activity—are extracted and analyzed. To make sense of these trends, several machine learning 

models, including Random Cut Forest (RCF), XGBoost, and a basic K-Nearest Neighbors (KNN) approach, are used. Their 

predictive strength is measured using common statistical tools such as R-squared (R²), Mean Squared Error (MSE), and 

Root Mean Squared Error (RMSE). This evaluation helps determine which model is most suitable for anticipating specific 

challenges such as SIP errors, call drops, latency issues, and network congestion. Based on these predictions, the system 

can automatically fine-tune its settings to adapt to changing network conditions. By integrating with CI/CD pipelines, these 

adjustments can happen in near real-time. The end result is a responsive and cost-effective framework for managing IMS 

resources in cloud-based telecom environments.  

 

Keywords - IP Multimedia System (IMS), Voice over IP (VoIP), Video over IP, Rich Communication Services (RCS), Cloud 

Platforms, Dynamic Scaling, Predictive Analytics, Machine Learning (ML), Random Cut Forest (RCF), XGBoost, K -Nearest 

Neighbors (KNN), R² (Coefficient of Determination), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), SIP 

Error Codes, Call Success Rate, Call Drop Rate, Registration Success Rate, Scam Call Detection, Voicemail Frequency, 

Network Congestion, Latency Forecasting, CI/CD Deployment Pipelines, Adaptive Network Configuration, Automated 

Resource Management component, formatting, style, styling, insert (key words). 

 

1. Introduction  
This paper focuses on improving the way IP 

Multimedia System (IMS) applications are scaled and 

optimized within cloud-based telecom infrastructures. IMS 

plays a central role in delivering services such as Voice over 

IP (VoIP), Video over IP, and Rich Communication 

Services (RCS). It relies on several core network 

elements—including the Proxy-CSCF, Serving-CSCF, 

Interrogating-CSCF, Telephony Application Server (TAS), 

Media Resource Function (MRF), and RCS components—

as outlined in the 3GPP standards. Together, these building 

blocks enable seamless multimedia communication in  

modern telecommunications systems. 

With the growing adoption of cloud-native 

architectures, telecom providers are shifting toward the use 

of virtualization tools such as virtual machines and 

containers. These technologies make it possible to build 

applications that are not tied to specific hardware, 

supporting deployment through Continuous Integration and 

Continuous Deployment (CI/CD) pipelines. This strategy 

allows systems to be rolled out smoothly across multiple 

environments, including public cloud services like AWS, 

Google Cloud, and Azure, as well as private platforms like 

Red Hat OpenStack, Platform9, and Rancher Kubernetes. 

By using these flexible platforms, service providers can 

dynamically adjust resources to meet fluctuating demand, 

supported by advanced auto-scaling features and AI/ML-

driven analytics. 

The study takes a closer look at several operational 

metrics—including call logs, hardware usage stats, alarms, 

and container resource utilization—to identify meaningful 

patterns. These data points are transformed into features 

suitable for building predictive models and spotting 

anomalies. Machine learning algorithms such as Random 

Cut Forest (RCF), XGBoost, and K-Nearest Neighbors 

(KNN) are then applied to forecast potential problems 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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before they impact performance. The insights gained are fed 

back into automated CI/CD workflows and orchestration 

tools, enabling swift and intelligent responses that help 

maintain service stability and ensure continuous availability 

of IMS functions.

 

 
Fig. 1 Network ML feedback Overview 

 

 The following Figure illustrates the integrated AI/ML-

driven architecture employed for real-time monitoring, 

analytics, and dynamic optimization of IMS network 

performance: 

2. Literature Review 
In recent years, the use of AI and machine learning has 

become increasingly important for monitoring and resolving 

issues in telecom networks. One notable contribution comes 

from Bagmar et al. (2025), who applied ensemble learning 

methods—including Random Forest and XGBoost—to 

accurately forecast latency and data throughput in  

environments using multiple cloud platforms.  

Their approach incorporated a wide range of metrics 

that covered not only network activity but also infrastructure 

conditions, application performance, and environmental 

influences. Impressively, their models achieved high  

accuracy, with R² values exceeding 0.95. 

Building on this, Huang et al. (2019) applied deep 

learning strategies to improve data throughput in 5G 

networks. They focused particularly on adjusting precoding 

methods dynamically in large-scale MIMO systems. This 

technique enabled better real-time forecasting of network 

performance. 

Nikravsh et al. (2016) explored a range of machine 

learning models, including variants of Multilayer 

Perceptrons (MLP and MLPWD) as well as Support Vector 

Machines (SVM). Their work showed that careful selection 

of features and algorithms is essential for making short-term 

predictions about network traffic with high precision. 

More recently, Pathak et al. (2024) introduced quantum 

computing into the mix. They developed a model known as 

VQR to boost the accuracy of predictions related to resource 

distribution. The model achieved a very low mean squared 

error (0.0081), suggesting strong potential for use in  

scenarios where precise decision-making is essential, such 

as in 5G infrastructure.   

Lastly, one of the researcher highlighted the 

transformative impact of AI on enterprise-scale multi-cloud 

environments, particularly for IMS applications. Their 

findings emphasized enhanced adaptability, proactive 

resource allocation, and dynamic scalability enabled by AI -

driven approaches. 

3. Methodology 
3.1. Data Collection and Feature Engineering 

 Data is aggregated from IMS network elements, 

encompassing metrics from network, infrastructure, 

applications, and environmental factors. Sourcing data from 

multiple applications with clearly defined metrics, KPIs, 

alerts, events, success states, and hardware utilization into a 

common structured data format is crucial. Ensuring that the 

data is thoroughly sanitized and devoid of any Personally 

Identifiable Information (PII) before feature engineering is 

essential to maintain compliance and data privacy.  

 The data ingestion pipelines utilized across all 

applications employ JSON file formats, streaming metrics 

into event streams consumed via a Kafka pipeline secured 

through mutual TLS authentication. This unified data 

collection endpoint ensures comprehensive coverage and 

consistently high-quality datasets. 
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3.1.1. Metrics Utilized 

• Network Metrics: Signal strength, bandwidth 

utilization, packet loss rate. 

• Infrastructure Metrics: Cloud provider metrics, 

resource utilization. 

• Application Metrics: Session counts, call types, and 

messaging volume. 

• Environmental Metrics: Geolocation data, distance to 

edge nodes. 

Feature extraction methods highlight critical KPIs such as:  

• Call Success Rate 

• Call Drop Rate 

• Registration Success Rate 

• Scam Caller Detection 

• Calls to Voicemail 

• Call Setup Failure Rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 

Fig. 1 Data Aggregation and Framing for ML adaptation with a feedback loop 
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3.2. ML Models and Predictive Analytics 

In training the machine learning models, a  sliding 

window approach was implemented to effectively capture 

time-based relationships in the data . Window sizes were 

adjusted between 5 and 30 minutes, depending on the 

specific prediction tasks and intervals required. Each model 

was intentionally chosen based on its suitability for 

analyzing distinct subsets of data drawn from various 

application sources. By focusing on specific types of 

anomalies, such as unexpected CPU spikes and software 

crashes, the models underwent rigorous adjustments in their 

temporal parameters to ensure accurate and consistent 

tracking of these events across multiple data metrics.  

This methodical refinement improved the predictive 

reliability and effectiveness of the anomaly detection 

framework. Anomalies, such as CPU spikes and software 

crashes, were closely monitored, with machine learning 

models dynamically adjusted through time series analysis to 

maintain a consistent and reliable stream of event data from 

diverse metrics. Hyperparameters were tuned using 

Bayesian optimization alongside a rigorous 5-fold cross-

validation process to achieve optimal performance. 

3.2.1. k-Nearest Neighbors (kNN) Overview 

The k-Nearest Neighbors (KNN) algorithm is widely  

used for both classification and regression tasks due to its 

simplicity and adaptability. It operates by comparing a new 

data point to its ‘k’ closest counterparts in the training 

dataset, using a distance-based similarity measure to guide 

classification or prediction. The value of ‘k’ typically ranges 

from 3 to 10 and is fine-tuned to improve model 

performance. Distance metrics like Euclidean, Manhattan, 

and Minkowski are commonly applied, each offering 

different advantages depending on the structure and 

distribution of the data. 

As an instance-based learning method, KNN does not 

involve a traditional training phase. Instead, it responds to 

new inputs by referencing patterns in historical data, making 

it both easy to implement and interpret. This characteristic 

makes KNN especially appealing in scenarios where model 

transparency and explainability are important . It is 

relatively straightforward to implement and interpret, 

making it popular for applications requiring transparent and 

understandable modeling processes. 
 

KNN Euclidean distance formula:  

 √∑ (𝑥 𝑖 − 𝑦𝑖 )2𝑘
𝑖=0  (1) 

KNN Manhattan distance formula: 

 ∑ |𝑥 𝑖 −𝑘
𝑖=1 𝑦𝑖 | (2) 

KNN Minkowski distance formula:  

 (∑ (|𝑥 𝑖 −𝑘
𝑖=1 𝑦𝑖 |)𝑞   )

1

𝑞        (3) 

Where q can be any real value between 0 and 1. 

 

3.2.2. Random Cut Forest (RCF) for Anomaly Detection 

Random Cut Forest (RCF) is an unsupervised machine 

learning algorithm specifically designed to detect anomalies 

in data streams. It operates by building multiple isolation 

trees through random partitioning of data, identifying points 

that require fewer splits as potential anomalies.  

The primary utility of RCF is detecting outliers or 

irregular data points, such as sudden spikes in CPU 

utilization, software crashes, or unusual patterns in system 

behavior. While traditionally leveraged for anomaly 

detection, RCF can also provide valuable insights into 

potential future failures by identifying early-stage 

deviations that precede significant system issues. This 

makes RCF particularly useful in proactively managing and 

mitigating network anomalies before they escalate into 

critical failures. 

 The method that uses a group of interconnected 

classifiers to generate decision trees. These classifiers are 
really just individual learners put together. A greedy 

approach is used to generate 𝑁 decision trees from a training 

subset. In equation (4), they can see that the decision trees 
are combined to make a majority-vote forecast for each class, 

denoted as y_i, and the corresponding probability, p_n(y_i) 
 

𝑅(𝑦𝑖) =
1

𝑁
∑ 𝑝𝑛 (𝑦𝑖 )𝑁

𝑛 =1          (4) 

 The hyperparameters used in the RF model are 
n_estimators=150 (the number of trees to be generated) and 

random_state=100 (for reproducibility and ensuring the 

same splits in the data). 

3.2.3. XGBoost  

XGBoost (short for eXtreme Gradient Boosting) is a 

highly efficient and accurate machine learning algorithm 

that has become a go-to choice for many predictive 

modeling tasks. It functions by gradually improving its 

predictions through the addition of decision trees—each 

new tree focuses on correcting the mistakes made by 

previous ones. This sequential learning strategy allows the 

model to reduce error over time. 

What sets XGBoost apart is its built-in regularization 

mechanism, which helps prevent overfitting and ensures 

that the model performs well even on new data. It also 

supports parallel processing, making it suitable for large 

datasets where computational speed is essential. Due to its 

ability to handle complex data relationships, XGBoost is 

particularly effective in telecom environments where 

multiple variables interact in nonlinear ways. 

Mathematically the model can be represented as an 

equation. (5) 

𝑦𝑖 = ∑ 𝑓𝑘 (𝑥 𝑖)
𝐾
𝑘=1              (5) 

Where: 

• 𝑦𝑖  is the final predicted value for the ith data  point 

• K is the number of trees in the ensemble 

• 𝑓𝑘
(𝑥 𝑖

) represents the prediction of the Kth tree for the 

ith data  point. 
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For the XGBoost algorithm, the optimization goal can 

be written as 

𝑂𝑏𝑗(𝜃) = ∑ 𝑙(𝑦𝑖
𝑛
𝑖=1 , 𝑦𝑖 )+∑ Ω(𝑓𝑘 )𝐾

𝑘=1                (6) 

Where l is the training loss function, 𝑦̂𝑖 is the prediction 

for the ith instance, and Ω represents the regularization term 

to control model complexity. 

 

4. Model Evaluation 
 To evaluate how well the models performed, three 

commonly used statistical metrics were applied: R-squared 
(R²), Mean Squared Error (MSE), and Root Mean Squared 

Error (RMSE). These indicators help quantify both the 
accuracy and reliability of the predictions generated by each 

algorithm. 

 

4.1. R-Square 
 The R² (R-squared value), also known as the coefficient 

of determination, measures how well the independent 

variables in a model explain the variance observed in the 
dependent variable. It ranges between 0 and 1, where a score 

closer to 1 means the model’s predictions align closely with  
actual outcomes. A higher R² generally reflects stronger 

predictive performance.. The value may be anything from 0 
to 1, with 1 indicating an ideal match and 0 indicating no 

explanatory power. Higher R² values indicate better model 

performance. The R² is calculated as formula (7): 
 

 𝑅2 = 1 −
∑(𝑦𝑖−𝑦𝑖̂)2

∑(𝑦𝑖 −𝑦)2  (7) 

Where: 

• 𝑦𝑖  is an actual value 

• 𝑦𝑖̂  is the forecasted value 

• 𝑦 is a  means of actual values 
 

4.2. Mean Squared Error (MSE ) 

 The MSE is a widely utilized statistic to evaluate the 

accuracy of a regression model. By squaring the 

discrepancies between actual observations and the outcomes 

predicted by the regression ML model, this metric 
determines the average. The MSE is calculated as formula 

(8): 

 𝑀𝑆𝐸 =
1

𝑚
∑(𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡 𝑢𝑟𝑒)2 (8) 

Where: 

• 𝑦𝑝𝑟𝑒𝑑  is the forecasted output, 

• 𝑦𝑡𝑢𝑟𝑒  is the real observation, 

• 𝛴 is the number of observations 

• 𝑚 is the sum of all observations. 

4.3. Root Mean Square Error (RMSE) 

 The RMSE calculated how far the data points were from 
the regression line. It is involved in the validation of 

predicting equations used in forecasting, climatology, and 

regression analysis, as well as measuring the spread of 

residuals. The RMSE is calculated as formula (9): 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 −𝑥𝑖)2𝑁

𝑖 =1

𝑁
 (9) 

Where ′𝑖′ corresponds to a single variable in each of the 

relevant columns, ′𝑁′  is equivalent to the number of 

complete data points, 𝑥 𝑖. This means actual observation of 

time series data and 𝑥 𝑖 means estimated time series. 

These machine learning models are trained specifically 

to anticipate significant performance issues such as SIP 

error codes and network congestion events. By 

comprehensively understanding the entire network call 

flow, the models effectively trace the root causes and origins 

of any observed anomalies, correlating these with specific 

software versions. The insights derived from this analysis 

are directly fed back into CI/CD pipelines, enabling 

automated tuning of configurations. In cases where the 

system detects elevated CPU usage, Kubernetes schedulers 

automatically scale the applications to handle increased 

demand efficiently. This proactive approach swiftly  

addresses network anomalies and optimizes performance 

and resource utilization, significantly reducing the need for 

manual oversight. 

 

 
Fig. 3 User Traffic Pattern Metrics Distribution  
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5. Results and Analysis 
The applied ML models exhibit high predictive 

accuracy, with XG Boost and RCF significantly  

outperforming baseline models, particularly in anomaly 

detection and predictive accuracy for latency and congestion 

events. The experimental setup involves collecting 

extensive data patterns from one million users. These data 

include sessions categorized as data sessions, voice 

sessions, video sessions, messaging activities, handovers, 

breakout sessions, and emergency sessions. This detailed 

data collection provides a comprehensive foundation for 

robust predictive analytics. 

The distribution of user traffic pattern metrics feeding 

into the data pipeline is illustrated in the pie chart above, 

showcasing the proportionate representation of each session 

type in the dataset. 

5.1. Experimental Setup 

 The outcomes of this study highlight the superior 
performance of the XG Boost model compared to the KNN 

and RCF models in predicting IMS network election 
resource allocation, utilization and error prediction, with the 

XG Boost model achieving higher R-squared and lower 
MSE and RMSE. The system was run on a locally installed 

server environment with a  64-core server with 128 GB of 

RAM, with a GTX 1660 Ti GPU installed, hosting Red Hat 
Host OS 7 and using Platform 9 Kubernetes cluster. The data 

collection and aggregation were done using the application 
Kafka Streams in JSON format and stored in S3 storage 

buckets. Exploratory data analysis and building regression 

models for IMS network application performance 
optimization were accomplished using Pandas, NumPy, 

Matplotlib, Seaborn, and scikit-learn libraries.  
 

5.1.1. Case 1: Call Success Rate  
This section compares the performance of Gradient 

Boosting Regressor, Random Cut Forest and K-Nearest 

Neighbors (KNN) for predicting IMS application call 
handing, as shown in Table I. The Gradient Boosting 

Regressor forms multiple decision trees to formulate the 
model and gives robust results, but it needs proper tuning. 

However, the simpler XG Boost model does better in this 
work; it attains higher R-squared, MSE, and RMSE, making 

it efficient in IMS call success rate prediction with traffic 
pattern in the allocated application resources. 

 
Table 1. Call Success rate prediction across ML Models for a 24-hour 

duration  

MODELS KNN 

Random 

Forest 

Regressor 

XG Boost 

R2-Score 0.923 0.945 0.958 

MSE 0.0059 0.0034 0.0029 

RMSE 0.0858 0.0580 0.0403 

 

5.1.2. Case 2: SIP Error prediction for 480 and 503 

 The experimental setup for this SIP error trend uses 2 
weeks of user call model, where a busy hour pattern of 10000 

calls was used to introduce known SIP error failures to fine-
tune the model and then later use the ML models to detect 

abnormalities and adjust to new error trends.  

 

 
Fig. 4 Call Success Rate analysis and prediction by ML Models 
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Table 2. SIP Error rate prediction across ML Models for 14 days duration   

SIP Error Code Models R² Score MSE RMSE 

480 KNN 0.910 0.0065 0.0806 

480 Random Forest 0.937 0.0039 0.0624 

480 XGBoost 0.952 0.0030 0.0548 

503 KNN 0.905 0.0070 0.0837 

503 Random Forest 0.930 0.0041 0.0640 

503 XGBoost 0.949 0.0031 0.0557 

Fig. 5 SIP Error 480 pattern analysis and prediction by ML Models 

 

 
Fig. 6 SIP Error 503 pattern analysis and prediction by ML Models 
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 The results indicate that the XG Boost model 
consistently provides superior predictive accuracy for SIP 

error codes 480 and 503, as demonstrated by higher R² scores 
and lower error metrics (MSE and RMSE) compared to 

Random Forest and KNN models. These findings highlight 
XG Boost’s effectiveness in accurately forecasting and 

identifying SIP-related network anomalies, thereby offering 

robust support for proactive network management and 
improved user experience. 

 
5.1.3. Case 3: Application congestion   

To assess how well the models could detect congestion, 

a controlled experiment was carried out in which call traffic 

was steadily increased—from 500 to over 2,000 calls per 

hour. The test continued until the system reached its 

resource limits and began showing signs of overload. 

During this process, the system continuously logged critical 

metrics such as CPU usage, memory consumption, response 

times, and error rates. 

These metrics were then analyzed using various 

machine learning models to pinpoint the exact threshold 

where application performance began to degrade. The 

results demonstrated how effectively each model could 

anticipate congestion and offer insights for proactive 

scaling. This kind of early detection is valuable for avoiding 

service interruptions and optimizing resource use before 

performance bottlenecks occur. 

Table 3. CPU Overload monitoring and prediction via ML Models (Call processing)  

Model R2 Score MSE RMSE 

XGBoost 0.9289241126340176 3.7178398303332414 1.928170072979363 

RCF 0.35117852299081787 33.938574942855944 5.825682358561608 

KNN 0.031947429063369115 50.636925397110836 7.115962717518329 

 
Fig. 7 CPU overload detection via ML models 

 

Throughout this process, several critical performance 

indicators were continuously monitored, including CPU 

usage, memory consumption, latency in system response, 

and the frequency of application-level errors.  

 

The collected data was then fed into the trained machine 

learning models to assess their ability to pinpoint when the 

system began to experience performance degradation due to 

overload. 

 

Each model’s output revealed how accurately it could 

identify the tipping point at which system resources became 

saturated. These insights proved valuable for enabling 

proactive resource scaling and effective management of 

system performance. The results showed clear differences 

in how each algorithm handled overload detection. 

For example, XGBoost stood out by delivering precise 

predictions with lower error margins, as indicated by its high  

R² score and reduced Mean Squared Error (MSE) and Root 

Mean Squared Error (RMSE). In contrast, the KNN model 

struggled under dynamic load conditions. Its predictions 

were more prone to inaccuracy, especially as call volume 

surged. This is likely due to KNN’s reliance on local data 

points, which can limit its adaptability to rapidly changing 

system conditions. 

Random Cut Forest (RCF) performed moderately well, 

detecting anomalies effectively but not as precisely as 

XGBoost. Unlike KNN, RCF is better suited for identifying 

outliers and early deviations, which gives it an advantage in 

spotting emerging congestion before full resource 

exhaustion occurs. 
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Overall, the experiment confirmed that models like 

XGBoost are more robust in anticipating and responding to 

overload conditions, offering strong potential for real-time 

congestion management in IMS-based cloud environments. 

5.2. Generative AI for Network Optimization 

Once anomalies are detected within the network, the 

system leverages generative AI to provide actionable 

guidance on how to adjust configuration settings in real 

time. These AI-driven recommendations may include 

retuning internal timers, prioritize certain types of resources, 

or even rolling back recent configuration changes that may 

have introduced instability. 

What makes this system particularly effective is its 

integration with CI/CD pipelines and network orchestrators, 

allowing these suggested adjustments to be carried out 

automatically—without manual intervention. For example, 

during periods of high traffic when CPU usage crosses 

critical thresholds (typically around 70–80%), the system 

initiates auto-scaling processes to allocate additional 

application resources. Conversely, when traffic subsides 

and CPU usage drops below 50%, the system scales 

resources back down to conserve costs. 

This dynamic adjustment process significantly  

enhances operational efficiency. It ensures that telecom 

services remain responsive and stable, even under varying 

demand levels, while also keeping infrastructure costs under 

control. In essence, generative AI enables a shift from 

reactive troubleshooting to proactive and autonomous 

network management. 

6. Conclusion and Future Work 
This study highlights the strong potential of using AI 

and machine learning techniques to improve the 

performance and scalability of IMS applications running on 

cloud platforms. The models demonstrated reliable 

predictive capabilities, helping telecom systems respond 

more intelligently to network conditions and resource 

demands. 

Future research could focus on refining these predictive 

models through closer integration with live, real-time data 

streams. Enhancing the role of generative AI will also be 

key, especially for enabling more autonomous decision-

making in network configuration and management. 

A unified analytics toolset across network monitoring 

systems would bring added value—making it easier to 

correlate data from different parts of the infrastructure and 

apply machine learning models more consistently. This 

level of integration could lead to even more accurate 

forecasting and faster, smarter responses to changes in the 

network. 

One particularly promising area for future development 

is the optimization of Radio Access Networks (RAN), 

where AI/ML techniques could help manage user mobility 

more effectively. By analyzing network behavior and 

predicting user state handovers in advance, these models 

could ensure smoother transitions between cells, ultimately 

improving service quality and user experience. 
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