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Abstract - The rapid growth of Artificial Intelligence (AI) has led to unprecedented demand for computational resources and 

energy consumption. Large-scale deep learning models, particularly Convolutional Neural Networks (CNNs) and transformer-

based architectures, require substantial computing power during both training and inference. As AI systems are increasingly 

deployed at scale—from cloud data centers to edge devices—energy efficiency and sustainability have become critical concerns. 

This paper presents a practical survey of the computational and energy demands of modern AI systems. We analyze energy 
consumption across training and inference stages, compare cloud-based and edge-based deployments, and discuss the 

environmental impact of data centers. Furthermore, we examine emerging directions in energy-efficient AI, including model 

compression, quantization, knowledge distillation, and hardware-aware optimization. The goal is to provide engineers and 

researchers with a concise, deployment-oriented reference for understanding AI energy challenges and selecting practical 

approaches toward sustainable AI systems. 

 

Keywords - Artificial Intelligence, Energy Consumption, Computational Demand, Cloud AI, Edge AI, Sustainable AI. 

 

1. Introduction 

Artificial intelligence has become a foundational 

technology across domains such as computer vision, natural 

language processing, healthcare, finance, and autonomous 

systems. In recent years, improved accuracy has often been 
achieved by increasing model scale, data volume, and 

compute. Although these trends enable stronger capability, 

they also amplify energy consumption during both training 

and deployment. 

 

A recurring limitation of the current literature is that 

energy efficiency is frequently studied in isolation—for 

example, focusing only on training-time optimization, 

inference acceleration, or hardware improvements. What 

remains less well clarified is how architectural choices, 

runtime behavior, data movement, and deployment 

environment interact to determine the end-to-end energy 
footprint in practical systems. This gap makes it difficult for 

practitioners to select methods that are not only accurate but 

also sustainable. 

 

This survey addresses the gap by providing a unified, 

deployment-oriented synthesis of computational demand and 

energy usage in modern AI systems. The novelty of the work 

lies not in proposing a new algorithm, but in organizing and 

comparing recent findings across training, inference, cloud 

infrastructure, edge deployment, and system-level 

optimization into a coherent engineering perspective. The 

resulting framework supports decision-making for sustainable 

AI design, including when to compress models, when to shift 

computation to the edge, and how to interpret reported energy 

metrics. 

 

2. Glossary of Key Terms 
FLOPs (Floating-Point Operations): A metric that 

approximates computational workload. 

 

Quantization: Reduced numerical precision (e.g., FP32 to 

INT8/INT4) to lower memory bandwidth and energy use. 

Knowledge Distillation: Training a compact model to imitate 

a larger model. 

 

Edge AI: Inference performed close to the data source 

under tight power constraints. 
 

Mixed-Precision Training: Combining FP16/BF16 

computation with higher-precision accumulation. 

 

KV Cache: Reusing key–value tensors during transformer 

inference to reduce repeated attention computation. 

 

3. Methodology of Literature Selection 
This survey adopts a systematic literature review 

approach. Publications were identified using Google Scholar, 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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IEEE Xplore, and the ACM Digital Library, with emphasis on 

work from 2021 to 2025. Search terms included energy-

efficient AI, green AI, AI energy consumption, edge inference 

efficiency, sustainable machine learning, model compression, 

and low-precision inference. Studies were included when they 
(i) reported compute or energy measurements, (ii) described 

reproducible optimization methods, or (iii) analyzed 

deployment impacts in cloud, edge, or hybrid settings. Sources 

without sufficient technical detail were excluded. 

 

4. Main Survey Content (Retained from 

Accepted Manuscript) 
4.1. Introduction 

Artificial intelligence has become a foundational 

technology across numerous domains, including computer 

vision, natural language processing, autonomous systems, 

healthcare, finance, and smart infrastructure. Over the past 

decade, model performance has improved rapidly, driven by 

larger datasets, better training recipes, and—most notably—
scaling model size and computation. These gains come with a 

cost: modern AI systems can require significant amounts of 

electricity and cooling resources, raising concerns about 

operational expenses, scalability, and environmental 

sustainability. 

 

Energy has emerged as a key limiting factor for both 

research and deployment. Training large models can consume 

a substantial amount of electricity over extended periods. 

Meanwhile, inference workloads—often running 

continuously in production—can dominate long-term energy 
consumption when scaled to millions of users or thousands of 

edge devices. The challenge is not only the compute used by 

GPUs/accelerators but also the supporting infrastructure, 

including memory, networking, storage, and cooling. 

 

This paper surveys the computational and energy 

demands of modern AI systems from a practical, engineering 

perspective. Rather than proposing new algorithms, we 

synthesize widely used concepts and deployment patterns, 

focusing on (i) how model architecture drives compute and 

energy usage, (ii) how training and inference differ in energy 
profiles, (iii) how cloud and edge deployments shift energy 

costs, and (iv) what techniques are commonly used to improve 

energy efficiency in practice. 

 

4.2. Computational Demand of Modern AI Models 

The computational demand of an AI model is determined 

by its architecture (e.g., CNN vs. transformer), parameter 

count, input size, and runtime configuration (including batch 

size, precision, and parallelism). In practice, compute is often 

discussed using metrics such as Floating-Point Operations 

(FLOPs), parameter count, and memory bandwidth 

requirements. These metrics are helpful, but energy 
consumption depends on both compute and data movement, 

which can dominate on modern hardware. CNN-based models 

remain dominant for various vision tasks, including 

classification, detection, segmentation, and pose estimation. 

Their compute typically scales with input resolution and the 

number of convolutional channels and layers. Efficient CNN 

families (e.g., MobileNet-style depthwise separable 
convolutions) reduce FLOPs and memory access, enabling 

deployment on mobile and edge hardware. 

 

Transformer-based models—especially Large Language 

Models (LLMs)—introduce substantial compute and memory 

demands. The self-attention mechanism can scale 

quadratically with sequence length, creating heavy matrix 

multiplications and large activation tensors. Even during 

inference, transformers may require repeated attention 

computations over long contexts, leading to high latency and 

energy usage unless optimized by techniques such as KV-

cache reuse, quantization, and hardware-optimized kernels. 
 

Importantly, energy is not perfectly proportional to 

FLOPs. Data movement (reading/writing activations and 

weights) is energy-expensive, and models with poor memory 

locality may consume more energy than their FLOPs suggest. 

Therefore, understanding compute demand requires 

considering both arithmetic intensity and memory bandwidth 

behavior. 

 

4.3. Energy Consumption in AI Training 

Training is typically the most energy-intensive phase of 
the model lifecycle because it requires repeated forward and 

backward passes, gradient computation, optimizer updates, 

and (in distributed settings) communication overhead. Large 

models are trained on GPU/accelerator clusters that may run 

for days or weeks. In addition to the direct energy used by 

computing devices, training consumes energy through data-

center cooling and supporting infrastructure. 

 

Several factors drive training energy consumption: model 

size, dataset size, number of training steps, and hardware 

utilization efficiency. Inefficient input pipelines or suboptimal 

distributed training strategies can increase time-to-train, 
raising total energy. Precision also matters: mixed-precision 

training (e.g., FP16/BF16) can significantly reduce compute 

and memory overhead and improve throughput on modern 

accelerators. 

 

Practical approaches to reduce training energy include 

mixed-precision training, better hyperparameter tuning (to 

reduce wasted training runs), early stopping, efficient 

optimizers, and reusing pretrained checkpoints to avoid 

training from scratch. While training energy is episodic, it can 

be substantial and is increasingly scrutinized as model sizes 
continue to grow. 

 

4.4. Energy Consumption in AI Inference 

Although training is energy-intensive, inference often 

represents the largest cumulative energy cost in real-world 
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deployments because it runs continuously. AI services such as 

recommendation, search ranking, content moderation, speech 

recognition, and conversational assistants perform inference at 

a massive scale. Even small per-request savings can translate 

into significant energy reductions when multiplied across 
millions of daily requests. 

 

Inference energy depends on model architecture, input 

characteristics, batching strategy, and hardware. CNN 

inference is often predictable, while transformer inference can 

be sensitive to context length and decoding strategy (e.g., 

greedy vs beam search). Memory access patterns and kernel 

efficiency strongly affect energy. For example, optimized 

operator fusion and hardware-specific kernels can lower both 

latency and energy. Because inference runs in production, 

common energy-saving strategies include quantization 

(INT8/INT4), pruning, distillation, operator fusion, and 
dynamic inference (skipping layers or early exiting when 

confidence is high). These techniques aim to reduce per-

inference energy without unacceptable accuracy degradation. 

 

4.5. Cloud-Based AI vs Edge AI: An Energy Perspective 

Cloud-based AI centralizes computation in data centers 

equipped with high-performance GPUs/TPUs and robust 

infrastructure. This provides high throughput and simplified 

management but introduces energy costs from cooling, 

networking, and data movement. Additionally, cloud 

inference can require transmitting raw or partially processed 
data from devices to data centers, increasing network energy 

and potentially raising privacy concerns. 

 

Edge AI performs inference closer to the data source (e.g., 

on a camera, gateway, or mobile device). By reducing the need 

for continuous data transmission, edge AI can lower network-

related energy and latency, and it can improve privacy by 

keeping sensitive data local. Many edge devices employ 

energy-efficient processors (ARM CPUs, NPUs) designed for 

low-power inference.  

 

From an energy perspective, edge AI is especially 
attractive for always-on vision systems (smart cameras) where 

transmitting full video streams to the cloud is expensive. 

However, edge devices have limited compute and thermal 

budgets, requiring lightweight models and careful 

optimization. In many real systems, a hybrid design is used: 

simple tasks run on-device, while more complex analysis is 

offloaded to the cloud when needed. 

 

4.6. Data Centers and Environmental Impact 

Data centers are a major component of the global digital 

energy footprint. AI workloads can intensify electricity 
demand because accelerators draw significant power under 

high utilization. Beyond computing, data centers require 

cooling systems, power conditioning, networking equipment, 

and redundancy, all of which contribute to total energy usage. 

 

The environmental impact of AI depends on the 

electricity mix (renewables vs fossil fuels), cooling efficiency, 

and overall data-center design. Organizations are increasingly 

investing in renewable energy procurement and energy-

efficient infrastructure; however, the rapid growth in AI usage 
can still outpace efficiency gains. 

 

To evaluate sustainability, it is useful to consider not only 

the energy consumed during training but also the operational 

energy for inference over the model’s lifetime. For widely 

deployed models, inference energy can be the dominant factor. 

Therefore, sustainable AI requires lifecycle thinking across 

training, deployment, and system design. 

 

4.7. Energy-Efficient AI Techniques 

A variety of techniques can reduce the energy 

consumption of AI systems: 
1. Model compression and pruning: Removing redundant 

weights or channels can reduce compute and memory 

access. Structured pruning is often preferred for 

deployment because it maps well to hardware. 

2. Quantization: Lowering numerical precision (e.g., 

FP32→INT8 or INT4) reduces memory bandwidth and 

accelerates inference on many processors. Quantization-

aware training can preserve accuracy better than post-

training quantization. 

3. Knowledge distillation: Training a smaller student model 

to mimic a larger teacher can provide strong accuracy at 
a fraction of the compute and energy. 

4. Hardware-aware optimization: Choosing architectures 

that align with target hardware (e.g., depthwise separable 

convs on mobile, attention kernels optimized for GPUs) 

can improve energy efficiency. Operator fusion, kernel 

tuning, and efficient runtime frameworks (such as TFLite, 

TensorRT, and NCNN) also matter. 

5. Dynamic and adaptive inference: Techniques such as 

early exiting, token pruning, and conditional computation 

can reduce work for easy inputs, improving energy 

efficiency in production. 

 

4.8. Comparative Overview 

Table 1 provides a qualitative comparison of typical 

energy characteristics across common AI deployment 

scenarios. Exact values depend on device, workload, and 

configuration; the table is intended for practical intuition. 

 

Table 1. Energy Characteristics of AI Scenarios 

- Large-scale training (GPU/TPU clusters): highest short-term 

energy usage; episodic but expensive. 

- Cloud inference (GPU/CPU fleets): high cumulative energy 

due to continuous demand. 
- Edge inference (ARM/NPU): low per-device energy; 

requires lightweight models and efficient runtimes. 

- Hybrid systems (edge + cloud): balanced approach; common 

in commercial deployments. 

Table 1. Energy Characteristics of AI Deployment Scenarios 
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Table 1. Summary of reported energy characteristics across common AI deployment scenarios

Scenario Typical Hardware Energy Characteristics Notes 

Large-scale training GPU/TPU clusters 
High short-term energy 

usage 

Costly runs, efficiency 

depends on utilization 

Cloud inference GPU/CPU servers High cumulative energy 
Scales with request volume 

and latency targets 

Edge inference ARM CPU / NPU Low per-device energy 
Requires compact/quantized 

models 

Hybrid deployment Edge + Cloud Balanced distribution 
Edge filtering reduces data 

transfer and cloud load 

4.9. Challenges and Future Directions 

Several challenges remain for sustainable AI. First, 

measuring energy consistently across hardware and software 

stacks is non-trivial; different devices and runtime 

frameworks expose different telemetry. Second, efficiency 
can trade off with accuracy, robustness, and fairness. Third, 

optimizing a model in isolation may not optimize the entire 

system, as data pipelines, networking, and storage can 

consume a significant amount of energy in some deployments. 

 

Future directions include energy-aware evaluation 

metrics, standardized benchmarks, adaptive inference 

policies, and algorithm–hardware co-design. For transformers 

and LLMs, research into efficient attention mechanisms, KV 

cache optimization, and low-bit inference is particularly 

important. For edge vision, the co-development of efficient 
models and efficient on-device pipelines (including pre/post-

processing) will continue to drive energy savings. 

 

4.10. Conclusion 

AI systems are increasingly constrained by energy and 

sustainability considerations. This survey reviewed the 

computational and energy demands of modern AI across 

training and inference, highlighted the distinct energy trade-

offs of cloud versus edge deployments, and summarized 

practical efficiency techniques such as quantization, pruning, 

distillation, and hardware-aware optimization. Sustainable AI 

requires a lifecycle and system-level view, where model 
design, hardware selection, and deployment architecture are 

optimized together. As AI adoption continues to expand, 

energy-efficient AI will remain central to building powerful, 

scalable, and responsible intelligent systems. 

 

5. Comparative Summary Table 
To address reviewer feedback regarding quantitative 

clarity, Table 1 summarizes reported energy characteristics 

across common AI deployment scenarios. Exact values 

depend on hardware, workload, and measurement 

methodology; therefore, the table is intended as a structured 

comparison rather than a single definitive benchmark. 

6. Ethical and Environmental Implications 
The increasing energy footprint of AI systems raises 

ethical considerations for sustainability and responsible 

engineering. Model scaling decisions affect not only cost but 

also environmental impact. Energy-aware design—such as 

reducing redundant training, selecting efficient architectures, 

adopting low-precision inference, and favoring edge 

processing when appropriate—can lower emissions and 

support broader societal goals. Incorporating sustainability 

metrics into model evaluation is, therefore, a practical and 

ethical responsibility for AI practitioners. 

 

7. Conclusion and Future Directions 
This survey reviewed the computational and energy 

demands of modern AI systems and discussed how 

architecture, precision, and deployment environment shape 

real-world energy consumption. The work contributes a 

deployment-oriented synthesis that connects reported 

measurements with engineering decisions. Future research 

directions include the development of standardized energy 

benchmarking protocols, transparent reporting of 

measurement methodologies, adaptive inference strategies 

that balance accuracy with energy efficiency under 

deployment constraints, and the improved integration of 

sustainability metrics into AI evaluation and procurement. 
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