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Abstract - Improving treatment decisions and getting clinical outcomes is given much importance in the early detection of breast 

cancer from microscopic images. Textural descriptors obtained from the “Gray-Level Co-occurrence Matrix (GLCM)”, 

combined with structural representations derived from the “Histogram of Oriented Gradients (HOG)”, are presented in this 

work. To maintain consistent preprocessing, all microscopic images were resized, converted into grayscale, and normalized. 

Extraction of “Gray-Level Co-occurrence Matrix” features such as “contrast, correlation, energy, and homogeneity” was done. 

And “Histogram of Oriented Gradient” captured the edge orientation patterns. To train a Euclidean-distance “K-Nearest 

Neighbors (KNN)” classifier with a 70/30 train-test split, these feature sets were concatenated and used. An “accuracy” of 

0.9167, “precision” of 0.8889, “sensitivity” of 0.9412, “specificity” of 0.8947, and an “F1-score” of 0.914 were produced by 

the GLCM+KNN model during evaluation. An “accuracy” of 0.8333, “precision” of 0.9231, “sensitivity” of 0.7059, 

“specificity” of 0.9474, and an “F1-score” of 0.8000 were achieved by the HOG+KNN model. These observations suggested 

that “Gray-Level Co-occurrence Matrix” features contributed more significantly to positive-class identification, whereas 

Histogram of Oriented Gradients features strengthened the discrimination of negative cases. Computationally efficient, 

interpretable, and suitable for diagnostic settings with limited resources are considered as some of the main characteristics of 

the proposed hybrid model. 

 

Keywords - Breast cancer, Euclidean distance, “Gray-Level Co-occurrence Matrix (GLCM)”, “Histogram of Oriented Gradients 

(HOG)”, “K-Nearest Neighbors (KNN)”. 

  

1. Introduction 
 A significant proportion of cancer-related deaths among 

women being attributed to breast cancer is the main reason 

why breast cancer is widely regarded as one of the most 

critical global health concerns. As the timely identification of 

malignant tissue is known to greatly increase the likelihood of 

successful clinical intervention, improved treatment outcomes 

were achieved when early diagnosis was performed [1]. 

Affected by observer variability, particularly in high-volume 

diagnostic settings, the manual inspection of microscopic 

images, traditionally used for diagnosis, was considered labor-

intensive. Consequently, in recent years, the demand for 

automated and reliable “Computer-Aided Detection (CAD)” 

systems has increased substantially. 

 

 Deep learning architectures such as “Convolutional 

Neural Networks (CNNs)” have demonstrated strong 

performance in breast cancer recognition. But large quantities 

of labeled data and high computational power are typically 

required, and these are the reasons that their suitability for 

resource-limited clinical environments is restricted [2][3]. For 

lightweight, interpretable, and computationally efficient 

alternatives for early-stage cancer detection, handcrafted 

feature extraction techniques such as the “Gray-Level Co-

occurrence Matrix (GLCM)” and the “Histogram of Oriented 

Gradients (HOG)” are considered. 

 

 GLCM provided a statistical description of textural 

relationships within tissue images. And the ability of this 

model to capture spatial gray-level dependencies has led to its 

widespread use in distinguishing normal and abnormal 

structures [4]. HOG was used to extract structural and edge-

based representations that reflect morphological variations 

associated with cancerous cells in a similar manner [5].  

 

 A more comprehensive characterization of tissue 

appearance was achieved when these complementary features 

were combined, leading to improved classification reliability. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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For KNN’s simplicity, non-parametric behaviour, and strong 

performance on small to moderate datasets, the KNN classifier 

was employed in this study. 

 

 For the binary classification of microscopic breast tissue 

images into normal and cancerous categories, a hybrid 

GLCM–HOG feature-extraction model integrated with a 

KNN classifier was proposed in this work. The system was 

designed so that accuracy, interpretability, and computational 

efficiency are balanced, making it suitable for real-time or 

low-resource diagnostic workflows. Performance was 

evaluated using accuracy, precision, sensitivity, specificity, 

and F1-score to ensure that the classifier’s effectiveness is 

assessed comprehensively. 

 

2. Literature Survey 
 Automated breast cancer detection from medical images 

remains an active research area because it can reduce 

diagnostic variability and speed up clinical workflows. 

Traditional handcrafted features and lightweight classifiers 

continue to be attractive for small datasets and resource-

constrained environments, while more recent work blends 

handcrafted and learned features to improve robustness [6]. 

 

 Texture descriptors such as GLCM are widely used in 

medical imaging because many pathological changes appear 

as alterations in tissue texture. Survey studies report that 

properly tuned GLCM statistics (contrast, correlation, energy, 

homogeneity) remain highly effective across modalities when 

combined with careful preprocessing and quantization 

choices[6]. 

  

 Edge and gradient descriptors capture complementary 

structural information. Several applied studies have adapted 

HOG or HOG-like descriptors to mammograms and 

histopathology images, showing that gradient-based features 

improve the detection of morphological abnormalities and 

help reduce false positives when used with region-of-interest 

preprocessing. [7][8]. 

 

 Hybrid feature fusion — for example, combining GLCM 

with deep semantic features or with HOG — has been shown 

to improve classification accuracy and robustness to staining 

and illumination variability. Notably, methods that fuse textual 

(GLCM) and learned (deep) or structural (HOG) 

representations obtain better discrimination than single-

feature pipelines on breast histopathology datasets. [7][9]. 

  

 Classifier choice matters: for moderate feature vectors, 

“K-Nearest Neighbors (KNN)” and its variants (distance 

weighting, optimized k, ensemble KNN) are competitive, 

offering simplicity, interpretability, and low inference cost. 

Comparative analyses of KNN variants on biomedical datasets 

highlight that optimized KNN variants can improve stability 

and average accuracy when properly tuned[10]. 

 

3. Methodology 
3.1. Dataset 

 The experimental analysis in this work was performed 

using a publicly accessible breast cancer histopathology 

dataset containing microscopic tissue images categorized into 

normal and cancerous groups. Under standardized staining 

and imaging conditions, the collection, composed of RGB 

slides, was prepared so that reliable visual quality could be 

maintained across all samples. Before processing, to ensure 

that feature extraction could be performed consistently, all 

images were resized to a uniform resolution. To allow 

balanced training and evaluation of the proposed feature-

based KNN framework, adequate representation of both 

classes was provided by the dataset [11]. 

 

3.2. Image Preprocessing 

 Through careful preprocessing of the input images, 

reliable classification was ensured. To remove color 

redundancy and to make sure that both structural and texture 

information are emphasized, each image was first converted 

from RGB to grayscale. Using min–max scaling, all pixel 

intensities were normalized to the range [0,1], which further 

allowed feature extraction to be stabilized, and a fair 

comparison across samples was maintained. To preserve the 

consistency during GLCM and HOG feature computation, all 

images were resized to a predetermined dimension. Noise was 

reduced, uniform contrast distribution was achieved, and each 

image was prepared for accurate texture and gradient feature 

extraction through this preprocessing pipeline. 

 

3.3. GLCM Feature Extraction 

 To extract texture descriptors that quantify spatial 

intensity relationships within breast-tissue images, the “Gray-

Level Co-occurrence Matrix (GLCM)” was employed. 

GLCMs were computed using fixed orientations and pixel 

offsets for each grayscale image. Four standard statistical 

features were derived from these matrices. And those 

statistical features are Contrast, Correlation, Energy, and 

Homogeneity. To capture variations in texture patterns that 

often indicate the presence of abnormal cell structures, these 

descriptors are highly recommended. To form the first 

component of the hybrid feature representation, the extracted 

GLCM features were stored as numerical vectors. 

 

3.4. HOG Feature Extraction 

 To obtain structural and boundary-based information, the 

“Histogram of Oriented Gradients (HOG)” was used. To allow 

local shape and edge patterns that differentiate normal and 

malignant tissue formations to be captured, gradient directions 

were computed across small spatial regions (cells) and were 

aggregated into orientation histograms. Each image was 

divided into uniform cells, gradients were calculated, and 

block-wise normalization was applied to reduce the 

illumination variability. The resulting HOG descriptors were 

then flattened into a feature vector and later combined with the 

GLCM features. 
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3.5. Hybrid Feature Construction 

 The GLCM and HOG vectors were concatenated to form 

a unified feature representation so as to ensure that the 

complementary strengths of texture and structural information 

are utilized. For higher-magnitude gradient values not to 

dominate the texture statistics, the combined features were 

normalized before classification was performed. All features 

contributed proportionately to the distance calculations used 

by the classifier were ensured by this step. 

 

3.6. KNN Classification 

 To train the “K-Nearest Neighbors (KNN)” classifier, the 

concatenated feature vectors were used. For measuring 

similarity in continuous feature spaces, the Euclidean distance 

was found to be effective, and that is the main reason why this 

metric was selected. The value of k is determined 

experimentally. To achieve the optimal classification 

performance, the value of k was determined experimentally. 

All feature vectors were stored by the classifier during 

training. The class label of each input sample was predicted 

based on the majority class among its k nearest neighbors 

during the testing part. Interpretability, low computational 

cost, and strong performance are some of the main reasons 

why the KNN model was chosen. 

 

3.7. Train-Test Split and Evaluation 

 70% of the dataset was taken for training, and the 

remaining 30% of the dataset was taken for testing. In both the 

training and testing parts of the dataset, all preprocessing steps 

and feature extractions have been applied consistently. 

Standard metrics such as accuracy, precision, sensitivity, 

specificity, and F1-score were used for the evaluation of the 

performance of the model. And each of the metrics was 

computed from the confusion matrix. A comprehensive 

assessment of the classifier’s ability to detect cancerous tissue 

while minimizing false predictions was provided by these 

metrics. 

 

4. Model Selection 
 For achieving reliable breast cancer classification while 

also maintaining a balance between predictive accuracy and 

computational complexity, the selection of an appropriate 

learning model is regarded as pivotal. Deep-learning models 

such as “ResNet50” have demonstrated strong performance in 

mammography and histopathology image analysis due to the 

fact that these networks learn hierarchical representations 

from large collections of images [12]. Extensive training 

datasets, substantial computational resources, and longer 

convergence times are typically required by such 

architectures, as they may restrict their suitability for 

diagnostic environments with limited resources. 

  

 GLCM texture statistics and HOG gradient features are 

basically the handcrafted descriptors and are present in the 

feature set, which is highlighted in this study. A structured, 

continuous, and moderately sized input space is formed. A “K-

Nearest Neighbors (KNN)” classifier is adopted by basically 

considering these characteristics. KNN is well suited For 

continuous numerical feature vectors and to operate using 

similarity measures rather than complex parameterized 

learning, a KNN is well suited for this task. 

  

 Complementary textural and structural information is 

provided by the hybrid GLCM–HOG feature vector. And it 

further allowed KNN to distinguish subtle variations between 

normal and cancerous tissue. Its performance depended on the 

selection of an appropriate value for k and a suitable distance 

metric, as KNN’s decisions are determined by the proximity 

in feature space. When used with continuous handcrafted 

features, the effectiveness needed to be taken care of. So, this 

is why the Euclidean distance was chosen in this work. By 

evaluating multiple choices and selecting the one that provides 

the most consistent and accurate classification results, the 

optimal value for k is determined empirically. 

  

 Simplicity, interpretability, and minimal dependence on 

hyperparameters are some of the primary advantages of KNN. 

Backpropagation and long training cycles are required by deep 

neural networks, whereas KNN relies on stored feature vectors 

and direct distance comparisons. And it is made 

computationally lightweight and suitable for portable 

diagnostic systems. Strong performance has been shown in 

breast cancer detection research by similar lightweight 

classification approaches when handcrafted features with 

traditional machine-learning models are combined [13][14]. 

An efficient, interpretable, and effective classifier tailored to 

the hybrid GLCM–HOG representation is the main reason that 

justified the selection of KNN in this work. 

 

5. Proposed Model 
5.1. Overview 

 The proposed model is designed by integrating 

handcrafted texture and gradient-based descriptors with a 

lightweight supervised network so that breast-tissue images 

can be classified into cancerous and non-cancerous categories. 

Unlike deep convolutional models that require large datasets 

and heavy training procedures, this hybrid system is 

constructed using GLCM for texture characterization, HOG 

for structural boundary analysis, and a compact two-neuron 

discriminative network for decision-making. The workflow is 

composed of preprocessing, feature extraction, dimensionality 

reduction, normalization, classifier training, and performance 

evaluation. Through this architecture, both micro-texture 

variations and global orientation patterns associated with 

malignant tissues are effectively captured while a low 

computational cost is maintained. 

5.2. Feature Extraction Framework 

 Let an input breast-tissue image 𝐼(𝑥, 𝑦)of size 128 ×
128be, be converted to grayscale and normalized to the range 

[0,1]. Two complementary feature-extraction modules are 

then applied to 𝐼(𝑥, 𝑦) 
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5.2.1. GLCM Texture Features 

 A “Gray-Level Co-occurrence Matrix” 𝐺is computed 

using a pixel offset of 1 and an angle of 0∘, with symmetry and 

normalization being applied. From 𝐺, the following statistical 

properties are derived: 

Contrast = ∑ (i − j)2 ⋅ G(i, j) i,j   (1) 

Dissimilarity = ∑ |i − j| ⋅ G(i, j)i,j        (2) 

Homogeneity = ∑
G(i,j)

1+(i−j)2i,j              (3) 

Contrast = ∑ G(i, j)2
i,j     (4) 

Homogeneity = ∑
(i−μi)⋅(j−μ)⋅G(i,j)

σi⋅σj
i,j  (5) 

 These features are used to capture spatial texture 

variations that are associated with abnormal cell clusters. 

5.2.2. HOG Gradient Features 

 The Histogram of Oriented Gradients (HOG) is computed 

using pixels_per_cell = (16,16) and cells_per_block = (2,2), 

by which a high-dimensional descriptor 𝐻is produced. Each 

feature vector is encoded with local edge direction and 

magnitude, allowing malignant cellular boundaries to be 

identified effectively. 

  

 Since HOG vectors are large, PCA reduces their 

dimensionality: 

𝑍 = 𝑃𝑇 ⋅ 𝐻                  (6) 

 Where 𝑃contains the principal component vectors and 𝑍is 

the reduced feature representation (30-D maximum in the 

implementation). 

 

5.3. Hybrid Feature Vector 

The final combined feature vector for each sample is: 

X = [G1, G2, G3, G4, G5, Z1, Z2, … , Zd]                    (7) 

where 𝐺𝑘, are GLCM features and 𝑍𝑑  are the PCA-reduced 

HOG features. 

Standardization is applied: 

Xnorm =
X−μ

σ
 (8) 

to ensure balanced contribution of texture and gradient 

information. 

5.4. Two-Neuron Classification Layer 

 The proposed system uses a compact two-neuron 

discriminative layer trained separately on GLCM and HOG 

feature sets. For an input feature vector Xnorm, the linear 

activation is: 

net = Xnorm ⋅ W + b             (9) 

Where, 

• W ∈ ℝn×2is the weight matrix 

• b ∈ ℝ1×2is the bias vector. 

  

 The nonlinear output is obtained using a sigmoid function 

with a gain factor of 0.8: 

h =
1

1+e−0.8⋅net (10) 

Let the target for class labels be encoded as: 

T = [t, 1 − t] (11) 

The error for each sample is calculated as: 

E = T − h (12) 

5.4. Loss Function 

 The “Mean Squared Error (MSE)” over all training 

samples is: 

MSE =
1

N
∑ ||Ei||

2N
i=1  (13) 

 This value is tracked across epochs and plotted as “Error 

vs Epochs” for both GLCM and HOG networks. 

 

5.6. Learning Rules 

 The learning rules used in your training code correspond 

to gradient descent with momentum and learning-rate decay. 

For each epoch: 

5.6.1. Weight Update 

𝑊𝑡+1 = 𝑊𝑡 + 𝛼𝑡Δ𝑊 + 𝑚𝑣𝑊        (14) 

5.6.2. Bias Update 

bt+1 = bt + αtΔb + mvb  (15) 

 Where 𝛼 =
𝛼0

1+0.03𝑡
 (learning rate decay), m=0.85 

(momentum) and gradients are clipped to [-1,1]. 

The gradient is  

ΔW = Xnorm
T ⋅ E ⋅ 0.5      (16) 

Δb = E ⋅ 0.5                (17) 

5.7. Prediction Rule 

Network output for class decision uses the first neuron score: 

ŷ = {
1, 𝑖𝑓 ℎ1 > 0.5
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18) 

 Predicted labels and actual labels are saved for both 

GLCM and HOG pipelines. 

5.8. Parameter Evolution Across Epochs 

5.8.1. Error vs Epochs (GLCM+KNN) 

 The error plot flattens early, demonstrating that the model 

reaches a steady-state minimum for GLCM inputs. 
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Fig. 1 Error vs Epochs (GLCM+KNN) 

 
Fig. 2 Weights vs Epochs (GLCM+KNN) 

 
Fig. 3 Error vs Epochs (HOG+KNN) 

5.8.2. Weights vs Epochs (GLCM+KNN) 

 Weights converge after 65–70 epochs, confirming that the 

GLCM-based classifier has reached stable learning. 

5.8.3. Error vs Epochs (HOG+KNN) 

 The error steadily decreases and plateaus, confirming 

convergence of the HOG-driven model. 

5.8.4. Weights vs Epochs(HOG+KNN) 

 Weights smoothly stabilize around 65–70 epochs, 

showing strong generalization capability for HOG-based 

learning. 

 
Fig. 4 Weights vs Epochs (HOG+KNN) 

6. Results 
6.1. Confusion Matrix 

 The effectiveness of the proposed GLCM+KNN and 

HOG+KNN models was assessed during testing using 

confusion matrices. For the GLCM-based classifier, the matrix 

reflects strong overall performance, with most benign and 

malignant samples correctly classified and only a few 

misclassified instances.  

 

 The HOG-based classifier is likewise found to 

demonstrate reliable recognition of breast-tissue patterns, 

though slightly higher misclassification of malignant samples 

is observed. These matrices are used to provide a clear 

summary of the classification outcomes for both feature 

models. 

 
Fig. 5 Confusion Matrix (GLCM+KNN) 
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Fig. 6 Confusion Matrix (HOG+KNN) 

 

6.2. Classification Reports 

 To further evaluate the performance of the proposed 

breast-cancer detection framework, key statistical measures 

are computed using the confusion matrices obtained from the 

GLCM+KNN and HOG+KNN models. These metrics are 

used to provide a quantitative overview of the classifiers’ 

ability to correctly distinguish between benign and malignant 

tissue samples. 

6.2.1. Accuracy 

It represents the ratio of correctly identified samples to 

the overall number of predictions generated by the model. 

Accuracy =
TP+TN

TP+TN+FP+FN
               (19) 

6.2.2. Precision 

 It reflects how many of the samples labeled as positive by 

the model were actually positive. 

Precision =
TP

TP+FP
 (20) 

6.2.3. Sensitivity 

It indicates how effectively the model detects actual 

positive cases.  

Sensitivity =
TP

TP+FN
 (21) 

6.2.4. Specificity 

It indicates how effectively a system correctly identifies 

negative cases out of all the actual negatives present. 

Specificity =
TN

TN+FP
 (22) 

6.2.5. F1-Score 

 It reflects the harmonic mean of precision and recall, 

providing a balanced measure of both quantities. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2⋅TP

(2⋅TP)+FP+FN
  (23) 

 Here, TP represents True Positives, TN represents True 

Negatives, FP represents False Positives, and FN represents 

False Negatives. 

 Based on the confusion matrix of the optimized RBFNN, 

the computed metrics are presented in Table1. 

 

 Figures 7 and 8 represent the AUC–ROC curves, which 

show how well the model can distinguish between the two 

classes by examining how the “True Positive Rate (TPR)” and 

“False Positive Rate (FPR)” change across different 

classification thresholds. The formal expressions for TPR and 

FPR are given below: 

TPR =
TP

TP+FN
 (24) 

FPR =
FP

FP+TN
 (25) 

Table 1. The performance metrics of Breast Cancer Detection using KNN with GLCM and HOG features 

Model Accuracy Precision Sensitivity Specificity Specificity 

GLCM+KNN 0.9167 0.8889 0.9412 0.8947 0.9143 

HOG+KNN 0.8333 0.9231 0.7059 0.9474 0.8000 

 
Fig. 7 AUC-ROC Curve (GLCM+KNN) 
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Fig. 8 AUC-ROC Curve (HOG+KNN) 

6.3. Comparison of Existing Breast Cancer Detection 

Methods 

 To evaluate the effectiveness of the proposed GLCM–

HOG–KNN framework, its classification performance was 

compared with findings reported in recent studies that employ 

traditional machine-learning models and deep-learning 

architectures for breast-cancer detection. 
 

 

Table 2. Comparison of the methodologies adopted in these studies, along with their respective classification accuracies 

Name of the Paper Method Used Accuracy (%) 

CoroNet: Deep Neural Network-Based 

End-to-End Training for Breast Cancer 

Diagnosis 

 [14] 

CoroNet 88.67 

Automated Breast Cancer Detection 

Models Based on Transfer Learning 

 [16] 

ResNet50 89.5 

Automated diagnosis of breast cancer 

using multi-modal datasets: A deep 

convolutional neural network-based 

approach 

 

CNN 90.68 

Uncertainty-aware learning-based CAD 

system for breast cancer classification 

using ultrasound and mammography 

images [17] 

CNN 91.34 

Proposed Breast Cancer Detection Using 

K-Nearest Neighbors with Gray-Level 

Co-occurrence Matrix and Histogram of 

Oriented Gradients Features 

 

GLCM+KNN 91.67 

7. Conclusion 
 The present study introduced a lightweight breast-cancer 

detection framework based on handcrafted texture and 

structural descriptors classified using a “K-Nearest Neighbors 

(KNN)” approach. To ensure that distinctive tissue-texture 

patterns are captured by the model. The extraction of “Gray-

Level Co-occurrence Matrix (GLCM)” features was used. To 

provide complementary structural cues associated with 

cellular boundaries, “Histogram of Oriented Gradients 

(HOG)” descriptors were employed. Both pipelines exhibited 

stable learning characteristics and dependable classification 

performance, as observed through experimental evaluation. 

The GLCM-based model recorded the higher sensitivity, and 

the HOG-based model delivered comparatively stronger 

specificity. In view of its low computational cost and 

suitability for deployment in resource-constrained diagnostic 

contexts, the effectiveness of the proposed framework was 

demonstrated. An overall accuracy of 91.67% was achieved.
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