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Abstract - Improving treatment decisions and getting clinical outcomes is given much importance in the early detection of breast
cancer from microscopic images. Textural descriptors obtained from the “Gray-Level Co-occurrence Matrix (GLCM)”,
combined with structural representations derived from the “Histogram of Oriented Gradients (HOG)”, are presented in this
work. To maintain consistent preprocessing, all microscopic images were resized, converted into grayscale, and normalized.
Extraction of “Gray-Level Co-occurrence Matrix” features such as “contrast, correlation, energy, and homogeneity” was done.
And “Histogram of Oriented Gradient” captured the edge orientation patterns. To train a Euclidean-distance “K-Nearest
Neighbors (KNN)” classifier with a 70/30 train-test split, these feature sets were concatenated and used. An “accuracy” of
0.9167, “precision” of 0.8889, “sensitivity” of 0.9412, “specificity” of 0.8947, and an “Fl-score” of 0.914 were produced by
the GLCM+KNN model during evaluation. An “accuracy” of 0.8333, “precision” of 0.9231, “sensitivity” of 0.7059,
“specificity” of 0.9474, and an “Fl-score” of 0.8000 were achieved by the HOG+KNN model. These observations suggested
that “Gray-Level Co-occurrence Matrix” features contributed more significantly to positive-class identification, whereas
Histogram of Oriented Gradients features strengthened the discrimination of negative cases. Computationally efficient,
interpretable, and suitable for diagnostic settings with limited resources are considered as some of the main characteristics of
the proposed hybrid model.

Keywords - Breast cancer, Euclidean distance, “Gray-Level Co-occurrence Matrix (GLCM)”, “Histogram of Oriented Gradients
(HOG)”, “K-Nearest Neighbors (KNN)”.

1. Introduction required, and these are the reasons that their suitability for

A significant proportion of cancer-related deaths among ~ resource-limited clinical environments is restricted [2][3]. For
women being attributed to breast cancer is the main reason  lightweight, interpretable, and computationally efficient
why breast cancer is widely regarded as one of the most  alternatives for early-stage cancer detection, handcrafted
critical global health concerns. As the timely identification of ~ feature extraction techniques such as the “Gray-Level Co-
malignant tissue is known to greatly increase the likelihood of ~ occurrence Matrix (GLCM)” and the “Histogram of Oriented
successful clinical intervention, improved treatment outcomes ~ Gradients (HOG)” are considered.
were achieved when early diagnosis was performed [1].

Affected by observer variability, particularly in high-volume GLCM provided a statistical description of textural
diagnostic settings, the manual inspection of microscopic ~ relationships within tissue images. And the ability of this
images, traditionally used for diagnosis, was considered labor- model to capture spatial gray-level dependencies has led to its

intensive. Consequently, in recent years, the demand for widespread use in distinguishing normal and abnormal

automated and reliable “Computer-Aided Detection (CAD)”  structures [4]. HOG was used to extract structural and edge-
systems has increased substantially. based representations that reflect morphological variations

associated with cancerous cells in a similar manner [5].

Deep learning architectures such as “Convolutional
Neural Networks (CNNs)” have demonstrated strong A more comprehensive characterization of tissue
performance in breast cancer recognition. But large quantities appearance was achieved when these complementary features
of labeled data and high computational power are typically were combined, leading to improved classification reliability.
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For KNN’s simplicity, non-parametric behaviour, and strong
performance on small to moderate datasets, the KNN classifier
was employed in this study.

For the binary classification of microscopic breast tissue
images into normal and cancerous categories, a hybrid
GLCM-HOG feature-extraction model integrated with a
KNN classifier was proposed in this work. The system was
designed so that accuracy, interpretability, and computational
efficiency are balanced, making it suitable for real-time or
low-resource diagnostic workflows. Performance was
evaluated using accuracy, precision, sensitivity, specificity,
and Fl-score to ensure that the classifier’s effectiveness is
assessed comprehensively.

2. Literature Survey

Automated breast cancer detection from medical images
remains an active research area because it can reduce
diagnostic variability and speed up clinical workflows.
Traditional handcrafted features and lightweight classifiers
continue to be attractive for small datasets and resource-
constrained environments, while more recent work blends
handcrafted and learned features to improve robustness [6].

Texture descriptors such as GLCM are widely used in
medical imaging because many pathological changes appear
as alterations in tissue texture. Survey studies report that
properly tuned GLCM statistics (contrast, correlation, energy,
homogeneity) remain highly effective across modalities when
combined with careful preprocessing and quantization
choices[6].

Edge and gradient descriptors capture complementary
structural information. Several applied studies have adapted
HOG or HOG-like descriptors to mammograms and
histopathology images, showing that gradient-based features
improve the detection of morphological abnormalities and
help reduce false positives when used with region-of-interest
preprocessing. [7][8].

Hybrid feature fusion — for example, combining GLCM
with deep semantic features or with HOG — has been shown
to improve classification accuracy and robustness to staining
and illumination variability. Notably, methods that fuse textual
(GLCM) and learned (deep) or structural (HOG)
representations obtain better discrimination than single-
feature pipelines on breast histopathology datasets. [7][9].

Classifier choice matters: for moderate feature vectors,
“K-Nearest Neighbors (KNN)” and its variants (distance
weighting, optimized k, ensemble KNN) are competitive,
offering simplicity, interpretability, and low inference cost.
Comparative analyses of KNN variants on biomedical datasets
highlight that optimized KNN variants can improve stability
and average accuracy when properly tuned[10].

3. Methodology
3.1. Dataset

The experimental analysis in this work was performed
using a publicly accessible breast cancer histopathology
dataset containing microscopic tissue images categorized into
normal and cancerous groups. Under standardized staining
and imaging conditions, the collection, composed of RGB
slides, was prepared so that reliable visual quality could be
maintained across all samples. Before processing, to ensure
that feature extraction could be performed consistently, all
images were resized to a uniform resolution. To allow
balanced training and evaluation of the proposed feature-
based KNN framework, adequate representation of both
classes was provided by the dataset [11].

3.2. Image Preprocessing

Through careful preprocessing of the input images,
reliable classification was ensured. To remove color
redundancy and to make sure that both structural and texture
information are emphasized, each image was first converted
from RGB to grayscale. Using min—max scaling, all pixel
intensities were normalized to the range [0,1], which further
allowed feature extraction to be stabilized, and a fair
comparison across samples was maintained. To preserve the
consistency during GLCM and HOG feature computation, all
images were resized to a predetermined dimension. Noise was
reduced, uniform contrast distribution was achieved, and each
image was prepared for accurate texture and gradient feature
extraction through this preprocessing pipeline.

3.3. GLCM Feature Extraction

To extract texture descriptors that quantify spatial
intensity relationships within breast-tissue images, the “Gray-
Level Co-occurrence Matrix (GLCM)” was employed.
GLCMs were computed using fixed orientations and pixel
offsets for each grayscale image. Four standard statistical
features were derived from these matrices. And those
statistical features are Contrast, Correlation, Energy, and
Homogeneity. To capture variations in texture patterns that
often indicate the presence of abnormal cell structures, these
descriptors are highly recommended. To form the first
component of the hybrid feature representation, the extracted
GLCM features were stored as numerical vectors.

3.4. HOG Feature Extraction

To obtain structural and boundary-based information, the
“Histogram of Oriented Gradients (HOG)” was used. To allow
local shape and edge patterns that differentiate normal and
malignant tissue formations to be captured, gradient directions
were computed across small spatial regions (cells) and were
aggregated into orientation histograms. Each image was
divided into uniform cells, gradients were calculated, and
block-wise normalization was applied to reduce the
illumination variability. The resulting HOG descriptors were
then flattened into a feature vector and later combined with the
GLCM features.
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3.5. Hybrid Feature Construction

The GLCM and HOG vectors were concatenated to form
a unified feature representation so as to ensure that the
complementary strengths of texture and structural information
are utilized. For higher-magnitude gradient values not to
dominate the texture statistics, the combined features were
normalized before classification was performed. All features
contributed proportionately to the distance calculations used
by the classifier were ensured by this step.

3.6. KNN Classification

To train the “K-Nearest Neighbors (KNN)” classifier, the
concatenated feature vectors were used. For measuring
similarity in continuous feature spaces, the Euclidean distance
was found to be effective, and that is the main reason why this
metric was selected. The value of k is determined
experimentally. To achieve the optimal classification
performance, the value of k was determined experimentally.
All feature vectors were stored by the classifier during
training. The class label of each input sample was predicted
based on the majority class among its k nearest neighbors
during the testing part. Interpretability, low computational
cost, and strong performance are some of the main reasons
why the KNN model was chosen.

3.7. Train-Test Split and Evaluation

70% of the dataset was taken for training, and the
remaining 30% of the dataset was taken for testing. In both the
training and testing parts of the dataset, all preprocessing steps
and feature extractions have been applied consistently.
Standard metrics such as accuracy, precision, sensitivity,
specificity, and F1-score were used for the evaluation of the
performance of the model. And each of the metrics was
computed from the confusion matrix. A comprehensive
assessment of the classifier’s ability to detect cancerous tissue
while minimizing false predictions was provided by these
metrics.

4. Model Selection

For achieving reliable breast cancer classification while
also maintaining a balance between predictive accuracy and
computational complexity, the selection of an appropriate
learning model is regarded as pivotal. Deep-learning models
such as “ResNet50” have demonstrated strong performance in
mammography and histopathology image analysis due to the
fact that these networks learn hierarchical representations
from large collections of images [12]. Extensive training
datasets, substantial computational resources, and longer
convergence times are typically required by such
architectures, as they may restrict their suitability for
diagnostic environments with limited resources.

GLCM texture statistics and HOG gradient features are
basically the handcrafted descriptors and are present in the
feature set, which is highlighted in this study. A structured,
continuous, and moderately sized input space is formed. A “K-

Nearest Neighbors (KNN)” classifier is adopted by basically
considering these characteristics. KNN is well suited For
continuous numerical feature vectors and to operate using
similarity measures rather than complex parameterized
learning, a KNN is well suited for this task.

Complementary textural and structural information is
provided by the hybrid GLCM-HOG feature vector. And it
further allowed KNN to distinguish subtle variations between
normal and cancerous tissue. Its performance depended on the
selection of an appropriate value for k and a suitable distance
metric, as KNN’s decisions are determined by the proximity
in feature space. When used with continuous handcrafted
features, the effectiveness needed to be taken care of. So, this
is why the Euclidean distance was chosen in this work. By
evaluating multiple choices and selecting the one that provides
the most consistent and accurate classification results, the
optimal value for k is determined empirically.

Simplicity, interpretability, and minimal dependence on
hyperparameters are some of the primary advantages of KNN.
Backpropagation and long training cycles are required by deep
neural networks, whereas KNN relies on stored feature vectors
and direct distance comparisons. And it is made
computationally lightweight and suitable for portable
diagnostic systems. Strong performance has been shown in
breast cancer detection research by similar lightweight
classification approaches when handcrafted features with
traditional machine-learning models are combined [13][14].
An efficient, interpretable, and effective classifier tailored to
the hybrid GLCM-HOG representation is the main reason that
justified the selection of KNN in this work.

5. Proposed Model
5.1. Overview

The proposed model is designed by integrating
handcrafted texture and gradient-based descriptors with a
lightweight supervised network so that breast-tissue images
can be classified into cancerous and non-cancerous categories.
Unlike deep convolutional models that require large datasets
and heavy training procedures, this hybrid system is
constructed using GLCM for texture characterization, HOG
for structural boundary analysis, and a compact two-neuron
discriminative network for decision-making. The workflow is
composed of preprocessing, feature extraction, dimensionality
reduction, normalization, classifier training, and performance
evaluation. Through this architecture, both micro-texture
variations and global orientation patterns associated with
malignant tissues are effectively captured while a low
computational cost is maintained.

5.2. Feature Extraction Framework

Let an input breast-tissue image I(x,y)of size 128 X
128be, be converted to grayscale and normalized to the range
[0,1]. Two complementary feature-extraction modules are
then applied to I(x, y)
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5.2.1. GLCM Texture Features

A “Gray-Level Co-occurrence Matrix” Gis computed
using a pixel offset of 1 and an angle of 0°, with symmetry and
normalization being applied. From G, the following statistical
properties are derived:

Contrast = ¥;;(i —j)* - G(i, ) )

Dissimilarity = ¥,;;|i —j| - G(i,}) 2
_ G

Homogeneity = ¥;; 1+((il_]]?)2 (3)

Contrast = ¥;; G(i,j)? (4)

Homogeneity = 3, %(5)

These features are used to capture spatial texture
variations that are associated with abnormal cell clusters.

5.2.2. HOG Gradient Features

The Histogram of Oriented Gradients (HOG) is computed
using pixels _per cell = (16,16) and cells_per block = (2,2),
by which a high-dimensional descriptor His produced. Each
feature vector is encoded with local edge direction and
magnitude, allowing malignant cellular boundaries to be
identified effectively.

Since HOG vectors are large, PCA reduces their
dimensionality:
Z=P"-H (6)

Where Pcontains the principal component vectors and Zis
the reduced feature representation (30-D maximum in the
implementation).

5.3. Hybrid Feature Vector
The final combined feature vector for each sample is:

X = [Gl,Gz,G3,G4,G5,Zl,Z2,...,Zd] (7)

where G, are GLCM features and Z,; are the PCA-reduced
HOG features.

Standardization is applied:

==t ®)

X
norm >

to ensure balanced contribution of texture and gradient
information.

5.4. Two-Neuron Classification Layer

The proposed system uses a compact two-neuron
discriminative layer trained separately on GLCM and HOG
feature sets. For an input feature vector X,orm, the linear
activation is:

net = X,orm -W+Db ©)

Where,
e W € R™?js the weight matrix
e b € R™?js the bias vector.

The nonlinear output is obtained using a sigmoid function

with a gain factor of 0.8:

1
h = oemet (10)

Let the target for class labels be encoded as:
T=[t1-t] (11)
The error for each sample is calculated as:

E=T-h (12)
5.4. Loss Function
The “Mean Squared Error (MSE)” over all training
samples is:

1 2
MSE = -3 IL, ||Eil| (13)

This value is tracked across epochs and plotted as “Error
vs Epochs” for both GLCM and HOG networks.

5.6. Learning Rules

The learning rules used in your training code correspond
to gradient descent with momentum and learning-rate decay.
For each epoch:

5.6.1. Weight Update
W =Wt + a, AW + myy, (14)
5.6.2. Bias Update
b**1 = b' + aAb + mvy, (15)

a
Where o = —=2
140.03¢

(momentum) and gradients are clipped to [-1,1].

(learning rate decay), m=0.85

The gradient is
AW =X . -E-0.5 (16)
Ab =E-0.5 (17)

5.7. Prediction Rule
Network output for class decision uses the first neuron score:

n” {1, if h1 > 0.5
0, otherwise

= (18)
Predicted labels and actual labels are saved for both
GLCM and HOG pipelines.

5.8. Parameter Evolution Across Epochs
5.8.1. Error vs Epochs (GLCM+KNN)

The error plot flattens early, demonstrating that the model
reaches a steady-state minimum for GLCM inputs.
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Error vs Epochs (GLCM+KNN)
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5.8.2. Weights vs Epochs (GLCM+KNN)
Weights converge after 65—70 epochs, confirming that the
GLCM-based classifier has reached stable learning.

5.8.3. Error vs Epochs (HOG+KNN)
The error steadily decreases and plateaus, confirming
convergence of the HOG-driven model.

5.8.4. Weights vs Epochs(HOG+KNN)

Weights smoothly stabilize around 65-70 epochs,
showing strong generalization capability for HOG-based
learning.

Weights vs Epochs (HOG+KNN)
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Fig. 4 Weights vs Epochs (HOG+KNN)
6. Results

6.1. Confusion Matrix

The effectiveness of the proposed GLCM+KNN and
HOG+KNN models was assessed during testing using
confusion matrices. For the GLCM-based classifier, the matrix
reflects strong overall performance, with most benign and
malignant samples correctly classified and only a few
misclassified instances.

The HOG-based classifier is likewise found to
demonstrate reliable recognition of breast-tissue patterns,
though slightly higher misclassification of malignant samples
is observed. These matrices are used to provide a clear
summary of the classification outcomes for both feature
models.

Confusion Matrix (GLCM+KNN)
Predicted

Benign

Malignant

Benign

Actual

Malignant

Fig. 5 Confusion Matrix (GLCM+KNN)
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Confusion Matrix (HOG+KNN)
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Fig. 6 Confusion Matrix (HOG+KNN)

6.2. Classification Reports

To further evaluate the performance of the proposed
breast-cancer detection framework, key statistical measures
are computed using the confusion matrices obtained from the
GLCM+KNN and HOG+KNN models. These metrics are
used to provide a quantitative overview of the classifiers’
ability to correctly distinguish between benign and malignant
tissue samples.

6.2.1. Accuracy
It represents the ratio of correctly identified samples to

the overall number of predictions generated by the model.
TP+TN

Accuracy = —————— (19)

6.2.2. Precision
It reflects how many of the samples labeled as positive by
the model were actually positive.

Precision = (20)

TP+FP

6.2.3. Sensitivity
It indicates how effectively the model detects actual
positive cases.

TP
TP+FN

Sensitivity = (21)
6.2.4. Specificity

It indicates how effectively a system correctly identifies
negative cases out of all the actual negatives present.

TN
TN+FP

Specificity = (22)
6.2.5. F1-Score
It reflects the harmonic mean of precision and recall,
providing a balanced measure of both quantities.
2-TP
F1 — Score = CEDITTT (23)
Here, TP represents True Positives, TN represents True
Negatives, FP represents False Positives, and FN represents
False Negatives.

Based on the confusion matrix of the optimized RBFNN,
the computed metrics are presented in Tablel.

Figures 7 and 8 represent the AUC-ROC curves, which
show how well the model can distinguish between the two
classes by examining how the “True Positive Rate (TPR)” and
“False Positive Rate (FPR)” change across different
classification thresholds. The formal expressions for TPR and
FPR are given below:

TPR = —— 24)
TP+FN

FPR = —— (25)
FP+TN

Table 1. The performance metrics of Breast Cancer Detection using KNN with GLCM and HOG features

False Positive Rate (FPR)
Fig. 7 AUC-ROC Curve (GLCM+KNN)

Model Accuracy | Precision | Sensitivity | Specificity | Specificity
GLCM-+KNN 0.9167 0.8889 0.9412 0.8947 0.9143
HOG+KNN 0.8333 0.9231 0.7059 0.9474 0.8000

ROC Curve - GLCM + KNN

1.0 /
2 08
2 06
z
é 04 //'
£
2 02

0.0 - — AUC = 10000

0.0 0.2 0.4 06 0.8 1.0
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AUC-ROC Curve (HOG + KNN)
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Fig. 8 AUC-ROC Curve (HOG+KNN)

6.3. Comparison of Existing Breast Cancer Detection
Methods

To evaluate the effectiveness of the proposed GLCM—
HOG-KNN framework, its classification performance was

compared with findings reported in recent studies that employ
traditional machine-learning models and deep-learning
architectures for breast-cancer detection.

Table 2. Comparison of the methodologies adopted in these studies, along with their respective classification accuracies

Name of the Paper

Method Used

Accuracy (%)

CoroNet: Deep Neural Network-Based
End-to-End Training for Breast Cancer
Diagnosis

[14]

CoroNet

88.67

Automated Breast Cancer Detection

Models Based on Transfer Learning
[16]

ResNet50

89.5

Automated diagnosis of breast cancer
using multi-modal datasets: A deep
convolutional neural network-based
approach

CNN

90.68

Uncertainty-aware learning-based CAD
system for breast cancer classification
using ultrasound and mammography
images [17]

CNN

91.34

Proposed Breast Cancer Detection Using
K-Nearest Neighbors with Gray-Level
Co-occurrence Matrix and Histogram of
Oriented Gradients Features

GLCM+KNN

91.67

7. Conclusion

The present study introduced a lightweight breast-cancer
detection framework based on handcrafted texture and
structural descriptors classified using a “K-Nearest Neighbors
(KNN)” approach. To ensure that distinctive tissue-texture
patterns are captured by the model. The extraction of “Gray-
Level Co-occurrence Matrix (GLCM)” features was used. To
provide complementary structural cues associated with
cellular boundaries, “Histogram of Oriented Gradients

(HOG)” descriptors were employed. Both pipelines exhibited
stable learning characteristics and dependable classification
performance, as observed through experimental evaluation.
The GLCM-based model recorded the higher sensitivity, and
the HOG-based model delivered comparatively stronger
specificity. In view of its low computational cost and
suitability for deployment in resource-constrained diagnostic
contexts, the effectiveness of the proposed framework was
demonstrated. An overall accuracy of 91.67% was achieved.
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