
International Journal of Computer Trends and Technology (IJCTT) – Volume 61 Number 2 - July 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 111

Improving State Invariant Test Oracle Strategy

using Mutation Analysis

M. Venkata Hari Prakash#1, Dr.A.Ananda Rao #2, Dr. P. Radhika Raju #3

1M.Tech Scholar, Department of CSE, JNTUACEA, Ananthapuramu, A.P, India
2Professor, Department of CSE, JNTUACEA, Ananthapuramu, A.P, India.

3Ad-hoc Assistant Professor, Department of CSE, JNTUACEA, Ananthapuramu, A.P, India.

Abstract:

A model should be designed with some

specification languages. Such specification languages

are transformed from the customer requirements to

testable requirements. In model-based testing,

abstract tests are generated from the UML model.

These abstracts tests are transformed into the concrete

tests with test inputs and to check the outputs with test

oracles. This research mainly focused on possibility of

the failures and exhibits the failures. In this research,

the state invariants of the model are identified. State

invariants are detected from the state machine

diagram. The test oracles are measured in two

parameters: precision and frequency. The mutants are

generated from the test data. The mutant’s reports are

generated from the test case. In agile process, the test

oracles are always not available because

requirements are frequently changed. This research

specifies generation of few adequate mappings,

because instead of generating more inadequate

mappings.The test cases are utilized to kill the

generated mutants whenever the behaviour of the

system changes.

Keywords: Coverage Criterion, Model-based Testing,

State Invariants, Test Oracles, Test Oracle Strategy.

I. INTRODUCTION

Software testing is a part of SDLC (Software

Development Life Cycle). Initially, Software testing

is focused on finding the faults by running more tests

on an application, or a system. Software tests are

generated by using two artifacts, they are test inputs

and test oracles. Test inputs states that the test values

for method calls of an application. Whereas the test

oracles specifies the analysis of the outputs i.e.,

whether the tests are satisfied or not.

The tests are generated by satisfying the

different coverage criterion. Whenever the tests are

running in an application, if a fault may be raised then

the fault caused to raise an error then the fault is

treated as a failure. The failure test or part should

reveal to the tester, otherwise it leads to an effortless

work [2]. The failure detected for an entire process is

known as RIPR (Reachability, Infection, Propagation

and Revealability) model or FF (Fault and Failure)

model. The main focus is on coverage criterion, and

this can be compared with different criterions. In unit

testing, a small module of the software should be

tested and the module is error free then it was

integrated into the real-time software or desired

working software. The module which had been tested

effectively, then the module will be delivered to the

end user.

Up to now the process is in normal software

development process, when the software is developed

in Agile or Development Operations (DevOps) there

will be a continuous changing and adding the

requirements. DevOps provides the collaboration

between development phase (plan, code, build, test)

and operational phase (deploy, operate, monitor).

The devops mainly focuses on automation;

some of the tools are used in software testing. They

are JUnit [3] and selenium [4].In this research, the

Finite State Machine (FSM) model is considered. A

model consist a set of states and transitions. The

model was designed with some specification

languages. The specification languages are

transformed the customer requirements into

mathematical form. The specification languages like

Object constraint Language (OCL), Z Notation, B and

VDM (Vienna Development Method)[4, 5, 6] are

essential.

The Test Oracle problems are classified into

four categories: they are specified test oracles are

designed from specification requirements, derived

oracles are designed from other sources like

documentation or notes, implicit oracles get the

information from different sources without domain

knowledge, no test oracles or human oracles means

there is no source to get the information [7].

This paper navigates the fundamentals of

software artifacts in oracle problem in section 2,

related work in section 3, test data generation in

section 4, mutation analysis and mutant generation in

section 5, experimental studies in section 6 and

conclusion and future work in section 7.

International Journal of Computer Trends and Technology (IJCTT) – Volume 61 Number 2 - July 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 112

II. FUNDAMENTALS OF SOFTWARE

ARTIFACTS IN ORACLE PROBLEM

In this section, some of the basic terms

defined in section 2.1, test oracle and test oracle

strategy in section 2.2, subsumption of coverage

criterion 2.3 and FSM and state machines in 2.4.

A. Basic Definitions

Def 1: Model: Model represents partial behavior of

the software. It is designed using some specification

languages.

Def 2: State Invariants: Invariants means true

condition, which represents possible value to the state.

Def 3: Test Requirements (TR): Software artifacts

are purifies into the test requirements. Those test

requirements are used for creating test paths.

Def 4: Test Inputs: Test inputs are test values for

sequence of method calls on program under test.

Def 5: Expected Results: these are analyzed results

for the program logic.

Def 6:Coverage Criteria: It means providing some

rules to create test requirements. Graph coverage

criterion is applied for design structures, control flow

graphs, use cases and FSM’s and state machines.

Graph Coverage consist nodes and edges. In

our context, Graph coverage consist states and

transitions because in this research FSM is used for

generating test paths. Each graph has an entry state

and an exit state. The graphs are classified into two

types: They are deterministic and non- deterministic

graphs.

Def 7: Mutation analysis: Mutation analysis means

small changes in the system behavior or program

functionality. Mutation testing is applied on method

based and class based attributes.

Def 8Mutation score: The ratio of mutants is killed

from total mutants.

B. Test oracle and Test Oracle Strategy

Def 9: Test Oracle: test oracle is looks like a

program. It compares the actual results and expected

results, when both results are true then the test case is

passed. Otherwise it is failed. Test oracle decides the

test case is passed or not. Some of the steps to be

followed to understand the test oracle are:

 Create test inputs.

 Run the program with test inputs.

 Verify the outputs are equal or not.

Figure 1: Test Oracle

Def 10: Test oracle strategy: In test oracle strategy,

checking the test paths which states are revised and

how many states are frequently checked is to be

happened. It is measured with two parameters, one is

precision and the other is frequency. Precision

indicates which states to check in the program by

using test oracle. Frequency indicates how many times

the each state is to be executed. The frequency checks

the states which are already checked in the precision

for the purpose of revision.

UML is a modeling language in software

development. State machine diagram is one of the

UML behavioral diagrams. State machine diagram

consist a set of elements like states, transitions, initial

state, final state, state invariants (constraints or

conditions). State invariant specifies boolean values

(true or false). If the state invariant is true then the

condition reaches as specified. Otherwise the

condition is not satisfied. State invariants are

identified in abstract tests. The abstract tests are

generated from the UML state machine model.

Precise oracle is specified in the concrete

test. The concrete tests are generated manually, in

other words, some of the input values are required

when tests are generated. These test inputs are often

treated as a precise.

C. Subsumption of Coverage Criterion

Subsumption means one coverage criteria is

covered by other coverage criteria. In other words, A

and B are the two coverage criteria’s. If A and B have

some rules, but the A coverage covers B coverage i.e.,

if A subsumes B.

The structural coverage consist some

coverage criterion. They are node coverage, edge

coverage, edge-pair coverage and complete path

coverage. The data-flow coverage is classified as all-

defs coverage, all-uses coverage, all-du coverage,

simple round trip coverage, complete round trip

coverage, prime path coverage, complete path

coverage. Coverage criterions are denoted as node

coverage (NC), edge coverage (EC), edge-pair

International Journal of Computer Trends and Technology (IJCTT) – Volume 61 Number 2 - July 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 113

coverage (EPC), all-def’s coverage(ADC), all-uses

coverage (AUC), all-DU coverage (ADUC), Prime

path coverage(PPC) and Complete path

coverage(CPC).

Figure 2: Subsumption of Coverage Criterion

The above figure is subsumption of graph

coverage criterions. Subsumes coverage’s are:

 EC subsumes NC.

 AUC, EPC, PPC subsume EC.

 EPC subsume CPC.

 AUC subsume ADC.

 ADUP subsume AUC.

 PPC subsume ADUP, EPC

 CPC subsumes PPC.

D. FSM and State Machines

System is designed in mathematical model, it

is known as FSM (Finite State Machine). FSM model

reduces the complexity by making the system into

simplifying assumptions. Some of the assumptions are

as follows:

 The system model designed with limited number

of finite conditions is known as states.

 In the specified system, a state is to be performed

what the state is specified.

 A state changes the conditions only in a number

of finite ways it is treated as transitions.

 Events are the response to the system.

 Transitions execution time is less than

zero(approximately).

A FSM is designed with a set of assumptions

in mathematical model. The model consists only true

conditions (possible conditions). The FSM is designed

by using two ways mealy and Moore FSM machines.

Mealy machine outputs depend on current state and

current inputs. It has less state than Moore machine. It

is ease to design mealy FSM machine. The Moore

depends on current output state. It is somewhat

complicate to design Moore FSM.

State machine consists true conditions and

false conditions. A state is transformed to another state

based on the two conditions. Sometimes state

machines have two states to go to its possible

state(true condition) and impossible state(false state).

These conditions are represented by using constraints

languages.

III. LITERATURE SURVEY ON TEST ORACLE

PROBLEM

Kamaraj and arvind [8], is described different

type of test oracles strategies. The test oracle strategies

are specified on different domains like specification,

documentation, heuristics, consistency, statistical and

model based test oracle. Here, the heuristics ishaving

more accuracy with 98%. The statistical and model

based test oracles are having less accuracy with60%.

ShadiG.Alawneh and Dennis K. Peters [9], is

created the test oracles using the specification based

test oracles with JUnit. In this research, the test oracle

is created using OMDoc (open mathematical

documents).

IV. TEST DATA GENERATION

The test data generation means combination

of test input generation and test oracle generation.

A. Test Input Generation:

The test inputs are given manually to the

model. The test input data is generated automatically.

The test inputs are nothing but test values. The test

values are assigned to the model by using STALE

(structured test automation language framework). The

STALE is specially designed for FSM and the STALE

imports the UML finite state machine diagram. The

STALE exhibits all transitions in specified FSM. Each

transition performs the specified operation.

The STALE reads the test inputs manually.

The test data is generated automatically. In other

words, the abstract tests are generated automatically

and the concrete tests need some input values so it

needs input values manually.

In the above represented figure 3 the process

can be done to implement the research. This process

states that, considering the Test requirements as a

basic thing and framing those requirements in to the

UML state machine diagram. From that diagram the

Graph can be generated to accomplish its task, using

the graph the Abstract tests will be gathered. Through

those abstract tests the concrete tests are transformed,

and mapping concept is applied as input parameters of

it.

International Journal of Computer Trends and Technology (IJCTT) – Volume 61 Number 2 - July 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 114

 After this the concrete code is generated by

following the before process. Finally the specified

results, Test Oracles are outlined with the involvement

of the JUnit test Assertions.

Figure 3: Test Oracle Generation in Model-Based

Testing.

B. State Invariant Test Oracle Generation:

The state invariants are nothing but pre-

conditions, post-conditions, constraints, predicates and

conditions [14]. In test oracle problem is need to

detect more invariants for state invariant oracle

strategy. In state invariant test oracle strategy needs to

identify the invariants from the model and write more

test oracles i.e., writing the assertions to verify the

state invariant.

Figure 4: Number of Assertions to each Application

Figure 5: state invariants Comparing with Two Coverage Criterions

V. MUTATION ANALYSIS

Mutation analysis states that any kind of

changes is applicable on a specified program then it

performs actual behavior or not. When mutated

program is tested with a test case, then the test case

can be performed is-as original program. This process

is called as equivalence mutants.

When the mutated program functionality

raises the errors as specified by the generated

mutants, those are called killed mutants. Mutation

density of the program can be calculated as:

Where, LOC is Lines of code (according to

their respective program) and Number of mutants

specifies how many mutants are generated for a

respective program.

0

100

200

300

400

500

1 4 7 10 13 16

All assertions cost

State
Invariant

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000

SIOS

SIOS

International Journal of Computer Trends and Technology (IJCTT) – Volume 61 Number 2 - July 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 115

Mutation Cost is measured in:

The mutation cost is decided number of

mutants killed over the total mutants. The mutants are

killed by writing test oracles.

A. Mutants Generation and Reports

Mutants are generating by using mutation

tools. Each language have their individual mutation

tools. Some of the mutation tools for java is µJava,

PITest, Jumble, Jester and Judy. Each mutation tool

has their mutation operators. Mutation operators like

arithmetic, logical, unary operators etc. the mutants

report shown in figure 6.

Figure 6: Mutants Report

VI. EXPERIMENTAL STUDIES

RQ1: which coverage criterion is effectively

providing more mappings for a model?

RQ2:does the mutants creating is effective or not?

Table 1: Generation of Mappings

Coverage

Vending

Machine

paths

node coverage (NC), 6

edge coverage (EC), 9

edge-pair coverage (EPC) 16

all-def’s coverage(ADC) 2

all-uses coverage (AUC) 4

all-DU coverage (ADUC) 6

prime path coverage(PPC) 63

Complete path

coverage(CPC)

0

RQ1 satisfies the model elements. Each

coverage criterion will provide some mappings for a

model. The mappings are generated by using model

transitions. Those model transitions are known as test

paths. When the coverage criterion is providing more

mappings then it is stronger coverage criterion. The

coverage criterion gives less mappings then it is

weaker coverage criterion. In table 1, three types of

coverage’s are listed. They are graph coverage, data

flow coverage and logic coverage.

The mutant generation is good aspect in

software testing. Always mutants generation is either

effective nor not. When the more mutants are

generated to the system then the more test cases are

created and kill the mutants, this process is more

effective than less mutants killing. When the more

mutants are generated but it is not possible to killing

the mutants. Which test case is killed more mutants

then it is called effective test case. Otherwise, it is

weaker test case. Example mutant report of weaker

test case shown in figure 7.

Figure 7: Weaker Test case of Mutant Report

VII. CONCLUSIONS AND FUTURE SCOPE

Software testing follows observability and

compatibility. In model-based testing, a model needs

effective state invariants. In this research, edge-pair

coverage is the strongest coverage than edge

coverage and prime path coverage. Always

generating effective less more mapping are useless,

but effective few mappings are generated by using

complete path coverage.

In mutation analysis, Always generating

more mutants is doesn’t matter, but how many

mutants are killed by using test case. If the test case is

killed more mutants then it is best test case. The test

case consists distinct assertions. Whenever killing

less mutants then it consider as worst test case.

In future work, the STALE and µJava to be

automated. Try to satisfy complete path coverage.

International Journal of Computer Trends and Technology (IJCTT) – Volume 61 Number 2 - July 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 116

Provide techniques for identifying state invariants

from the model.

REFERENCES

[1] Aditya P. Mathur, Foundations of Software Testing, India,

2013.

[2] JUnit, https://junit.org/junit5/

[3] Selenium, https://www.seleniumhq.org/

[4] Object Constraint Language (OCL),

https://www.omg.org/spec/OCL/About-OCL/

[5] Z Notation, https://cse.buffalo.edu/LRG/CSE705 /Papers/Z-

Ref-Manual.pdf

[6] Maria Grammer, A study in Formal Specifications, Spring

2015.

[7] http://www.greggay.com/courses/spring16csce747/Lectures/S

pring16-Lecture11TestOracles.pdf

[8] KamarajKanagaraj and ArvindChakrapani ,Strategies of

Automated Test Oracle – A Survey, AENSI publication,

2017.

[9] ShadiG.Alawneh and Dennis K. Peters, specification-based

test oracles with junit, 2010.

[10] http://www.greggay.com/courses/spring16csce747/Lectures/S

pring16-Lecture11TestOracles.pdf

[11] Nan Li and Jeff Offutt, Test Oracle Strategies for Model-

based Testing, IEEE transaction of software engineering,

2016.

[12] Christian Burghard, Model-based Testing of Measurement

Devices Using a Domain-specific Modelling Language,

thesis report, Graz University of Technology, 2018.

[13] Thierry TitcheuChekam, Selecting Fault Revealing Mutants,

University of Luxembourg, 2018.

[14] P.Radhika Raju, Dr. A.Ananda Rao, Optimization of

program invariants, ACM SIGSOFT Software Engineering

Notess, Vol.39, Issue 1, January 2014.

