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Abstract  
            Cloud Computing provides different services 

to the users with regard to processing data. The main 

concepts in cloud computing are big data and big 

data analysis. Hadoop framework is used to process 

big data in parallel processing mode. Job scheduling 

and optimized resource allocation can help improve 

performance of Hadoop. In the existing system 

Hadoop architecture has been enhanced in order to 

reduce computational complexity while processing 

big data. It also takes care of efficient resource 

allocation and processing textual data such as DNA 

sequence. Their architecture was named as 

H2Hadoop that improves the ability of NameNode to 

assign jobs to the TaskTrackers (DataNodes) in a 

given cluster. By adding control features to 

NameNode, their architecture can intelligently assign 

tasks to the DataNodes where required data is 

present thus reducing resource utilization pertaining 

to CPU time, number of read operations etc. 

However, the existing system can be improved to have 

more focused approach by considering data locality 

awareness to the job scheduling process. In the 

proposed system, an algorithm is proposed to have 

data locality aware job scheduling. This algorithm is 

named as Data Locality Aware Job Scheduling 

(DLAJS) algorithm. The algorithm explores the data 

locality aware to know how far efficient job 

scheduling. Thus, consuming less cloud resources 

such as CPU, memory and execution time. 
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I. INTRODUCTION  

           

       The exponential growth of data led to big data of 

late which in turn demanded the distributed 

programming frameworks like Hadoop to process 

voluminous data in short span of time. Data intensive 

applications can be run in distributed, scalable and 

parallel-processing environment. Hadoop is the 

framework that supports MapReduce programming 

paradigm. Big data needs Hadoop and MapReduce 

environment and the problem with Hadoop is that it 

has provision for assigning mappers based on the data 

availability and data locality. When data locality is 

known, the Hadoop framework assigns mappers 

accordingly so as to ensure faster processing of data 

thus reducing network overhead.  

The problem identified with MapReduce 

framework is that Hadoop does not consider data 

locality in the case of assigning reducers to worker 

nodes in Hadoop clusters. This will result in delay in 

processing, increased latency and decreased 

throughput. To overcome this problem, data locality 

aware approach in assigning mappers is explored in 

this paper. The existing approaches can be improved 

further with practical implementation. In this paper is 

detailed the issue in Section 4 and proposed an 

algorithm to solve it. The contributions in this paper 

are as follows.  

The proposed algorithm named Data 

Locality Aware Job Scheduling (DLAJS) for 

assigning reducers to worker nodes based on the data 

locality. This will reduce computational complexity 

besides reducing network overhead. It reduces latency 

and increases throughput. The prototype application 

is built to demonstrate proof of the concept. 

Experiments are made with CloudEra test bed that 

supports Hadoop and MapReduce frameworks. 

Experimental results revealed the significance of 

data-locality aware approach in MapReduce 

framework.  

The remainder of the paper is structured as 

follows. Section 2 reviews related literature. Section 3 

provides the need for big data and the MapReduce 

programming framework associated with Hadoop. 

Section 4 formulates the problem addressed in this 

paper. Section 5 provides the proposed solution to the 

problem with an underlying algorithm. Section 6 

provides experimental results while section 7 

concludes the paper and gives directions for future 

work. 

II. RELATED WORKS 

 

This section provides review of literature on 

MapReduce programming paradigm and the 

improvements that can be made. The problem of big 

data and how the problem is solved with the 

introduction of distributed programming frameworks 

is explored in [1]. Exploiting Meta data of related 

jobs and improving performance of MapReduce 

framework is the focus in [2]. There are many 

performance models related to Hadoop as studied in 

[3]. Optimization of Hadoop with possible data 

import is examined in [4], [5]. Locality aware 

resource allocation so as to optimize resource usage is 

the main research carried out in [6], [7]. The concept 
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of mobile networks and the utility of them in the 

context of distributed programming are explored in 

[8]. Storage of data, analysis of data and other issues 

related to data in the context of high performance 

computing are analyzed in [9], [10]. Hadoop kind of 

distributed programming frameworks need the cloud 

eco system to function well [11].  

Pervasive computing environments need big 

data processing [12]. Mining big data associated with 

mobile phones can be done with a probabilistic 

approach [13]. Technical issues and challenges 

associated with big data are explored in [14], [15]. 

Large scale data management and analysis of data 

with distributed computational solutions is found in 

[16]. Parallel process of algorithms with Hadoop 

platform is the main focus in [17]. In the presence of 

big data processing and MapReduce programming 

paradigm, query optimization and parallel processing 

of massive amounts of data is studied in [18]. In this 

paper the proposed  algorithm to solve the problem of 

data-locality aware assignment of reducers to worker 

nodes to improve Hadoop performance. 

 

III. PRELIMINARIES 

 

This section provides important information that 

leads to understanding the proposed work in this 

paper. It includes big data and Hadoop MapReduce. 

  

A.  Big Data and Need for It 

Big data, as the name implies, is voluminous 

data (V). There are other Vs associated with it. They 

include variety, value and velocity. Volume indicates 

that the data is very huge and cannot be 

accommodated in local machines generally. It is 

measured in peta bytes. Velocity is another attribute 

that informs that the big data keeps growing 

continuously (streaming data). Variety attribute on 

the other hand informs us that bit data is in many 

forms. They are known as structured format, 

unstructured format and semi-structured format. 

When sources of input are from different places or 

branches of a company, the data needs to be 

processed as a whole.  

 
Figure 1: Shows the importance of considering big data for 

gaining unbiased conclusions 

 

As shown in Figure 1, it is evident that big 

data has to be considered for gaining complete 

business intelligence. Processing some part of data 

provides biased conclusions. Unbiased conclusions 

can be obtained by considering big data. The rationale 

behind this is that the big data contains complete data 

that can provide comprehensive intelligence when 

mined. So as to process such gigantic measure of 

information and even to store it, distributed 

computing foundation alongside disseminated 

programming structures like Hadoop are  required.  

 

B. Hadoop’s MapReduce Framework 

Hadoop is one of the distributed 

programming frameworks that support big data 

storage and processing. With its associated Hadoop 

Distributed File System (HDFS), it can store and 

handle big data. Hadoop supports MapReduce 

programming approach that is new. It can take 

voluminous data as input and split it in the form of 

subsets of data containing key/value pairs. Keys are 

uniquely identified while the values may have 

duplicates.  

Figure 2: MapReduce framework of Hadoop 
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As presented in Figure 2, it is evident that 

the Map phase and Reduce phase are part of the 

framework as the name implies. Map phase performs 

actually intended job. It does processing before that 

it takes data from the HDFS in the form of chunks of 

data. In other words input data from HDFS is taken 

by the framework and it is split into number of parts 

and given to many commodity computers where 

map task runs. Map task takes care of processing 

given data and the intermediate results are given to 

Reduce phase in the form of key/value pairs. The 

Reduce phase takes care of producing final output. 

In this context the problem definition is provided in 

the section 4.  
 

IV. PROBLEM FORMULATION 

      Hadoop supports MapReduce programming 

paradigm. According to this jobs are assigned by    

Job Tracker to Task Tracker. In the process, the 

whole input data is split into number of chunks. 

Then each chunk of data is given to a mapper 

(worker node in the Hadoop cluster). Mapping takes 

care of intended functionality. However, one mapper 

cannot produce the whole output. The intermediate 

results of all mappers are to be properly clubbed and 

output needs to be produced.  

 
Figure 3: Illustrates workflow of MapReduce with 

WordCount benchmark 

As presented in Figure 3, it is evident that 

the map phase is able to count the occurrence of 

words in the given chunk of data. The result of 

mapping is given for shuffling.  

 

shuffling phase sorts data in ascending 

order. Then the reduce phase is making the summary 

of count of words. Afterwards, the final result is 

produced. In this context, the problem is that 

Hadoop assigns map tasks to nearly worker nodes 

based on data locality. However, Hadoop framework 

does not consider data locality while assigning 

reduce tasks to worker nodes. This can lead to issues 

related to performance. Therefore data locality-

aware scheduling of jobs to Reduce worker nodes 

provides significant performance benefits. The 

proposed system to achieve is explored in section 5.  
 

V. PROPOSED SYSTEM 

In the proposed system, a new algorithm is 

proposed to have data locality aware job scheduling. 

This algorithm is named as Data Locality Aware Job 

Scheduling (DLAJS) algorithm. The calculation 

abuses the information territory mindful skill for 

effective employment planning in this way 

devouring less cloud assets, for example, CPU, 

memory and execution time. A model application is 

worked to show verification of the idea. The 

proposed solution for enhancing execution of 

MapReduce is given in Figure 4. 

 
Figure 4: Architectural overview of the proposed 

system 

 

Data locality is measured by the total 

amount of data stored locally on the physical 

machine for each virtual machine.When data is local, 

it can be accessed faster. Data locality aware 

scheduling is therefore a reflection of performance 

of MapReduce programming paradigm.  

 

A.  Data Locality Aware Job Scheduling Algorithm 

This algorithm takes care of data locality 

while assigning reduce tasks in Hadoop distributed 

framework. Thus it can bring about performance by 

reducing network overhead.  

 
Algorithm: Data Locality Aware Job Scheduling  

Input: Set of physical machines PM, set of virtual 

machines VM, reducer index i, partition index j 

Output: Data locality aware mapping of reducers 

 

1. R=getAllReducers() 

2. For each pm on PM 

3. For each mapper on pm  

4. For i=1 to NoOfReducers 

5. For j=1 to NoOfPartitions 

6. Compute reducer i’s partition size 

7. End For 

8. End For 

9. End For 

10. End For 

11. //Assign reducers to physical machine based on 

data locality 

12. For each pm from PM 

13.    VM = virtual machines of pm 

14.    R = reducers of pm 

15.    Sort VM based on speed 

16.    //best fit reducer assignment 

17.    For i=1 to number of reducers in PM 

18.       VM[i]=reducers[i] 

19.  End For 

20. End For 
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When the algorithm is applied to the case 

shown in Figure 1, it does like this. Each physical 

machine has 3 virtual machines. Each VM has a 

mapper associated. Each mapper has 3 data 

partitions. Based on the data locality and the speed 

of VM, the reducers are assigned to physical 

machines appropriately. 

 

VI. EXPERIMENTAL RESULTS 
 

Experiments are made with CloudEra 

which is one of the test beds for making experiments 

with Hadoop framework. It runs in virtual 

environment using Oracle VM Virtual Box or 

VMware. Observations are made in terms of number 

of read operations with given benchmark application.  

 
Figure 5: Shows the initiation of jobs with MapReduce 

framework 

 

As shown in Figure 5, it is evident that the 

MapReduce framework with CloudEra environment 

is loaded and it performs its intended operations. It 

shows the MapReduce programming paradigm and 

its dynamics and statistics in the console.  

 
Figure 6: Shows the initiation of jobs with MapReduce 

framework along with I/O and shuffle errors 

As shown in Figure 6, it is clear that the 

MapReduce structure with CloudEra condition is 

stacked and it plays out its planned tasks. It shows 

the MapReduce programming paradigm and its 

dynamics and statistics in the console with details 

like shuffle phase parameters and file input and 

output details besides shuffle errors if any.  

 
Figure 7: Showing results of patient referral dynamics with 

healthcare benchmark 

 

As presented in Figure 7, it is evident that 

the MapReduce programming produced percentage 

of patient referral on different healthcare units as 

part of healthcare benchmark application that is run 

with Hadoop. In this process, there are other 

observations that are related to data locality-aware 

job scheduling. The results are as follows.  

 
Table 1: Number of read operations to show performance 

difference 

 

Common 

Feature 

HDFS: Number of Read 

Operations 

Native 

Hadoop 

H2Hadoop Proposed 

Sq1 100 100 80 

Sq2 100 15 10 

Sq3 100 68 50 

Sq4 100 41 30 

Sq5 100 16 10 

 

As presented in Table 1, it is evident that 

the proposed system and existing systems are 

presented in terms of number of read operations 

against five common features.  

 
Figure 7: Performance comparison in terms of number of 

read operations 



International Journal of Computer Trends and Technology ( IJCTT ) – Volume 61 Number 1 - July 2018 

 

ISSN: 2231-2803                                 http://www.ijcttjournal.org                                 Page 25 

 

As shown in Figure 7, , it is clear that the 

basic highlights are exhibited in flat pivot while the 

vertical hub demonstrates the quantity of read tasks.     

The proposed framework beat the current 

frameworks. Both H2Hadoop and the proposed 

algorithm demonstrated preferred execution over 

local Hadoop because of the thought of information 

territory mindful occupation planning.  

 
Table II: CPU time in seconds to show performance 

difference 

 

Common 

Feature 

CPU Time in Seconds 

Native 

Hadoop 

H2Hadoop Proposed 

Sq1 370 385 360 

Sq2 397 50 40 

Sq3 390 270 250 

Sq4 392 149 130 

Sq5 410 61 50 

 

As presented in Table 2, it is evident that 

the proposed system and existing systems are 

presented in terms of CPU time in seconds against 

five common features.  

 

 
Figure 8: Performance comparison in terms of CPU time 

 

As shown in Figure 8, , it is clear that the 

regular highlights are displayed in flat hub while the 

vertical hub demonstrates the CPU time right away. 

The proposed framework beat the current 

frameworks. Both H2Hadoop and the proposed 

algorithm demonstrated preferable execution over 

local Hadoop because of the thought of information 

territory mindful employment planning.  

 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, the proposed algorithm 

named Data Locality Aware Job Scheduling (DLAJS) 

in order to solve the problem of assigning reducers 

with data locality-aware job scheduling. The 

problem with native Hadoop framework is that it 

takes care of the data locality-aware approach in 

assigning map tasks to worker nodes. However, 

while assigning reducers, it does not consider data 

locality aware approach. This has resulted in 

reduction of throughout, increase in latency and 

increase in overall network overhead. Hadoop 

clusters contain thousands of commodity computers. 

Appropriate allocation of the computing resources 

can lead to performance gain. In this manner, it is 

fundamental to enhance execution of Hadooop as it 

will have huge impact on both service providers and 

service consumers. The implemented proposed 

algorithm using CloudEra test bed. The experimental 

results revealed significance improvement in the 

performance of Hadoop. 

 In future the work intend to have an 

architectural modeling framework to explore other 

possibilities in optimizing Hadoop performance.  
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