
International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1 January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 22

Java Server Faces – Transformation of Face

let to UIViewRoot
Vijay Kumar Pandey

Director of Technology Solutions, Intueor Consulting, Inc.

Irvine, CA (United States of America)

Abstract-This document provides deep dive insight

and guidance necessary for application architects,

software designers and software programmers who

develop enterprise web-based applications utilizing

JavaServer Faces (JSF). The guidance is meant to

provide an in-depth understanding to the reader, on

how XHTML code is processed and converted to

Facelet and then to UIViewRoot components,

allowing the reader to better design, architect and

develop robust and complex enterprise-wide web-

based applications using JSF 2.2. This document

assumes that the reader has a basic understanding

of JSF 2.2.

Keywords – JSF, JSF2.2, XHTML, Facelet,

UIViewRoot, JSF Component Tree, JSF Lifecycle,

MyFaces, PrimeFaces, OmniFaces

I. INTRODUCTION

This document describes the complex processing

that occurs during the conversion of an XHTML file

to fill up a JSF component tree UIViewRoot. It only

considers Faceletsfor discussion; it does not

consider JSPsbecause they are a deprecated view

technology with respect to JSF 2.2. Facelets (in this

case XHTMLfiles) are converted to Facelet objects

and then to components that fill up the UIViewRoot,

following recursive processing; on the other hand,

JSPs werecompiled to Servlets.The default Facelet

implementation provided by both Oracle’s

Mojarra&Apache’s MyFaces(v2.2.12 considered for

the purposes of this article) is XHTML. This article

will delve into the detailsof the processing that

occurs in the implementation engines and how they

convert a plain vanilla XHTML to a component tree

UIViewRoot. The discussion is supported using code

samples, that usesPrimeFaces 6.1 and OmniFaces

2.6 open source projects.

It is common knowledge that the JSF Lifecycle

consists of six distinct phases, i.e., RESTORE_VIEW,

APPLY_REQUEST_VALUES, PROCESS_VALIDATIONS,

UPDATE_MODEL_VALUES, INVOKE_APPLICATION,

and RENDER_RESPONSE. This discussion focuses on

the RESTORE_VIEW and RENDER_RESPONSE

phases that are primarily involvedin the conversion

of XHTML to UIViewRoot.

II. SAMPLE FACELETSCODE

The code samples outlined below are utilized to

help the reader follow the discussion:

A. template.xhtml

This code provides a mechanism to easily

configure common tags for header, footer, and menu

objects, for a page among others.

 Figure 1

B. test.xhtml

This code represents the main XHTML file which

will implement a certain use case, in a real-world

application.

 Figure 2

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1 January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 23

C. TestController.java

This code represents the main controller java file,

which will implement a certain use case, it’s

basically invoked during Invoke Application

phase.This controller class is referred from test.xhtml.

 Figure 3

III. XHTML TO FACELET TO

UIVIEWROOTCONVERSION

The lifecycle of a JSF application begins when a

user makes an HTTP request for a page and ends

when the server responds with the response.The

request-response JSF lifecycle handles two kinds of

requests: Initial Request and PostBack. An initial

request occurs when a user makes a request for a

page for the first time. A PostBack request occurs

when a user submits the form contained on a page

that was previously loaded into the browser because

of executing an initial request.

A FacesServlet (provided by JSF implementation)

manages therequest-processing lifecycle for web

applications and initializes the resources requiredby

JSF technology.Before a JSF application can start

processing requests, the web containerwill initialize

this servlet with required resources.So, it is

important to understand how a request is handled by

FacesServlet and Lifecyclebefore understanding how

a physical XHTML file gets converted to a Facelet.

A. FacesServlet

At application server start up,FacesServlet must

have initialized itself. It is important to note that this

servlet class is a final class and cannot be extended.

The init method of this servlet is used to initialize

Factory objects such as FacesContextFactory and

LifeCycleFactory.Since LifeCycle instance is

supposed to be shared across multiple requests, it

can be initialized in this method.

The request is handled by the service method of

the FacesServlet. The main object that is prepared

here is Faces Context. FacesContextFactoryhas a

getFacesContextmethod that creates (as needed) a

new FacesContext object. The first argument of the

method getFacesContextis of type Object; for the

servlet request environment, this is the

ServletContext object.

FacesContext.getExternalContext()method

returnsExternalContext, which is a wrapper around

ServletContext, ServletRequest and ServletResponse.

Also, FacesContext is a thread scoped object,which

returns the same objecton the same thread until its

release method has been invoked,which usually

happensin the finalclauseofthis servlet’s service

method.

After the creation of the FacesContext,

FacesServlet delegates further processing of the

request, to the Lifecycle object. Lifecycle class has

two main methodsexecute and render. The execute

method processes the first five phases of the JSF

Lifecycle and the render method processes the

RENDER_RESPONSE phase of the lifecycle. There

is also an attachWindow method in the Lifecycle,

which is related to ClientWindow (not discussed in

this article) functionality. The below code snapshot

describes the same:

 Figure 4

B. Lifecycle Execute Method

In the Lifecycle.execute() method, the initial five

phases get executed – obviously, it can return after

any phase due to responseCompleted or

renderResponse marked as true

i.e.,facesContext.getRenderResponse() or

facesContext.getResponseComplete() returning true.

It should be noted here that if

facesContext.getResponseComplete() returns true

then Lifecycle.render() will also not execute. For e.g.,

a use case may need to download a dynamic file,

possibly in the INVOKE_APPLICATION phase, in

which case the inputStreamis written on the

outputStream(externalContext.

getResponseOutputStream()).After the stream has

been written,it will need to be explicitly markedfor

the response as completed on the facesContext via

facesContext.responseComplete().

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1 January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 24

Important pre-steps executed before the actual

processing of the phases, include

 Setting the current phase id on the FacesContext

- facesContext.setCurrentPhaseId(<<current

phase id>>);

 Flash.doPrePhaseActions(facesContext) getting

executed

 Any other pre-processing specific to that phase

 All the configured

PhaseListener’sbeforePhasemethod getting

executed for that phase

 Checkingfor facesContext.getRenderResponse()

or facesContext.getResponseComplete(), if true

(then further processing of this executewill stop)

 Actual processing of the phase is dependent on

the previous step, i.e.,

facesContext.getRenderResponse() or

facesContext.getResponseComplete() returning

true.

The subsequent section will address the phases

where a physical XHTML file is converted to

Facelets and then to a component tree

withUIViewRoot as the top level component.

C. Restore View Phase (LifeCycle Execute Method

– Initial Request Scenario)

This phase plays a key role in the process of

creating a Facelet, but involves only the Facelet

object corresponding to the f:metadata tag in the

XHTML. The name of this phase suggests that it is

supposed to restore the view on the PostBack request,

but in case of an initial request, it creates the Facelet

for the f:metadata tag.

In the pre-phase action, the initView method on

the ViewHandler is executed. This is basically to set

the character encoding on the ExternalContext.

Refer to the Javadoc of the method

calculateCharacterEncoding for class ViewHandler

to understand the algorithm for how encoding is

calculated.

facesContext.getApplication().getViewHandler().initView(facesC

ontext);

At this stage, the main processing in this phase of

the lifecycle starts; of course, this occurs after

beforePhase methods have executed for all

PhaseListeners configured against this phase.

Up until this point, no UIViewRoot has been

created i.e.,facesContext.getViewRoot() will return

null. Before this root object can get created, viewId

needs to be created. In a straightforward scenario, if

the initial request’s URLis something like

http(s)//<<server>>/<<context-root>>/test/test.xhtml,

then from the servlet api, the viewId for the request

is determined as /test/test.xhtml,which is the servlet

path. To have a thorough understanding of algorithm

of how a viewId is calculated for a non-portlet type

of request, refer to the code below:

String viewId = (String) externalContext.getRequestMap().

 get("javax.servlet.include.path_info");
If (viewId == null)

viewId = externalContext.getRequestPathInfo();

if (viewId == null)
viewId = (String)externalContext.getRequestMap().

 get("javax.servlet.include.servlet_path");

if (viewId == null){

viewId = externalContext.getRequestServletPath();

Based on the viewId, ViewDeclarationLanguage

(VDL) object is determined from the ViewHandler

(MyFacesoffers an implementation of the Facelet

based VDL). VDL can be determined through

viewHandler.getViewDeclarationLanguage(facesCo

ntext, viewId). For an XHTML based Facelet, once

the VDL is determined, ViewMetaData is created

via:

ViewMetadata metadata = vdl.getViewMetadata(facesContext,

viewId);

The above object is a Facelet based

ViewMetadatawith viewId. Once the above object is

created, createMetadataView method is executed

and returns a UIViewRoot. This is the method where

the actual conversion from an XHTML file to a

Facelet object occurs, but as stated earlier, this

Facelet is only related to a f:metadata tag in the

XHTML file.

UIViewRootviewRoot =

metadata.createMetadataView(facesContext)

The UIViewRoot returned, has only

UIViewAction(s) and UIViewParameter(s) as

children grouped under a common parent of type

facetwith name of

UIViewRoot.METADATA_FACET_NAME. This

facet is a direct child of UIViewRoot.Before the

ViewMetadata, related components are created

through its facelet, UIViewRoot needs to be created

first, via

UIViewRootviewRoot = facesContext.getApplication().

getViewHandler().createView(facesContext, “<<viewId>>”);

Main processing inside createView: This method goes through the
ViewDeclarationLanguage.
 createView(facesContext,<<viewId>>) to create the

UIViewRoot.

UIViewRootviewRoot = (UIViewRoot) facesContext.
getApplication().createComponent.

(facesContext, UIViewRoot.COMPONENT_TYPE, null);

There is no renderer associated with the

UIViewRoot component, hence the third argument is

null. Sobased on the component type, JSF

implementation looks for the implementation class

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1 January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 25

and creates a new instance of the component (all

components, either provided by the JSF

implementation or custom component) through its

no-arg constructor.

Class<? extends UIComponent>componentClass = <<fetch the
implementation class based on component type>>

UIComponent component = componentClass.newInstance();

At this moment, various annotations tagged on the

component such as ListenerFor, ListenersFor,

ResourceDependency and ResourceDependencies,

are handled.

Once the UIViewRoot gets created, then locale

and renderkitIdare set on the root object through

ViewHandler class, that has methods such as

calculateLocale(facesContext)

andcalculateRenderKitId(facesContext). MyFaces

also sets the viewId on the UIViewRoot.

ViewHandlerviewHandler =
facesContext.getApplication.getViewHandler();

viewRoot.setLocale(viewHandler.calculateLocale(context));
viewRoot.setRenderKitId(viewHandler.calculateRenderKitId(con

text));

viewRoot.setViewId(<<viewId>>);

From this point on,UIViewRootmay be used

directly to access the current viewId of the request.

Also, in ViewMetadata,a related Faceletis created

and then based on this Facelet,UIViewRootis

populated with the components related to f:

metadata.

ViewMetadataFacelet creation: There are two

types of Facelets - the normal View Facelets and the

View Metadata Facelets. TheView Metadata

Facelets correspond to <f:metadata> tag in the

XHTML.

This part of the Faceletdoes not create the full

view Facelets,because there is no need to handle

other kind of tags present in the physical Facelet file

(XHTML),other than the f:metadata. Refer to

JavaDoc, for class FaceletCache for more

informationabout this. A physical Facelet file

corresponds to an XHTML file, which is basically

an XML file. Therefore, to get hold of a Facelet

object, the XML should be first parsed. MyFaces

internally uses a fast SAX compiler to achieve this

parsing. The SAX compiler class is

javax.xml.parsers.SAXParser and its parse method

takes org.xml.sax.helpers.DefaultHandler as one of

the arguments, which can handle events generated

from the parser. MyFaces creates these custom

handlers to handle the events generated by the parser.

One of the methods from

org.xml.sax.helpers.DefaultHandler to handle the

transformation from an XML to Facelets, is

startElement(String uri, String localName, String

qName, Attributes attributes).In this

method,org.xml.sax.Attributes are converted to

javax.faces.view.facelets.TagAttribute. For this type

of Facelet, anything other than f:metadata is not

considered.

Using the parameters of the method

startElement,javax.faces.view.facelets.Tag object is

created and passed further for processing.

TagDecorator:One of the steps of the execute

method, that occurs at this point is the

transformation of the Tag object using

javax.faces.view.facelets.TagDecorator into a new

Tag object per the decoration logic(In JSF 2.2, there

is a default implementation of TagDecoratoralready

available – refer to TagDecoratorin JavaDoc).The

sample code used for this article does not call for

any tag decoration except processing using the

default TagDecorator in JSF.

Once the XML parsing is completed, there may

be various TagHandlerscomprising of Tag along

with the next TagHandler. To get the Facelet from

these TagHandlers, typical JSF implementations

create a top level TagHandler(for e.g.,

EncodingHandlerin MyFaces) which becomes the

starting TagHandler inside JSF implementation of

Facelet. Here is the chain of TagHandlers created

for this Facelet.

 Figure 5

Tag Handler Factories:During the creation of the

Tag Handlers, Tag Handler factories play a key role

in setting up the handler objects pertaining to tag,

component, converter, validator. These factories are

specific to JSF implementation, but their purpose is

the same, i.e., to set up or provide a mapping from

XML markup on the XHTML page to its

corresponding handler. For e.g.,metadatamarkup in

XML page (which is associated with the namespace

http://xmlns.jcp.org/jsf/core) is mapped as a

TagHandler in one of the libraries (CoreLibrary),

while viewAction and viewParam with the same

namespace are mapped to component (without any

renderer and no specific handler). When a particular

component has no specific component handler

associated with it, the JSF engine will associate

ComponentHandler class as the default handler.

EncodingHandler

NamespaceHandler

ViewMeatadataHandler
(f:metadata)

CompositeFaceletHandler

ComponentHandler
 (f:viewAction)

ComponentHandler
 (f:viewParam)

ViewMetadata Facelet
(test.xhtml) – Tag Handlers tree

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1 January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 26

Like the core library, there are other types of

standard libraries in each JSF implementation, such

as HtmlLibrary, JstlCoreLibrary etc. which help in

creating the proper mapping between XML and the

namespace to its corresponding handlers. These

handlers (if component handler) in turn, help in

creating the actual components.

D. Render Response Phase (LifeCycleRender

Method)

In response to an Initial Request (as against a

PostBackrequest), this phase basically fills up the

UIViewRoot with the components. However, before

this occurs, the view Facelet is first created

(likeViewMetadataFacelet creation in the

RESTORE_VIEW phase).

View FaceletCreation:As described in the

previous section, there are two types of Facelets -

the normal View Facelets and the View Metadata

Facelets. TheView Metadata Facelet is created with

the help of the method buildView in VDL. Before

that occurs, if id is not present on the UIViewRoot, a

unique id is created and set. The concept around

building View Facelets is like building the View

Metadata Faceletwith the exception that the entire

XMLmarkup is used to create tag handlers,

component handlers, etc (as against using just the

f:metadata tag in the RESTORE_VIEW Phase).

Once the chain of handlers is created and set in the

top level Facelet, various components get created

when apply method is executed on the Facelet.

In the next figure 6, EncodingHandler is the root

of the handler, which starts the building process of

the component tree. The entire process starts once

the apply method is executed on the Facelet(which

has this EncodingHandler, as its main root handler),

which in turn executes recursively the next handler

and so on,until the whole chain is executed

eventually creating the component tree.

package javax.faces.view.facelets;

public abstract class Facelet {

 public abstract void apply(FacesContextfacesContext,

UIComponent parent) throws IOException;

}

The above method in the Facelet passes the

UIViewRoot as the parent component. Once a

ComponentHandler is encountered, a component of

that type is created and then the next handlersapply

method is executed.ComponentHandler extends

from DelegatingMetaTagHandlerwith the following

functions, to provide the capability of calling the

chained handlers in recursion till the whole tree is

built.
public void apply(FaceletContextctx, UIComponent parent)
throws IOException{

getTagHandlerDelegate().apply(ctx, parent); //this method

internally calls the //applyNextHandler method for chaining the
next handler

 }

public void applyNextHandler (FaceletContextctx, UIComponent

c) throws IOException{
nextHandler.apply (ctx, c);

 }

The diagram below provides the actual tag

handlers tree present in the view Facelet.

 Figure 6

Since the current view has the template specified,

CompositionHandler includes the actual template

Facelet, which can also add new handlers – this

execution is explained next.

The apply method of

CompositionHandlerexecutes the following method

to include the template Facelet. This method is

present in the FaceletContext.

public abstract void includeFacelet(UIComponent parent, String

relativePath);

Of course, in the above method, the UIComponent

object passed will be UIViewRoot. As explained

EncodingHandler

NamespaceHandler

CompositionHandler
 (ui:composition)

CompositeFaceletHandler

DefineHandler
 (ui:define)

UIInstructionHandler
(Test Title)

DefineHandler
 (ui:define)

ViewMetadataHandler
(f:metadata)

CompositeFaceletHandler

ComponentHandler
 (f:viewAction)

ComponentHandler
 (f:viewParam)

DefineHandler
 (ui:define)

HtmlComponentHandler
(h:form)

CompositeFaceletHandler

ComponentHandler
 (p:panelGrid)

CompositeFaceletHandler

FacetHandler
 (f:facet)

UIInstructionHandler
 (Header)

ComponentHandler
 (p:outputLabel)

ComponentHandler
 (p:inputText)

FacetHandler
 (f:facet)

ComponentHandler
(p:commandButton)

ValidateBean
(o:validateBean)

View Facelet (test.xhtml) – Tag Handlers tree

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1 January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 27

earlier in this document, the template Facelet is built

using the same strategy of parsing it with the SAX

compiler and building the tree.

InsertHandler: The apply methodchecks if the

main View Facelet has the DefineHandler with the

same name directly under UICompositionHandler. If

found,that DefineHandler gets applied

(i.e.,DefineHandler’snextHandler gets applied);if not

found, nextHandler of InsertHandler gets applied.

The diagram below depicts the tag handler tree of

the template.xhtmlview facelet.

Figure 7

UIViewRoot – Component Tree:The diagram

below depicts the component tree built in

UIViewRoot, with the help of the handlers described

previously:

Figure 8

EncodingHandler

CompositeFaceletHandler

NamespaceHandler

CompositeFaceletHandler

 UIInstructionHandler
 (<html lang="en" xmlns="http://www.w3.org/1999/xhtml">)

ViewHandler
 (f:view)

UIInstructionHandler
 (</html>)

CompositeFaceletHandler

HtmlComponentHandler
(h:head)

UIInstructionHandler
(<?xml version="1.0" encoding="ISO-8859-1"?>)

HtmlComponentHandler
(h:body)

InsertHandler
 (ui:insert)

HtmlComponentHandler
(h:panelGroup)

InsertHandler
 (ui:insert)

UIInstructionHandler
 (Default Content)

UIInstructionHandler
 (<title>)

InsertHandler
 (ui:insert)

UIInstructionHandler
 (</title>)

UIInstructionHandler
 (Default Title)

View Facelet (template.xhtml) – Tag Handlers tree

`

UIViewRoot

UIInstructions
(<?xml version="1.0" encoding="ISO-8859-1"?>)

UIInstructions
(<html lang="en" xmlns="http://www.w3.org/1999/xhtml">)

HtmlHead

HtmlBody

UIInstructions
 (</html>)

 UIInstructions
(<title>)

 UIInstructions
(Test Title)

UIInstructions
 (</title>)

 HtmlPanelGroup

HtmlForm

PanelGrid

OutputLabel

InputText

Facet Map

UIInstructions
 (parent facet: header)

 CommandButton
(parent facet: footer)

Facet Map

 UIPanel
(parent facet: javax_faces_metadata)

UIViewAction

 UIViewParameter

ComponentResourceContainer
(basically a collection of UIOutput - Script and
Stylesheet related components)
(parent facet: header)

UIViewRoot – Component Tree

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1 January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 28

The table below provides a detailed description of the UIViewRoot Component Tree.

S. No.
Component

(UIComponent)
Parent Component Tag Handler Remarks

1. UIViewRoot None None There are no tag handlers to create

this, but as discussed above this

component gets created in the

RESTORE_VIEW phase.

2. UIInstructions1 UIViewRoot UIInstructionHandler1 This is JSF implementation specific

component, and refers to any text or

EL text outside of any tag markup

element name or attribute name or

value.

This component contains the text

from template.xhtml i.e.,

<?xml version="1.0"

encoding="ISO-8859-1"?>

3. UIInstructions1 UIViewRoot UIInstructionHandler1 This component contains the text

from template.xhtml i.e., basically

the html tag “html”

<html lang="en"

xmlns="http://www.w3.org/1999/xh

tml">

4. HtmlHead UIViewRoot HtmlComponentHandler1

This handler basically

extends from

ComponentHandler

This component comes from the

template.xhtml – tag markuph:head

5. HtmlBody UIViewRoot HtmlComponentHandler1

This component comes from the

template.xhtml – tag markuph:body

6. UIInstructions1 UIViewRoot UIInstructionHandler1 This component contains the text

from template.xhtml i.e., basically

end html tag for “html”</html>

7. UIInstructions1 HtmlHead UIInstructionHandler1 This component contains the text

from template.xhtml i.e., <title>

8. UIInstructions1 HtmlHead UIInstructionHandler1 This component contains the text

from test.xhtml i.e.,

Test Title

9. UIInstructions1 HtmlHead UIInstructionHandler1 This component contains the text

from template.xhtml i.e.,

</title>

10. HtmlPanelGroup

HtmlBody HtmlComponentHandler1 This component comes from the

template.xhtml – tag

markuph:panelGroup

11. HtmlForm

HtmlPanelGroup HtmlComponentHandler1 This component comes from the

test.xhtml – tag markuph:form

12. PanelGrid HtmlForm ComponentHandler This component comes from the

test.xhtml – tag markupp:panelGrid

13. OutputLabel PanelGrid ComponentHandler This component comes from the

test.xhtml – tag

markupp:outputLabel

14. InputText PanelGrid ComponentHandler This component comes from the

test.xhtml – tag markupp:inputText

15. UIInstructions1 PanelGrid

(contained against

the facet “header”)

UIInstructionHandler1 This component contains the text

from test.xhtml i.e.,

Header

16. CommandButton PanelGrid

(contained against

the facet “header”)

ComponentHandler This component comes from the

test.xhtml – tag

markupp:commandButton

17. UIPanel UIViewRoot

(contained against

the facet

“javax_faces_metad

ata”)

None This component is created because

f:metadata is present in the

text.xhtml (per JSF spec)

18. UIViewAction UIPanel ComponentHandler This component comes from the

test.xhtml – tag markupf:viewAction

19. UIViewParameter UIPanel ComponentHandler This component comes from the

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1 January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 29

S. No.
Component

(UIComponent)
Parent Component Tag Handler Remarks

test.xhtml – tag markupf:viewParam

20. ComponentResour

ceContainer1,2

(collection of

several UIOutput

components)

UIViewRoot

(contained against

the facet “header”)

None These UIOutput basically refers to

various stylesheets and javascript

resources present on PrimeFaces

related components.

1These components and handlers are specific to JSF implementation. 2See below for description of Component Resources

 Table1

The following is a mapping of java Classes to

fully qualified Class Names (the mapping only

provides classes and class names that are part of JSF

API, PrimeFaces and not those that are specific to a

JSF Implementation):
 UIViewRoot-javax.faces.component.UIViewRoot

 HtmlHead - javax.faces.component.html.HtmlHead

 HtmlBody - javax.faces.component.html.HtmlBody

 HtmlPanelGroup -

javax.faces.component.html.HtmlPanelGroup

 HtmlForm - javax.faces.component.html.HtmlForm

 PanelGrid –

org.primefaces.component.panelgrid.PanelGrid

 OuputLabel -

org.primefaces.component.outputlabel.OutputLabel

 InputText -

org.primefaces.component.inputtext.InputText

 CommandButton -

org.primefaces.component.commandbutton.Comman

dButton

 UIPanel – javax.faces.component.UIPanel

 UIViewAction - javax.faces.component.UIViewAction

 UIViewParameter -

javax.faces.component.UIViewParameter

 UIOutput - javax.faces.component.UIOutput

 ComponentHandler –

javax.faces.view.facelets.ComponentHandler

 ResourceDependency –

javax.faces.application.ResourceDependency

Component Resources:Components have

ResourceDependency annotation to let the JSF

engine be aware of resource dependencies.

Therefore, when a particular component is created,

one of the subsequent steps is to examine these

annotations and if present, createsa corresponding

UIOutput component,and set attributes on that

component such as name, library, target.This

UIOuput component is then added to UIViewRoot

via UIViewRoot.addComponentResource method.

This method adds these UIOutput components inside

a Facet named header or if a target attribute on

ResourceDependency was specified, the method

addsthe UIOutput components against that Facet

name.For. e.g.,InputText component of PrimeFaces

has the following ResourceDependency annotations.

@ResourceDependencies({

@ResourceDependency(library="primefaces",

 name="components.css"),

 @ResourceDependency(library="primefaces",

 name="jquery/jquery.js"),

 @ResourceDependency(library="primefaces",
 name="core.js"),
 @ResourceDependency(library="primefaces",
 name="components.js")

})

PostBack Request:During PostBack request, the

component tree is built in the RESTORE_VIEW

phase of the Lifecycle.

UIViewRootviewRoot = viewHandler.restoreView(facesContext,

viewId);

Overriding Components:Components provided as

part of the JSF API or any other open source JSF

component library such as PrimeFaces, may be

overridden by providing custom components in the

faces-config.xml. For e.g.,the following code

outlines a way to provide a custom implementation

for PrimeFacesInputText:

<component>
 <component-

type>org.primefaces.component.InputText</component-type>
 <component-class>class extending

(org.primefaces.component.inputtext.InputText)</component-

class>

</component>

IV. CONCLUSION

This paper presents a thorough deep dive

understanding of how a JSF 2.2 based framework

converts a XHTML physical file to multiple Facelet

java objects and then to UIViewRoot. This paper

provides sample code to make it easy for the readers

to easily follow this complex conversion. This

understanding will be helpful for software architects

and designers, involved in building complex

enterprise web based applications, using JSF 2.2

technology and Java Enterprise Edition (JEE) 7

platform.

REFERENCES

[1] JavaServer Faces 2.2 API, website -

https://javaserverfaces.github.io/docs/2.2/javadocs/index.ht

ml?overview-summary.html
[2] JavaServer Faces Tutorial by Oracle, website -

https://docs.oracle.com/javaee/7/tutorial/jsf-

intro.htm#BNAPH

[3] MyFaces 2.2 - http://myfaces.apache.org/core22/, website -

[4] PrimeFaces showcase, website -

https://www.primefaces.org/showcase/

https://javaserverfaces.github.io/docs/2.2/javadocs/index.html?overview-summary.html
https://javaserverfaces.github.io/docs/2.2/javadocs/index.html?overview-summary.html
https://docs.oracle.com/javaee/7/tutorial/jsf-intro.htm#BNAPH
https://docs.oracle.com/javaee/7/tutorial/jsf-intro.htm#BNAPH
http://myfaces.apache.org/core22/
https://www.primefaces.org/showcase/

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1 January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 30

[5] PrimeFacesAPI, website -

https://www.primefaces.org/docs/api/6.1/
[6] OmniFaces showcase, website -

http://showcase.omnifaces.org/

[7] OmniFaces API, website -
http://javadoc.io/doc/org.omnifaces/omnifaces/2.6.8

https://www.primefaces.org/docs/api/6.1/
http://showcase.omnifaces.org/
http://javadoc.io/doc/org.omnifaces/omnifaces/2.6.8

