
International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1 January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 4

Future of Software Testing: Novel Perspective,

Challenges
Manas Kumar Yogi

#1
, G.Kumari

*2
, Himatej S R Y

#3
, Ch V S G Manikanta

#4

1,2
Asst. Prof. CSE Department ,Pragati Engineering College(Autonomous)

3,4
B.Tech. III Year Students CSE Department ,Pragati Engineering College(Autonomous)

Surampalem, Dist-East Godavari ,A.P., India

Abstract Software testing is part of the software

development which ensures software functions in the

intended way of the client. Software testing depends

on how well we are practicing the principles of

software testing currently. Formation of testing in

Modern era is becoming popular day by day.

Therefore, software testing engineers are trying to

efficiently convert the manual test effort into

automation test report. This challenge is difficult due

to various factors which we are presenting in this

paper. This paper is a novel afford to get software

testing practitioners regarding path they follow to

overcome the challenges of software testing. Our

paper is a sincere advice to envision the future of

software testing which is highly dependent on

current software testing practices.

Keywords - testing, risk, automation, exploratory

I. INTRODUCTION

 Future of software testing depends on perspective of

people who involve themselves in a conception of a

software till its complete manufacturing along with

users who use the software. The future of software

testing depends on current testing principles.

Concisely, future testing depends on current testing.

Present on average software developers have a

cautious approach towards development process

because of the fact that to obtain a high quality

software. The testing should be robust. In the current

scenario, it is found under popular observation that

the reliance on manual testing is the top technical

challenge in application development. So it amounts

to nearly 80% of effort expended in testing. Test

automation also needs Skillet developers amounting

create 20% of testing effort. The 80% manual test

effort again can be broken down to manual test case

creation execution maintenance but this also

includes manual test data localization preparation

during execution just a small fracture goes into the

automated testing between 15 to 20% automation is

carried out on the level of UI to user interfaces. .

As we can observe in the diagram above test

automation is regarded as developers discipline and

open it becomes perfectly clear then when we use as

a manual tester depends tell on manual testing

principles creating and maintaining a test automation

solution becomes challenging so for survival of

manual test engineer the Automation Testing rate

should be more than 85 to 90% or even about 95%

the next challenge is teacher testing should focus on

API testing it refers to automation driven by uses of

application programming interface is like service for

example yet another challenge decrease the effort of

manual testing dramatically also needs to transform

into exploratory testing now that's the future of

testing in a nutshell. In subsequent sections of this

paper we will tell in deep about each of the

challenges mentioned above.

 Fig. 1. Current scenario of software testing approach

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1 January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 5

II. API Testing:

In the graph which follows below we can observe

the degree of completion of UI and API is usually

evolved over a certain period of time let's see from

the beginning of certain iteration to its ending. When

it comes to UIs we can observe the curve which

drops low unevenly in initial development duration

but rises sharply during later stages. UI revisions

takes time, and API testing results in greater

efficiency than UI testing. To be precise according

to recent research work in this area, it has been

found that there is gain of 4 times in test creation for

API testing over UI testing gain of 6 times in test

case maintenance gain of 20 times in test case

execution. The main reason is UI iterations are

difficult to manage get in time to test whereas APIs

much early available in development phase and so

we can start testing early by using those APIs to shift

test automation in left side in the curve, thereby

increasing efficiency of API testing. The main

challenge in the API testing is that most of the time

APIs which are to be integrated into a system may

be under maintenance. This creates a hell of test

environment as we cannot repeat our test execution

without interruption. So we need to have the ability

to virtualize that means simulate the communication

between your real system and surrounding systems.

This happens in enterprise end to end testing. The

greatest benefit is that we can identify a lot of

critical defects atleast one step earlier in our

development phase, the main reason being able to

verify the system functionality from any integration

perspective much earlier.

Fig. 2.UI Testing Versus API Testing

3.Risk Coverage Optimization: For a typical

software development cycle, in some sprints we add

more test cases and in some sprints we add less test

cases nevertheless number of test cases goes on

increasing, thereby introducing a scope of test

redundancy in test suite. Over some time of testing

we hit limit a critical limit. The critical limit indicate

that we do not have the time the resources in the

budget to execute and to maintain all the design test

cases at some point in time. Then we have to make a

decision, regarding which test cases have to be

executed first in order as much as possible risk out

of the system as early as possible. To be more

radical even ask ourselves which test case needed to

keep pace with the Agile development. Risk based

approach allows us to categorize the test case

portfolios into a high medium low risk area. For

example to carry out light testing in low risk areas

and heavy testing in high risk areas. The figure

below depicts the idea.

The objective is to achieve maximum risk coverage

which small number of test cases. In test driven

software development the number of test cases

grows exponentially over time, so efficient

methodological test case design is a challenge to be

faced in future. In reality risks in software

development consists of functional risk, usability

risk, reliability risk, performance risk, security risk,

coherence risk etc. To meet all this risk is single

minded approach may not be a strong option. There

by the advocate a hybrid strategy of specification

based testing along with features of exploratory

testing.

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1 January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 6

4.Hybrid Test Strategy: With specification based

testing we will be able to cover the most important

risk but cannot cover all of them due to constraints

on the test environment. This left us with the risk

factor which we can accept before software is

released. Subsequently exploratory testing along

with risk based testing helps in creating new testing

ideas whenever they are required. It actually

diversifies testing which makes testing intellectually

rich, productive. More critical bugs can be

uncovered by such approaches. Also it provides fast

error detection rates rapid feedback for comparison

of test cases pass results versus fail result. Hybrid

strategy enriches already existing test case

portfolios.

Fig. 3. Risk Coverage versus Number Of Test Cases

CONCLUSIONS:

This paper brings out a clear, crisp vision of how

classical testing which is carried out now will be

outperformed we think broadly to envision

automation testing to hundred percent extent. Our

work discusses the prevalent challenges encountered

during automation testing and how it effects

software delivery pipeline. We throw light on

various factors to be considered minimizing the

effects of risk faced by the software functionality.

We conclude wisely that a single approach to testing

software cannot help us so the need of amalgamation

of test approaches are inevitable. By hybrid test

design we indicate a mixture of different type of

meta-heuristics to optimize the business risks of the

software. To have a foolproof approach in future we

need to start testing the software using hybrid testing

techniques in current era to make the future of

software testing bright.

REFERENCES

[1] B. Korel, “Automated software test data generation,”

IEEE Transactions on Software Engineering, vol. 16, no. 8,

pp. 870–879, 1990.

[2] “Dynamic method for software test data generation,”

Software Testing, Verification and Reliability, vol. 2, no. 4,

pp. 203–213, 1992.
[3] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas,

and K. Karapoulios, “Application of genetic algorithms to

software testing (Application des algorithmes gen´ etiques
´ au test des logiciels),” in 5th International Conference on

Software Engineering and its Applications, Toulouse,

France, 1992, pp. 625–636.M. Wegmuller, J. P. von der
Weid, P. Oberson, and N. Gisin, “High resolution fiber

distributed measurements with coherent OFDR,” in Proc.

ECOC’00, 2000, paper 11.3.4, p. 109.

[4] M. Harman, “The current state and future of search based

software engineering,” in Future of Software Engineering

2007 (FOSE 2007). IEEE Computer Society, 2007, pp. 342–
357.

[5] M. Harman and J. Clark, “Metrics are fitness functions too,”

in International Software Metrics Symposium (METRICS

2004). IEEE Computer Society, 2004, pp. 58–69.

[6] J. Wegener and F. Mueller, “A comparison of static analysis
and evolutionary testing for the verification of timing

constraints,” Real-Time Systems, vol. 21, no. 3, pp. 241–

268, 2001.
[7] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test

environment for automatic structural testing,” Information

and Software Technology, vol. 43, no. 14, pp. 841–854,
2001.

 [8] N. Tracey, J. Clark, K. Mander, and J. McDermid, “An

automated framework for structural test-data generation,” in
Proceedings of the International Conference on Automated

Software Engineering. Hawaii, USA: IEEE Computer

Society Press, 1998, pp. 285–288.

