
International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 1 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1

Software Reusability Factor Based Reuse

Readiness Levels

RanjanaNallamalli*
1
, Prof Durg Singh Chauhan

2

Ranjana Nallamalli1, Scientist ‘G’, Simulation and Modelling Centre, DRDO;

Prof D S Chauhan2, Vice Chancellor, GLA University

Abstract- This paper identifies the critical parameters

which govern the reuse of software in systems

development. This paper attempts to quantify the reuse

parameters in order to assess the reuse maturity.The

parameters are assigned weightage as per their effect

on the reuse maturity. A quantification method is

proposed for assessing reusability factor. In order to

practically implement reuse, reuse readiness levels

are proposed based on the reusability factor computed

from the identified parameters.

Keywords —Reuse Readiness Level (RRL);

Reusability Factor (RF); Reuse Readiness Parameters

1. INTRODUCTION

In systems design and development „software‟ is

one of the many aspects of the system. The focus is on

the delivery of the system rather than the engineering

the software. Airborne systems, defence systems,

space applications, medical devices, hardware

engineering systems and automotive products are
some of the examples where „systems thinking‟ leads

to software development.

Though the software development in the context is

domain and product specific, there is considerable
commonality at some levels. It is worthwhile to note

that software development in these domains follow

rigorous quality standards. This indicates that if the

software is reused, the effort optimisation will

improve the outcome. However, it is difficult to reuse

software in an organisation where software

development happens within domain boundaries.

Establishing a software reuse framework is important

for an organisation which has not initiated the

software reuse.

In 2010 NASA‟s Software Reuse Working Group

released a report on Reuse Readiness Levels (RRLs)

after examining the measures of technology and
software maturity[18]. The definition of RRLs in this

paper, are based on the premise that the technology

maturity measurement factors TRLs did not address

the software maturity. The descriptive approach of

topic area definition and RRL estimation is not

directly applicable for implementing reuse program in

a distributed organisation. The application and

experience with implementation of these RRLs are not

available in literature.To assess the reuse readiness

level, a quantification approach is presented in this

paper. The concerns of software development life

cycle maturity, product validation and organisational

operations are addressed in defining the parameters

that shall govern the computation of reusability factor.

The reuse readiness levels are thus derived from this

reusability factor.

An extensive survey of software reuse in

commercial scenario is given in Section 2. Software

reuse scenarios in the embedded and systems

development scenario are highlighted in Section 3.

Section 4 delineates a method to objectively assess the

reuse parameters. Sections 5 and Section 6 bring out

the reusability factor computation and reuse readiness

levels assessment respectively.

2. LITERATURE SURVEY

The improvement of software productivity has been

of paramount importance ever since large scale
software based systems have come to exist. By nature,

reuse of previous effort is an obvious choice to

optimise the output of current assignment. The early

ideas on reuse based software development were

mooted by [2] [Mcllroy 69]. Designing the software

development environments for improving software

productivity was discussed by [3] [Williams, Pyster,

Stuckle, Penedo, Boehm 84]. Late 80s and 90s saw

extensive discussions on software reuse in various

forms. A reuse based software development

methodology was proposed by [4] [Kang, Cohen et al
1992]. An approach of classifying software for

reusability was presented in [5] [Prieto-Diaz and

Freeman, 1987]. Evolutionary development approach

based on reusing specifications is mentioned in [6]

[Bellinzona, Fugini et al 1995]. Further to these, AI

based software reuse was discussed in [7] [Ostertag,

Hendler, et al 92] and [8] [Aarthi Prasad, Park, 93].

In [1] [Frakes 94] author has mentioned that

systematic reuse requires domain focus, repeatable

process and reuse of higher level life cycle artefacts

such as requirements, designs and subsystems. The

author elucidates the success factors for reuse

comprehensively in this article. In his research on

software reuse [9] [Frakes, Pole 94] further brings out
the quantitative indicators for identifying the

reusability based on metrics and models.Software

reuse frameworks like algorithm strategy, computation

design, execution pattern, implementation strategy and

structural design are proposed along with software

reuse approaches in [11] [Soora, 14].

In the commercial software development fuelled by

web technologies, distributed object technologies[10]

[Emmerich, Kaveh, 2002] like COM, CORBA, Java

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 1 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2

Remote Method Invocation, Java Beans and EJB.

Reuse libraries, component based software

engineering (CBSE) or component based development

(CBD) emphasize the separation of concerns which is

a reuse based approach to defining, implementing and

composing loosely coupled independent components
into systems. The author also highlights some CASE

tools developed for domain engineering like Family-

Oriented Abstraction, Specification and Translation,

Domain Analysis and Reuse Environment, Product

Line UML-Based Software Engineering, Feature-

Oriented Reuse Method and a few more. [12] [Frakes,

Kang 2005] classified the software product line

engineering models as reactive, proactive and

extractive models based on process, organisational

and technical issues. An overview on software product

line engineering is given by [13] [Sugumaran, Park,

Kang 2006]. Aspect Oriented Programming approach
was proposed as a software development paradigm for

handling software modifications easily. [14] [Kiczales,

Lamping et al, 97] proposed various mechanisms of

aspect oriented programming like join points, point

cuts and aspect weaving. AOP is both a design and

programming technique and is highly useful if

software is evolving [15] [Cazolla, Pini, Ancona

2005].

The concepts of model based design and

development have become widely accepted. The

model based development is an active area of

application and also in research. The large and

complex projects like Orion Crew Exploration Vehicle
project of NASA has adopted the approach of model

based design and development for flight software

development [19]. This project promises to pave the

way for reuse of models in further projects.

3. SOFTWARE REUSE IN SYSTEM

DEVELOPMENT

Embedded software for large systems is tightly

coupled with hardware and it is difficult to generalise

the software components for the purpose of reuse. As
such in an organisation which is not having any

formal mechanism of reuse, software reuse

happensinformally in the following forms:

1. The software for the next generation product

is based on the existing architecture. Thus,

utilising basic functionalities and code flow.
2. The functions in the form of code are copied

and used in the next version but the

architecture (new scheduler design) is

changed. The code is utilised in a different

execution flow like round robin to priority

based to interrupt based.

3. Hardware interfaces are changed preserving

the timing and functionality.

4. Time is optimised preserving the

functionality and hardware interfaces.

5. The software is ported to a different

execution platform preserving functionality.
6. An algorithm is optimised for operating on a

different hardware platform.

7. Front ends are changed preserving the back-

end logics.

This kind of reuse happens when same team

attempts reuse of software in a similar context. The

paper in [22] clearly demarcates the code use Vs reuse.

The author brings out that the ad hoc reuse of code by

recovery and planned reuse in the form of porting,

tailoring and assembling of code are not the same. In a

systems organisation, where code is reused by

recovery and not as a planned reuse, a planned method

is required to improve the reuse. The above mentioned

method of reuse is ad hoc reuse by code recovery. In

this regard it is worthwhile to mention that the code
readability is a factor, often ignored. Though there are

various metrics to measure the code readability as

mention in [25], it is assumed that standards-

compliant software (safety criticality classified

software) possess high readability index.

Table 1 shows the reuselines of codeand the

percentage of software reuse in a developed product

version M4 and M5 configuration.

System LOC in

M4

Lines

Changed in

M5

No of

Functions in

M4

No of

Functions

Modified in

M5

No of

Functions

Deleted in

M5

No of Functions

Added in M5

ES1 9553 864 223 9 - 24

ES2 9624 1770 208 12 19 49

GS1 95144 3364 532 5 8 165

GS2 78517 598 630 11 14 59

GS3 3190 416 82 1 - 28

ES3 4614 105 55 - - 7

ES4 Used as it is

ES6 Used as it is

ES7 Used as it is
ES – Embedded/Flight System; GS – Ground System

Table 1 – Software Reuse Metrics in Deriving Variants

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 1 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 3

4. IDENTIFICATION OF REUSE

READINESS PARAMETERS

As per [17] [Antovski and Imeri 13], software

reuse is not a simple addition to existing software

development processes. The factors affecting the

reusability are organisational issues of application

domains, management commitment, education

about software reuse, legal issues, psychological
issues, identification of reusable components,

repository availability, modification support and

measurement of reuse.

Reuse Readiness Levels signify reuse maturity,

which lies in moving from white box approach to

black box approach i.e from using code pieces to

validated and certified components with clear

advantage to the organisation. Confidence level of

reusable components increases with unit testing,

component testing (using various techniques like

functional testing, MC/DC coverage and other
identified techniques), static testing and code

walkthrough done for proving the correctness of

the component. Compliance to the specified

development process improves the overall quality

of software. A practical implementation of

certification of reusable components in Ericsson is

given in [Mohagheghi, Conradi, 2014]. This study

in the form of experiences brings out the

certification needs of the architecture and quality

scheme for developing new components like

inspections, prototyping, unit testing and system
testing before it can be made reusable.

There are discussions on systematic methods to

verify designs within a product line based on

formal verification [16] [Kishi, Noda, 2006]. In

order to improve the reuse, formal verification will

play a crucial role in improving the confidence on

the reusable components. Similarly other factors

like software portability, beneficial for reuse, and

optimised for reuse play a vital role is defining the

reuse maturity.

The ESPRIT-2 project called REBOOT (Reuse

Based on Object Oriented Techniques) developed

some reusability attributes. Some of these attributes

are metrics based and some are subjective

checklists based [23]. In NASA paper on Reuse

Readiness Levels [18], topic areas are defined and

described before qualitatively describing the Reuse

Readiness Levels. These topic areas are modified

to evolve a set of parameters and these parameters

are assigned a value based on given criteria.

4.1 Support And Contact Information

It is possible that there is legacy software in

operation and the developer is not available in the

organisation. The algorithms and modules are

required to be reused in the new scenarios. This is

the worst case. In the other cases support is

available virtually or by complete handholding.

The three levels of thisparameter are given in Table

1.

Table 1 – Definition of Support Levels

S

No
Level Explanation

Level

Assigned

a.
Minimum

Support

Provision of

artefacts
1

b.
Virtual
Support

Support
through e-mail

and telephone

2

c.
Total

Support

Handholding

through

physical

presence and

explanation

3

4.2 Documentation

The documentation for the identified reusable

module will aid in its better adoption across bigger

footprints without putting extra effort on the

developer agency. The levels defined for this

parameter are given in Table 3.

Table 2 – Definition of Documentation Levels

S

N

o

Level Explanation Level

Assigne

d

a. Minimum

Documentatio

n

Scanty and

un-reviewed

documentatio

n

1

b. Useful

Documentatio

n

Reviewed and

controlled

documentatio
n but not as

per standard

and using

requires effort

2

c. Complete

Documentatio

n

Complete

documentatio

n as per IEEE

formats

3

4.3 Modularity And Complexity

The degree of segregation and containment of

software or components is called modularity.Two

types of modularity – functional modularity and

architectural or design modularity can be

considered. Considerable amount of work has been

done in defining the measures of modularity as

static cohesion and dynamic cohesion metrics for

structured and object oriented methods.

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 1 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 4

Complexity is a well-studied concept. The

McCabe‟s complexity measure and nesting depths

are de-facto methods of measuring code

complexity.

Definition of the complexity and modularity
measuresare debatable with respect to the context.

The academic intent of measuring these is for effort

estimation, maintenance and to some extent for

reuse. This paper will not go into the details and the

research being carried out in these areas.Without

getting into the mathematical definitions and

details of these measures, modularity and

complexity as a parameterwhich affects reuse,

levels are defined as following:

Table 3 – Modularity and Complexity Levels

S No Level Explanation Level

Assign

ed

a. Highly

Unstructure

d

High Intermodule

Coupling

High Intramodule
Coupling

Low Cohesion

Nesting Depth More

than 6.

McCabe‟s

Complexity more

than 10.

1

b. Medium

Level of

Modularity

High Intermodule

Coupling

Low Intramodule

Coupling

High Cohesion

Nesting Depth Less
Than 6

McCabe‟s

Complexity More

Than 10.

2

c. Good Level

of

Modularity

Low Intermodule

Coupling

Low Intramodule

Coupling

High Cohesion

Nesting Depth Less

Than 6

McCabe‟s
Complexity Less

Than 10

3

It is possible to use the mathematical formulas

and computations for specific domains and arrive at

specific numbers to define these levels. But that is

another branch of research. For now, industry

standard values of Nesting Depth and McAbe‟s

complexity values are used and other aspects are

left to the judgement of the practitioner.

4.4 Installation and Packaging

The installation and packaging is ensured before

the software is re-used. In case direct code is being

copied and used, the dependencies need to bewell

defined. In case a direct install is required, the
installation procedures are documented. The

various levels defined for this parameter are given

in Table 5.

Table 4 – Definition of Installation Levels

S

No

Level Explanation Level

Assigned

a. Manual

Usage

The source code

is inserted

manually,

library is linked

manually or an

executable and

its dependencies

are configured

manually.

1

b. Semi-

automatic

The instructions

for using and
dependencies

are documented

as step by step

procedures and

can be executed

without much

effort.

2

c. Automatic The reusable

module comes

as an install

package with

built in

configurations
and module can

be adopted

easily with

supported

documentation.

3

4.5 Reuse Rights

A clear statement of copyright for software helps

reuse community regarding the legal and IPR

implications of using the identified software. The

reuse by external world should be accompanied
with the copyright statement duly mentioning the

ownership of the generating entity within

organisation or the parent organisation itself.

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 1 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 5

Table 6 - Definition of Reuse Rights Levels

S No Level Explanation Level

Assigned

a. Undefined Reuse aspects and

rights are not

defined.

1

b. Internally

Defined

Reuse and IPR

rights are

addressed for use

within the

organisation by

different entities.

2

c. Externally

Defined

Reuse and IPR

rights are

addressed for use
by entities outside

the organisation.

3

4.6 Testing

This criterion signifies that the extent of testing

the software has been subjected to. In this case we

define extensive levels in order to signify various

testing scenarios under operation.

Table 5 – Definition of Testing Levels

S No Level Explanation Level

Assigned

a. Prototyping The application is developed

like a prototype without any

test document.

1

b. Functional

Testing

Functional Testing

Document is available with

test plan and test cases and
results.

2

c. Static

Testing

The code has gone through

identified static testing tools

3

d. Inspections Third party has inspected the

functional test cases and

submitted a report.

4

e. Unit Testing The systematic unit testing

documentation is available

with execution results.

5

f. Performance

Testing

The run time execution

traces and time are measured

and validated against the

documented performance

specifications.

6

g. Formal

Verification

Advanced formal techniques

of model checking or
theorem proving are applied

and certified as per these

techniques

7

4.7 Certification

In critical application areas, software is certified

by a third-partyor an identified independent

Software Quality Assurance or Independent

Verification and Validation agency based on the

maturity of the compliance to the identified process

and coding standards.The agency is involved

throughout the development process and all staged

certification aspects are audited by the agency. The
agency gives a clearance certificate for the usage of

the software identified by a checksum or

identifiable signature produced during the

application execution of the module. This adds

formalism to the qualification process and

increases the assurance of software through

transparency.

Table 6 – Definition of Certification Levels

S No Level Explanation Level

Assigned

a. Not

Certified

The software has not

gone for any SQA/

IV&V/ certification.

0

b. Internally

Certified

All stages and

artefacts are inspected

by an independent

SQA / IV&V agency.
Based on this a

certificate is given by

the agency specifying

the details of the

processes and

artefacts.

1

c. Externally

Certified

All stages and

artefacts are inspected

by an external

certification agency in

coordination with

independent

SQA/IV&V. A
certificate is given by

the agency specifying

the details of the

processes and

artefacts.

2

4.8 Portable/Extensible

The software is developed for porting on

multiple platforms and operating systems. The

portability can be built as simple configurations

during the installation. Code level portability
allows codes to be used with various compilers

without any compile specific risks, thus ensuring

portability and reuse. The three levels defined with

respect to this aspect are given in the following

table:

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 1 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 6

Table 7 – Definition of Portability Levels

S No Level Explanation Level

Assigned

a. Portability

Not

Defined

The portability hasn‟t

been studied and no

conscious selection of

portability compliant

coding standards.

Manual effort can help

reuse.

1

b. Specific

Portability

The software is

portable with respect to

identified specific
platforms or family of

platforms.

2

c. Generically

Portable

The software is

designed initially for

multiple platforms and

well defined

dependencies are built

with configuration

details.

3

5. REUSABILITY FACTOR

The software assets developed by various

entities in the organisation may have different

levels for above parameters. To estimate a factor

which indicates the overall reuse maturity a

parameter called „Reusability Factor‟ is proposed.

The reusability factor is computed based on the

levels defined for each of the parameters defined in

section 6. The simple computation mechanism is

inspired from sum of weightages mechanism used
for multi criteria decision making paradigm.

Popularly MCDM is used for analysis of

alternatives. It is appropriate to use it here for

initial estimation of reusability factor to assess the

reuse readiness level. The following equation is

proposed to calculate the reusability factor:

𝑅𝐹 = 𝑃𝑖 ∗𝑊𝑖

𝑖=8

𝑖=1

Where Pi is the parameter as defined from section

4.1 to 4.8 respectively and Wi is the weight given

to each parameter based on the relevance of the

parameter in the reuse framework.The parameters

defined in section 4 are in the order of their

importance in implementing reuse framework. The

multiplication factor used as weightage is assigned

as per this order of importance. Following table

summarises the level range from section 4 and

weight of each parameter:

Table 8 – Ranges and Weightage for Reusability

Parameters

S No Para

meter

Parameter Name Range

Value

Wt

1. P1 Support 1-3 1

2. P2 Documentation 1-3 2

3. P3 Modularity 1-3 3

4. P4 Install Package 1-3 4

5. P5 Reuse Rights 1-3 5

6. P6 Testing 1-7 6

7. P7 Certification 0-2 7

8. P8 Portable/Extensible 1-3 8

It can be seen that by multiplying the max range

of each parameter by the respective weight gives a

max value as 125. We call this RFmax.

For every software module, this RF is computed.

The computed RF for software modules is used to

define the RRL.

6. REUSE READINESS LEVELS

The Reuse Readiness Levelssignify the increasing

maturity of the software and its reusability. There

are nine levels defined qualitatively in NASA paper

[18]. In this paper, RRLs are correlated with the RF

value computed in section 5. The Max RF is
divided by nine and equal amount is quantitatively

assigned to each level in increasing steps. The

RRLs nomenclature, the quantitative RF

assignment and corresponding definition based on

the maturity criteria in given in Table 11.

The point to note is that there can be

considerable difference in values of individual

parameters within the same RRL. This is attributed

to the organisational factors and policies. The

parameters which are assigned low levels can be
stressed while attempting to reach the next RRL

level. The maturity of the identified RRL will be

considered as being built since all the affecting

parameters are not at the highest level.

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 1 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 7

Table 9 – Reuse Readiness Levels

Level Name Definition

RRL1
Initial

RF = 1-14

Software was developed without reusability consideration as nothing is

available except source code and executable binaries. Though a few of the

parameters may have some value but overall reuse maturity is very low.

Somehow reuse is done with extreme efforts but reuse maturity is

extremely low.

RRL2
Possible

RF = 15-28

The basic documentation is available for software development life cycle,

installation and use. It is possible to use with the help of documents and

support from the originator. Some of the advanced parameters like testing,

portability and certification are missing in the design.

RRL3
Easy

RF = 29-42

The software is developed in highly structured manner or using object

oriented manner which makes it easy to understand. Extensive

documentation is available for reference and usage.

RRL4
Packaged

RF = 43-58

To ensure reusability, the software is designed as bundle/ collection of

modules, artefacts along with corresponding libraries with configuration

possible on various environments. The software is designed for easy install

and execute with configuration settings. The software is also supported

with complete build environment and scripts for rebuilding and

customising it for next environment.

RRL5
Demonstrated

RF = 59-72

The utility of software is demonstrated in various environments. The

software provides auto build installation on many platforms. The

functionality is fully documented and demonstrated. The utility of the

functionality is also understood by all the stakeholders so that it is easy to

be used in the applicable scenarios.

RRL6
Certified

RF = 73-86

The software is tested and certified for compliance of standards and for

reuse on limited number of target environments with standard given set of

libraries. The software is tested and demonstrated for its functionality in a

lab on one or more platforms. The software is also certified to be extended

further in a manner as specified by developer.

RRL7
Practical

RF = 87-100

Software is designed for reuse and can be applied without much difficulty

in the new scenarios. The development environment is easily available

without licensing difficulties. The software is portable and extensible to

the environment of choice with minimum effort.

RRL8
Prized

RF = 101-114

Software has been reused in a variety of contexts and platforms. Its reuse

has allowed users for significant cost, time and risk reduction. Has gained
wide popularity as de-facto choice for it reuse.

RRL9

Established

RF = More than

115

The software is highly modular, well documented & supported, extensible,

portable, standards compliant and tested for its reuse on a variety of
environments. The reuse of software has been kept open with no

restrictions on modification, customization and redistribution. Many

successful software products have made reuse of it.

7. CONCLUSION

A quantified approach is proposed to assess the

parameters affecting reuse and then estimating the
reusability factor, which in turn is used to arrive at

the reusability readiness level. These RRLs can be

used for assessing the maturity of software before

the software is identified for reuse. A discussion on

possible uses of RRLs is given in [21] and use

cases for the application of RRLs is defined in the

paper.The RRLs are useful for continuous

improvement and optimization in the software

development reuse. There has to be consistent

effort by the organisations for improving the RRL
level continuously. The parameters for reusability,

reusability factor and RRL assessment will help

any organisation in achieving the maturity of

software reuse in a quantifiable manner. The initial

estimate of reusability factor proposed here is for

the purpose of identifying the RRLs. This factor

can be more accurately modelled by using the

actual data once the reuse framework is

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 1 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 8

implemented, classification of reuse is established

and is quantifiably measured. It is worthwhile to

mention that once the reusability framework is

established, the reusability measurement metrics as

discussed in [24] and other industry references

should be applied to refine and improve the RRLs.
A separate study can be done to correlate the

reusability metrics with the reusability parameters

defined here. Some of the reusability parameters

can be attempted to be quantified directly from

standard metrics.

References

[1] Frakes, W. B. and Isoda, S. Success Factors of Systematic

Reuse. IEEE Software 11, 5(Sept 1994), 14-19

[2] Mcllroy, M., Mass produced software components:

Software engineering concepts and techniques. In

Proceedings of NATO Conference on Software

Engineering (1969), 88-98

[3] Williams, R.D., Pyster, A.B., Stuckle, E.D., Penedo, M.H.,

Boehm, B.W., A Software Development Environment For

Improving Productivity. IEEE Computer 06. 17(June

1984), 30-44

[4] Kang, K.C., Cohen, S. &Holibaug, H.R., Reuse Based

Software Development Methodology, Application

OfReusable Software Component Project, Report No SEI-

92-SR-4

[5] Prieto-Diaz, R., Freeman, P., Classifying Software For

Reusability, IEEE Software 4, 1 (Jan 1987), 6-16

[6] Bellinzona, R., Fugini, M.G., Pernici, B., “Reusing

Specifications in OO Applications”, IEEE Software 12, 2

(Mar 1995), 65-75

[7] Ostertag, E., Hendler, J., Prieto-Diaz, R., Braun, C.,

Computinf similarity in a reuse library System: An Ai-

Based Approach, ACM Transactions on Software

Engineering and Methodology 1, 3 (1992), 205-228

[8] Aarthi Prasad, Park, E.K. , AI Based Classification and

Retrieval of Reusable Software Components.

[9] Frakes, W.B., Pole, T.P., An Empirical Study of

Representation Methods for Reusable Software, IEEE

Transactions on Software Engineering 20, 8 (August 1994),

617-630

[10] Emmerich, W., Kaveh, M., Component Technologies:

Java Bean, COM, CORBA, RMI, EJB and the CORBA

Component Model, Proceedings of the 24
th
 International

Conference on Software Engineering, (May19-25, 2002),

691-692

[11] Soora, S. K., A framework for software reuse and research

challenges. International Journal of Advanced Research in

Computer Science and Software Engineering, 4, 10 (Oct

2014), 441-448

[12] Frakes, W. B. and Kang, K. C. Software reuse research:

Status and Future. IEEE Transactions on Software

Engineering 31, 7 (July 2005), 529-536

[13] Sugumaran, V., Park, S. and Kang, K. C. Software product

line engineering. Communications Of The ACM, 49, 12

(Dec 2006], 29-32

[14] Kiczales, G., Lamping, j., Mendhekar, A., Maeda, C., et al.

Aspect-Oriented Programming. In 11
th
 European

Conference on Object Oriented Programming

(ECOOP‟97), Lecture Notes in Computer Science 1241,

220-242, Helsinki, Finland, June 1997. Springer-Verlag

[15] Cazolla, W., Pini, S., Ancona, M., AOP for software

evolution: A design oriented approach. ACM Symposium

on Applied Computing, (2005) 1346-1350

[16] Kishi, T., Noda, N., Formal Verification and Software

Product Lines, ACM Communications 49, 12 (2006) 73-77

[17] Antovski, L., Imeri, F., Review of Software Reuse

Processes, International Journal of Computer Science 16, 6

(Nov 2013), 83-88

[18] Reuse Readiness Levels (RRLs), Software Reuse Working

Group – NASA Earth Science Data Systems, (Apr 2010),

Version 1.0

[19] Tamblyn, S., Henry, J., King, E., A Model-Based Design

and Testing Approach for Orion GN&C Flight Software

Development, IEEAC Paper#1491, Version 3 2010

[20] Frakes, W. B. and Terry, C. Software Reuse: Metrics and

Models. ACM Computing Surveys 28, 2 (June 1996), 415-

435

[21] Dowsn, R.R., Marshall, J.J., A Proposal on Using Reuse

Readiness Levels to Measure Software Reusability, Data

Science Journal 9 (July 2010), 73-88

[22] Poulin J.S., Caruso J.M., Determining the Value of

Corporate Reuse Program, Proceedings of the IEEE

Computer Society International Sofware Metrics

Symposium, (21-22 May 1993), pp16-27
[23] Karlson, Even-Andre, GuttormSindre, and Tor Stalhane,

“Techniques for Making More Reusable Components,”

REBOOT Technical Report #41, 7 June 1992.

[24] Poulin J.S., Measuring Software Reusability, Proceedings

of The Third Conference on Software Reuse, (1-4

November), 1994

[25] Pahal A., Chillar R.S., “Code Readability: A Review of

Metrics for Software Quality”, IJCTT, Vol 46, Number 1 –

April 2017

