
International Journal of Computer Trends and Technology (IJCTT) – Volume 48 Number 3 June 2017 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 108 

How to Select a Searching Algorithm-A 

Comparative Study 
Sobha Xavier P

#1
, Jisna V A

*2
, Bineesh M

#3    
 

#1,2,3Assistant Professor, Department of Computer Science, Jyothi Engineering College 

Cheruthuruthy, Trissur, Kerala, India 

 

Abstract — Searching is a process of checking 

whether the required item is available or present in 

a certain data set. Searching can done based on the 

key element. A number of searching algorithms have 

been developed like that sequential search, binary 

search, tree search and hashing etc.  

 Keywords — Linear search , Binary search, 

pseudo code, Hashing, Collission, Probing. 

I. INTRODUCTION  

Every searching algorithm depends on specific 
problem, property of data and algorithm complexity 

[2].Following are the three important searching 

algorithms: 

o LINEAR SEARCH, 

o BINARY SEARCH AND  

o HASHING 

This paper compares these three basic searching 

algorithms and gives a brief description about its 

applications, advantages and disadvantages etc. 

II. LINEAR SEARCH  

Linear search technique requires scanning and 

comparing one by one element of a list with a search 

key. So the time required by linear search is 

proportional to the total number of elements in a list. 

If an element to be searched is located nearer to first 

element it requires less time as opposed to an 

element which is located at the end of the list or an 

element does not exist at all in the list requires 

maximum time because it requires maximum 

comparisons.[4] 

A function to search a given element X in A[]. 
 

     INPUT: Given an array A[] of n elements  

 

Table 1: Linear search - pseudo code 
 

1. SET I=1 

2. CHECK WETHER A[I]=X IF YES GO TO 4 

3. IF  I != N THEN SET  I=I+1 AND GO TO 2 

ELSE GO TO 5 

4. PRINT ―ELEMENT FOUND AT:‖,I 

5. STOP 

 

III. BINARY SEARCH  

Binary search algorithm requires all the elements in 

the given list in ordered manner. It first searches the 

list with its centre element by comparing it with a 

given value. If match is found algorithm terminates 

by returning its position and if no match is found it 

reduces the search space to the half of the original 

size. If search element is less than the middle 
element then only first half of the list is searched and 

in case if it is greater than the middle element then 

only second half of the list is searched in next 

iteration. In either of the case the list to be searched 

is reduced to half at each iteration of the search 

process. Following lists the binary search 

algorithm.[4] 

 

A function to search a given element X in A[].  

 

 INPUT: Given a sorted array A[] of n elements  

 

Table 2: Binary search - pseudo code 

 

1. COMPARE X WITH THE MIDDLE 

ELEMENT. 

2. IF X MATCHES WITH MIDDLE 

ELEMENT, WE RETURN THE MID INDEX. 

3. ELSE IF X IS GREATER THAN THE MID 

ELEMENT, THEN X CAN ONLY LIE IN 

RIGHT HALF SUBARRAY AFTER THE MID 

ELEMENT. SO WE RECUR FOR RIGHT 

HALF. 

4. ELSE (X IS SMALLER) RECUR FOR THE 

LEFT HALF. 

IV. HASHING 

Hashing is the technique used for performing 

almost constant time search in case of insertion, 
deletion and find operation. The essence of hashing 

is to facilitate the next level searching method when 

compared with the linear or binary search. It is the 

process of mapping large amount of data item to a 

smaller table with the help of a hashing function. 

The advantage of this searching method is its 

efficiency to hand vast amount of data items in a 

given collection (i.e. collection size). [3] 

A perfect Hash function is a function which when 

applied to all the members of the set of items to be 

stored in a hash table, produces a unique set of 

integers within suitable range. A good hash function 

minimize collisions by spreading the elements 

uniformly throughout the table.[5] 

 

 



International Journal of Computer Trends and Technology (IJCTT) – Volume 48 Number 3 June 2017 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 109 

Fig.1: Illustration of Hashing 

.  

IV- A. HASHING METHODS:  

 

The main advantage of hashing is the time required 

to search any element is constant and is proportional 

to the time required by hashing function.[2] 

 

Following methods are using for hash key 

generation: 
 

1) Truncation Method  

2) Mid Square Method  

3) Folding Method  

4) Modular Method  

5) ASCII Method. 
 

1) Truncation Method: 

 

In this method ignore a part of the key and use the 

remaining part directly as the index  

 
2) Mid Square Method: 

 

 In Mid-Square method, the key element is 

multiplied by itself to yield the square of the given 

key. It generates random sequences of hash keys, 

which are generally key dependent. 

 
3) Folding Method: 

 

 Partition the key into several parts and combine the 

parts in a convenient way (often addition or 

multiplication) to obtain the index.  

 
4) The Division Method:  

 

If the size of the hash table is j then key k= i modulo 

division j 

 

 

 

 

 

 

 

 
5) A

SCII 

meth

od: 
The procedure to find out hash key using ASCII 

method is as follows: 

 

H(k)=∑(ASCII values of each characters in the key) 

 

In this method we can find out hash key for both 
integer and string data type input.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV .B. COLLISIONS IN HASHING: 

 

Suppose if the user want to add a new key value to 

ith index in the hash table and that location is 

already filled with another key then that situation is 

called as collision. Table 3 shows hashing example 

based on division method. Here we compared 3 
cases: best case, average case and worst case based 

on different input combinations. Red colour in the 

cells represents collision situation. Here collision is 

resolved by occupying the key value to the very next 

vacant position(probing). But the disadvantage of 

this method is that keys tend to ‘CLUSTER’ i.e., 

appear next to one another. Such clustering increases 

the average search time for a key. Two collision 

resolution techniques are open addressing and 

chaining. 

 

 

 

   Key: 45;     Size of Hash table 10 

         45%10 

 

             5 

 

Key: ‘set’ 

         115+101+116 

 

           332 
 

Key: 4589 

          45892=21058921 

 

           58 

Key: 525371726 

   

           

         726  

Key: 458921 

        45+89+21 

 
           155 



International Journal of Computer Trends and Technology (IJCTT) – Volume 48 Number 3 June 2017 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 110 

Table 3: Hashing Example – Division method 

(Size of Hash table 5) 

 

Model

Ind

ex
Key

Ind

ex
Key

Ind

ex
Key

Ind

ex
Key

Ind

ex
Key

Ind

ex
Key

0 10 0 10 0 10 0 10 0 10 0 10
1 1 11 1 11 1 11 1 11 1 11
2 2 2 12 2 12 2 12 2 12
3 3 3 3 13 3 13 3 13
4 4 4 4 4 14 4 14
5 5 5 5 5 5 15

Ind

ex
Key

Ind

ex
Key

Ind

ex
Key

Ind

ex
Key

Ind

ex
Key

Ind

ex
Key

0 10 0 10 0 10 0 10 0 10 0 10

1 1 1 1 1 1 45

2 2 12 2 12 22 2 12 2 12 2 12

3 3 3 22 3 22 3 22 3 22

4 4 4 4 14 4 14 44 4 14

5 5 5 5 5 44 5 44

Ind

ex
Key

Ind

ex
Key

Ind

ex
Key

Ind

ex
Key

Ind

ex
Key

Ind

ex
Key

0 10 0 10 0 10 0 10 0 10 0 10

1 1 20 1 20 1 20 1 20 1 20

2 2 2 30 2 30 2 30 2 30

3 3 3 3 40 3 40 3 40

4 4 4 4 4 50 4 50

5 5 5 5 5 5 60

Input Keys Hashing Example

10,11,12,13,1

4,15

Best case(No 

collission)

Average 

Case(Collision 

rate medium)

10,12,22,14,4

4,45

10,20,30,40,5

0,60

Worst 

Case(CoCollision 

rate high)

 

As shown in the above table division method is 

simple to calculate but the collision rate is depends 

on the input given.So a good programmer has to 

select appropriate method based on the situation. 
Table 4 give s a comparison of different hashing 

methods based on three parameters: Hash key 

Calculation over head, Collision rate, Data type of 

the given input key. 

 

Table 4: comparison of hashing methods 

V. COMPARITISON OF SEARCHING 

ALGORITHMS: 

In this section we cover Time complexity and Space 

complexity analysis of three searching methods 

explained in the previous sections. In terms of time 

complexity we can say that hashing is faster than 

other two methods.  

Table 5: Comparison of searching algorithms. 

VI. ADVANTAGE,DISADVANTAGE AND 

APPLICATION OF SEARCHING 

ALGORITHM [2] 

Here we cover some basic Advantages, 

Disadvantages and Applications of searching 

algorithms which helpful to select on search 

algorithm according to our need. 

 

Table 6: advantage/disadvantage/applications of 

searching techniques 

 
Searchin

g 

Techniq

ues 

Advantage Disadvantage Applications 

Linear 

Search 

 

Simple 

Not need 

ordered /sorted 

input array 

 

 Linear search 

technique is low 

efficient and slower 

than other searching 

algorithm. 

 Not suitable for large 

data set. 

 

To search in linked 

list structures 

 

To search in data list  

 

Binary 

Search 

 

Faster than 

sequential 

searching, Less 

number of 

comparisons. 

. 

 

 

 Binary search is not 

appropriate for linked 

list structures (no 

random access for the 

middle term) 

. 

 Not suitable for 

inserted/deleted a data 

in a searching time as a 

compare to other 

searching algorithm. 

 

 

Binary search 

Tree/Tree search 

implementations  

 

Hash 

Search 

 

 

Faster than 

other two 

methods. 

 

 Hash function and 

key are must be 

needed. 

 Large Memory size 

is required. 

 Some time hash 

function given to same 

index in hash index 

table in different key. 

Then time we needed a 

collision remove 

technique. 

 It is not efficient in a 

small Hash Table. 

can be used for on-

line spelling checkers 

 Game playing 

programs use hash 

tables to store seen 

positions, thereby 

saving computation 

time if the position is 

encountered  

 again 

M

eth

od 

no. 

Metho

d 

Name 

Hash key 

Calculatio

n over 

head 

Collis

ion 

rate 

Input 

data type 

1 Trunca

tion 

Metho

d 

Low Low Integer 
only 

2 Mid 

Square 

Metho

d 

Higher 

than 

method 1 

and 4 

Low Integer 
only 

3 Foldin

g 

Metho

d 

Higher 

than 

method 1 

and 4 

Low Integer 
only 

4 Divisio
n 

Metho

d 

Low Highe
r than 

other 

meth

ods 

Integer 
only 

5 ASCII 

metho

d 

Higher 

than 

method 1 

and 4 

Low Both 
strings and 
integers 

Searching 

Method 

Time Complexity 
Space 

Complexity 
Best 

Case 
Average 

Case 

Worst 

Case 

Linear 

Search 

O(1) O(N ) O(N ) O(N) 

Binary 

Search 

O(1) O(Log 

n) 

O(Log 

n) 

O(N) 

Hashing O(1) O(1) O(N ) O(N) 



International Journal of Computer Trends and Technology (IJCTT) – Volume 48 Number 3 June 2017 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 111 

VII. CONCLUSION 

This paper compares three basic searching 

algorithms and gives a brief description about its 

applications, advantages and disadvantages etc. . 

Every searching algorithm depends on specific 

problem, property of data and algorithm complexity 

[2] .The task is to find a particular data in the list in 

the shortest possible time. So the users can go 

through the application, advantage and disadvantage 

of each method  and can select the best method as 

per their requirement.  

REFERENCES: 
[1] Classic Data Structures  Samanta (Author), Debasis (Author). 

 

[2] A Comparison and Selection on Basic Type of Searching 

Algorithm in Data Structure Kamlesh Kumar  

     Pandey1, Narendra Pradhan2IJCSMC, Vol. 3, Issue. 7, July 

2014 

 

[3] Designing And Implementing Data Structure With Search 

Algorithm To Search Any Element From A 

     Given List Having Constant Time Complexitydr. Vimal P. 

Parmar ,Dr. CK Kumbharana, E-ISSN No : 2454-      

     9916  Volume : 3 | Issue : 1 | Jan 2017ternIERJational 

Education & Research Journal [IERJ] 

 

[4] Data Structures Using C ,Udit Agarwal 

 

[5] http://www.geeksforgeeks.org/ 

[6]  An Introduction to Data Structures with Application by Jean-

paul Tremblay Tata McGraw Hill  

 

[7]  Data Structures by Seymour Lipschutz and G A 

Vijayalakshmi Pai (Tata McGraw Hill companies), Indian 

      adapted edition-2006,7 west patel nagar, New Delhi-110063  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.geeksforgeeks.org/

