
International Journal of Computer Trends and Technology (IJCTT) – Volume 46 Number 2 April 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 95

The New Trends in Compiler Analysis and

Optimizations

Enyindah P.
1
,Okon E. Uko

2

Department of Computer Science, University of Port Harcourt,

Port Harcourt, Nigeria.

Department of Computer Science, University of Port Harcourt,

Port Harcourt, Nigeria.

Abstract—Compiler construction primarily

comprises of some standard phases such as lexical

analysis, syntax analysis, semantic analysis,

intermediate code generation, code optimization and

target code generation but due to the improvement

in computer architectural designs, there is a need to

improve on the code size, instruction execution

speed, etc.

Hence, today better and more efficient compiler

analysis and optimization techniques such as

advanced dataflow analysis, leaf function

optimization, cross-linking optimizations, etc. are

adopted to meet with the latest trend in hardware

technology and generate better target codes for

recent machines.

Keywords —Compiler, analysis, optimizations,

new, advanced, data-flow, control-flow, loop,

function-calls, memory, processors, power,

consumption, inter-procedural, alias.

I. INTRODUCTION

As technology in computer architectural design

advances into very large instruction word (VLIW)

architecture, embedded processors and parallel

execution of instructions, there is a dire need to

adopt a more efficient way of analysing and

optimizing codes for high performance computing in

these modern
1
 machines. This paper focuses on

showcasing most recent compilation techniques

applicable today for effective compiler analysis and

backend optimization in advanced machines today.

Conventional
2
 compiler analysis and optimization

has always been in use before now. This method

were efficiently generating target machine codes

until recent changes in the development of computer

architecture and design (necessitated by user

convenience and computing efficiency) was

introduced as a product of researches. This change in

hardware development has necessitated machine

independent compilation techniques against machine

dependent analysis and optimization techniques

applied in conventional compiler construction. Also,

compilation of source codes for embedded

processors has drawn programmer’s attention to the

1
Recent.

2
traditional

need for controlled power or energy consumption,

real-time execution and portability of code.

Conventional compilers were designed using

common control flow analysis technique such as the

data flow analysis. While advance compiler designs

also employs data flow analysis among other

methods, their mode of application is different

because while the conventional design focuses on

machine dependent analysis, the modern/ advanced

design concentrates on machine independent

analysis.

In this paper, we discuss new and sophisticated

compiler analysis and optimization techniques for

modern systems against the mere redundancy

elimination of the conventional compilers. We also

highlight key modifications to conventional

compiler techniques (such as data-flow analysis,

parallel optimization, loop optimization, etc.) that

are still applicable to new computing technology.

Section II covers conventional compiler analysis

and optimization techniques, Section III discussnew

compiler analysis and optimization techniques.

II. CONVENTIONAL COMPILER ANALYSIS AND

OPTIMIZATION TECHNIQUES

The target of conventional compiler analysis and

optimization techniques is to eliminate all forms of

inefficiencies in a computer program, eliminate

redundant operations (especially in loops and

recursive evaluations), and manage resources (by

reordering operations and data to better map to the

target machine).

In order to meet these targets efficiently, methods

such as data-flow analysis, peep-hole optimization,

sub-expression elimination, jump-to-jump

elimination, index-check elimination, loop/function-

call optimization are employed. We consider data-

flow analysis as well as the above mentioned

optimization techniques which are categorized under

local, global and loop optimization.

A. Data-flow Analysis

In conventional compilers, data-flow analysis

tries to discover how information flows through a

program. An analysis could attempt to approximate a

collection of positive values that a variable can hold,

and hence the flow is from assignment to uses.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 46 Number 2 April 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 96

It is the process of collecting information about

the way the variables are used, defined in the

program.

Usually, it is enough to gather this information at

the boundaries of basic blocks
3
, since computing the

information at each point in the basic block is easy.

When Forward flow analysis is applied, the exit

state of a code block is determined by its entry state.

Figure 1 illustrates the data-flow equation used to

enhance the code block relationship:

For each block c:

Outc= transc(inc)

inc= joinpЄpredc(outp)

Fig. 1 Data flow equation for determining entry and

exit relationship in forward flow analysis.

In the above equation, transfer function for block b

is denoted by transc. It operates on the entry state

incand yields the exit state Outc. The entry state of c

incis determined by performing a join operation join

on the exit state of the predecessorpЄpredc of block

c.

 This equation when solved can be used to

determine the properties of the program at the block

boundaries. There are different types of dataflow

analysis for conventional compiler design and each

of them has their own unique join and transfer

operations.

B. Local Optimization

Local optimization is often applied in

conventional compiler design to help enable code

improvement within a local block of codes. Example

of local optimization techniques include:

 Local sub-expression elimination:This

transforms common multiple assignment

expressions (in the intermediate code of the

compiler) into equivalent binary expressions on

the right hand side. For instance, the code in

figure 2 below will be transform into figure 3

using local sub-expression elimination.

Fig. 2 intermediate code with multiple assignment

expression

Fig. 3 intermediate code transformed by localsub-

expression elimination

3
Sequence of instructions with a single point of entry

and a single point of exit.

 Local Constant Propagation/Folding:

Constant folding requires that the compiler be

optimized for alertness in handling user-defined

constants and allocating arrays to these

constants.

 Local Strength Reduction:

Local strength reduction is often applied in

conventional compiler optimization to enable

the replacement of an expression by its meaning

within each basic block of the intermediate

code. This method of optimization reduces

compilation time greatly because if computers

performs addition faster than multiplication,

then

X*Y=X+X+X+…(Y times)

can ensure quicker compilation of source codes.

C. GlobalOptimization

It is during global optimization that data-flow

analysis is applied to enable optimization of codes

between blocks. Global optimization unlike local

optimization operates on a global
4
 scope. Global

optimization can extend its usefulness to reduction

of codes within a loop. Several techniques are used

to achieve global optimization but among the

commonest are the following:

 Redundant (common) Sub-expression

elimination:

Quite unlike the local common sub-expression

elimination technique, redundant sub-expression

elimination technique seeks to globally determine

common sub-expression in the entire program and

compute then at once in each path.

This is demonstrated in Figure 4 below.

Fig. 4 intermediate code transformed by localsub-

expression elimination

 Global Constant Folding and

Propagation:

4
Non-local or wider.

a := b + 5;

 .

 .

 .

 b := 5+b

t1 := b + 5;

 a := t1

 .

 .

 .

 b := t1

L1 := XX*40 L2 := K+XX*40
T := XX*40

L1 := T

T := XX*40

L1 := K + T

L3 := K/2 + XX*40

L3 := K/2 + T

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 46 Number 2 April 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 97

This technique constructs a use-definition chain (ud-

chain)
5
. Constant propagation is implemented using

ud-chain. Definitions are matched to their

subsequent uses in each block and in situations

where there are no definitions within the block; all

definitions are match with the use as the reach the

block.

 Dead Code Elimination:

After the elimination of sub-expression, and other

optimization operations, the intermediate code

contains unnecessary codes or even blocks. This is

where dead-code elimination is applicable.

Other types of global optimization for

conventional compiler optimization include

conditional re-ordering, GOTO casing, alias

analysis, Array temporary elimination, conditional

pruning and assignment elimination due to equality.

D. Loop Optimization

One of the objectives of conventional compiler

design is to increase the speed of compilation. We

discuss loop-variant code motion and induction

variable detection/elimination as the two major

conventional loop optimization techniques in this

article.

 Loop-invariant code motion:

A statement within a loop in a program is considered

to be loop-invariant if it produces the same value

each time the loop is executed. Scenarios like this

could cause delay in compile time. Hence, when this

sort of statement is spotted, code motion is carried

out using the algorithm below:

Algorithm:
 Compute definition reaching header and

dominator for each given node in a loop.

 Identify the loop-invariant statements.

 Identify exits of the loop; the nodes with a

successor outside the loop.

 Check for statements that are;

1. Loop-variant

2. In blocks that dominates exit

3. In blocks that dominates all blocks in the loop

which use their computed values

4. Assigned to variables not assigned to elsewhere

in loop

 Perform depth-first search. Use depth-first order

to verify each block.

 Move statement selected in the search process to

the pre-header.

 Induction variable detection and elimination:

When each loop is accessed in an intermediate

code, there may be some variables whose value per

loop iteration is a linear function of the iteration

index. Strength reduction or code elimination are

5
A collection of variable definitions linked with their

uses.

often carried out on such values or expressions.

Figure 5 shows a typical induction variable:

X := 0

FOR I :=1 to N DO

…

 X := X+1

 Y := 2+X

 Z := 3+Y

 …

 A(Z) :=

ENDFOR

Fig. 5 Intermediate codes with induction variables X,

Y, Z and I (a trivial induction variable).

Other examples of loop optimization that are

common in conventional compiler design includes

the following; loop jamming or fusion, loop

unrolling, count up to zero and un-switching.

III. NEW COMPILER ANALYSIS AND OPTIMIZATION

TECHNIQUES

Conventional compiler analysis and optimization

considered most importantly the correctness of an

executed code, the efficiency in execution of

programs irrespective of the professionalism of the

programmer and lastly the speed of compilation of a

program.

Today, as we embrace new technology with great

changes in architectural design (we now have even

smaller devices with embedded processors and

micro-chips), highly parallel processing, registers

allocations, cache heirarchy and high processing

speed demands, new compiler analysis and

optimization needs to be adopted in order to match

with the increasing demand for better compilers.

E. Data-Flow Analysis

Data-flow analysis information in the

conventional compiler analysis seems to be too

Boolean since it places priority on bit-vectors bzut

modern compilers are beginning to incorporate some

level of fuzziness in its data information. For

instance an expression can be may-be-available.

Hence, incorporating the values that fall between

such values(assuming a must-be-available andis-not-

available expression).

 Alias Analysis: During liveness analysis in

conventional compiler analysis, the two

common functions applied are the Gen and

Kill function but most recent techniques in

advanced compiler analysis also applies the

Aliases in determining the liveness of the

references at the exit of the block.

F. Reverse-Inlining (Procedural Abstraction):

 Reverse-inlining also considered as

procedural abstraction is one of the recent

method in compiler optimization whose aim is to

achieve code size reduction. Reverse inlining

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 46 Number 2 April 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 98

achieves this by using function calls to replace

code patterns that are in the entire program.

 The name reverse-inlining is typical due to

the counter operation of this technique to code

inlining (where function calls are replaced with

function bodies). This technique is noted to

reduce code size by 30%.

G. Leaf Function Optimization:

Leaf functions are those functions who do

not directly call functions in a program. Leaf

optimization achieves code reduction by

creatingthese types of functions. When

represented in a call graph, leaf functions

forms the leaves of the call graph.

 It is easier to inline leaf functions. Hence,

function entry/exit code is not required and

this reduces code size greatly. During leaf

optimization, register constraints are placed as

function calls need to be controlled (this also

reduces code size). After leaf optimization,

there is further opportunity for optimization as

the body of the inlined function is within the

context of the parent function.

Leaf function optimization can be applied

to functions that do not resemble leaf function,

such as the functional programming code in

figure 6 below.

Fig. 6Fuctional programming syle factorial

function that can be transformed into a loop

using leaf fuction optimization.

H. Combined code motion and register allocation:

 Combined code motion and register

allocation uses two conventional compiler phases:

code motion and register allocation. Codemotion

aims to place instructions in less frequently

executedbasic blocks, while instruction scheduling

within blocks orregions arranges instructions such

that independentcomputations can be performed in

parallel. The RegisterAllocation and Code Motion

(RACM) algorithm aims toreduce register pressure

firstly by moving code (CodeMotion), secondly by

Live-range splitting (Code-Cloning),and thirdly by

spilling.

This optimization is applied to theVSDG

intermediate code, which greatly simplifies the task

ofcode motion. Data dependencies are explicit

within the graph,and so moving an operation node

within the graph ensuresthat all relationships with

dependent nodes are maintained.

Also, it is trivial to compute the live range of

variables (edges) within the graph; computing

register requirements at anygiven point (called a cut)

within the graph is a matter ofenumerating all of the

edges (live variables) that areintersected by that cut.

I. Cross Linking optimization:

 This method is commonly used in search

engine optimization. Today, this method has also

been applied in compiler optimization. Cross-linking

can be applied locally or globally to functions that

contains switch statements with similar tail codes.

Since recent computer architectures are focused

on code reduction, cross-linking has this as its major

goal. When tail codes are spotted in a switch

statement, cross-linking optimization algorithm is

used to factor out this codes thereby reducing the

actual size of the code.

Fig. 7 code segment showing application of cross

linking optimization to an un-optimized switch case

statement

J. Address Code Optimization:

Address code optimization uses simple offset and

general offset assignment techniques to the number

of address computation code by reordering variables

in memory. The main aim of address code

optimization is to speed-up instructions or execution

time.

As data processing expression increases in

number, memory access instructions and address

computation codes also increases. Hence, there is

need for rearrangement of layout of data in memory

to reduce and simplify address computation.

K. Type Conversion Optimization:

Data processing also involves the physical size of

the data itself, and the semantics of data processing

operations. Support for a variety of data types is the

target of most compilers; as such compilers insert

many implicit data type conversions, such as sign or

zero extension. For instance, the C programming

language specifies that arithmetic operators operate

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 46 Number 2 April 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 99

on integer-sized values (typically 32-bit). For

example, given the code below;

Fig. 8 code segment showing application of type

conversion optimization

The code above promotes char (say, signed 8-bit)

variables a and b to integer types before doing the

addition. The result of the addition is then demoted

to char type before being stored in c. If a and b are

held in memory, then most processors have some

form of load-with-sign-extend operation, so the

above expression would indeed compile into four

instructions (two loads, add, and store).

However, if any of a or b are held in a register,

then the compiler must generate code that behaves as

if they were loaded from memory with sign

extension. The effect of this is that a naıve compiler

will generate code that sign-extends a and b before

doing the addition. For a processor without explicit

sign-extend instructions the compiler will generate

two instructions for each sign extension (a left-shift

to move the char sign bit into the int sign bit, and

then a right shift to restore the value and propagate

the sign bit into the upper 24 bits of the register).

L. Multiple Memory Access Allocation:

Multiple Memory Allocation (MMA) is one of the

newest optimization techniques. It involves loading

and storing each instruction in multiple registers.

Microprocessors today use this method to reduce the

code size. For example, in a ARM7 processor, the

LDM instruction uses only sixteen bitsto encode up

to sixteen register loads (512 bits without the useof

the LDM instruction).). Effective use of LDM and

STMinstructions in a ARM7 processor can save up

to 480 bitsopcode space.

IV. CONCLUSIONS

New generation compilers are designed to

effectively generate target codes for embedded

processors, parallel processing devices and very

large instruction word (VLIW) architecture. The

objective of new compilers is not just to generate

efficient codes but to reduce the code size, properly

utilize memory and increase program execution

speed.

This objective is evident in the implementation of

the new compiler analysis and implementation

techniques.

REFERENCES

[1] A. K. Sarma, New trends and challenges in source code

optimization. Journal Article. Delhi, India: International

Journal of Computer Application, December2015, vol.
131-No.16.

[2] A. Krall and S. Lelait. Compilation techniques for

multimedia processors. Intl. Journal ofParallel
Programming, 28(4):347-361, Aug. 2000.

[3] A. V.Aho,J . E. Hopcroft, and J . D.Ullman, The Design

and Analysis of Computer Algorithms. Addison Wesley,
1974.

[4] Assmann, U. Graph Rewrite Systems for Program

Optimization. ACM Trans. Programming Languages and
Systems 22, 4 (July 2000), 583– 637.

[5] B.Alpern, M. N. Wegman, and F. K.zadeck, Detecting

Equality of Variables in Programs. In Proc. Conf.
Principles of Programming Languages (January 1988), vol.

10, ACM Press, pp. 1– 11.

[6] H. S. Kim, N. Vijaykrishnan, M. Kandemir, and M. J.

Irwin. Adapting instruction level parallelism for optimizing

leakage in VLIW architectures. In Proc. of ACM

SIGPLAN Conf. on Language, Compiler, and Tool for
Embedded Systems, pages 275–283, San Diego, CA, June

2003.

[7] M. K. Jha, Compiler Construction: An Advanced Course,
3rd ed., Delhi, India: DhanpatRai and Co. Ltd, 2011.

[8] N. Johnson, Code Size Optimization for embedded

processors. TechnicalReport. Cambridge, United
Kingdom: University of Cambridge, December2004, vol.

131-No.16.

[9] R. Sinha and A. Dewanga, Transmutation of Regular
Expression to Source Code using Code Generators. IJCTT

Journal, 2012, vol.3 Issue 6.

[10] T. E. Mogensen, ―Basics of Compiler Design‖ 2nd ed.,
Copenhagen, Denmark: University of Copenhagen,2010.

[11] U. P. Khedker and A. Sanyal. Improving garbage

collection through static analysis. Technicalreport TR-
CSE-004-02, Department of Computer Science and

Engineering, Indian Institute of Technology, Bombay,

2002.
[12] V. Garg and Anu, A Review of DFA Minimizing State

Machine using Hash-Tables, IJCTT Journal, April 2013,

Vol. 4 Issue 4, 2231-2803.

http://www.ijcttjournal.org/

