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Abstract—Removal of noise is an important step in the 
image restoration process, but de-noising of image remains 
a challenging problem in recent research associated with 
image processing. 

De-noising is used to remove the noise from corrupted 
image, while retaining the edges and other detailed features 
as much as possible. This noise gets introduced during 
acquisition, transmission, reception, storage and retrieval 
processes. Here we retrieve de-noised image using Bivariate 
Shrinkage Technique. Out of many wavelet transforms here 
Discrete Wavelet Transform, Dual Tree Wavelet Transform 
and Hyper Analytical Wavelet transforms are implemented 
on different noisy images. Here the noisy image is assumed 
to be complex image and its real part and imaginary parts 
are separated. These are subjected to Bi-shrink filter 
separately into different stages of decomposition depending 
upon the severity of noise. The obtained de-noise image is 
compared with original image using different parametric 
measures like Peak Signal to Noise Ratio, Structural 
similarity Index measure, Covariance and Root mean square 
Error whose values are tabulated. The values of retrieved 
image obtained yields much better visual effect and hence 
this method is said to be a better one when compared with 
de-noising methods using Weiner Filter and various Local 
Adaptive Filters. 

I. INTRODUCTION 
Digital images play an important role both in daily life 

applications such as satellite television, computed 
tomography as well as in areas of research and technology 
such as geographical information systems and astronomy. In 
reality, an image is mixed with certain amount of noise 
which decreases visual quality of image[1][9]. Therefore, 
removal of noise in an image is a very common problem in 
recent research fields of image processing. An image gets 
corrupted with noise during acquisition or at transmission 
due to channel errors or errors in storage media due to faulty 
hardware[1][2]. Removing noise from the noisy image is 

still a challenging problem for researchers. Noise may be 
classified as substitutive noise (impulsive noise: e.g., salt 
and pepper noise, random valued impulse noise etc.) 
additive noise (e.g., additive white Gaussian noise) and 
multiplicative noise (e.g. speckle noise). However, here the 
investigation has been limited to additive white Gaussian 
noise[1]. In general, the goal of any noise removal scheme 
is to suppress noise as well as to preserve details and edges 
of image as much as possible. Removal of noise is an 
important aspect in the image processing. 

Figure. 1 shows the basic model for de-noising of 
image. In the implementation of these methods, first the 
noisy image is decomposed by wavelet transform. After this, 
by using Bivariate shrinkage technique the decomposed 
images are subjected to de-noising process where the output 
is given to Shrink Thresholding. Finally de-noised image is 
obtained by using inverse wavelet transform as shown in 
figure 1. 

 

 
Figure: 1 Image de-noising Process using Bivariate 

Shrinkage Technique 
 

Consider an image is corrupted with additive 
Gaussian white noise. The noisy image can be modelled as: 
     𝑦(𝑖, 𝑗) = 𝑥(𝑖, 𝑗) + 𝑛(𝑖, 𝑗)   (1) 
Where 𝑦(𝑖, 𝑗)is the noisy image, 

 𝑥(𝑖, 𝑗) is the original image and 
 𝑛(𝑖, 𝑗) is additive Gaussian white noise.  
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The goal of image de-noising is to suppress noise 
from noisy image with minimum mean square error. Here, 
the wiener filter minimizes the mean square error between 
the estimated image 𝑥(𝑖, 𝑗) and the original 
image 𝑥(𝑖, 𝑗)[1][7]. This error measure can be expressed as: 
  𝑒2 = 𝐸[(𝑥(𝑖, 𝑗) − 𝑥(𝑖, 𝑗))

2
]      (2) 

Wiener filter is used to measure an image pixel by 
pixel and compares the neighbourhoods of size M-by-N to 
estimate the local image mean and standard deviation[1][7]. 
Here it assumes that the noise is stationary with zero mean 
and variance  𝜎𝑛

2 and uncorrelated with the original 
image  𝑥(𝑖, 𝑗) . Based on these assumptions wiener filter 
estimates local mean and variance around each pixel using 
(3) and (4) as below: 
  𝜇 =

1

𝑀𝑁
∑ 𝑦(𝑖, 𝑗)𝑖,𝑗𝜖𝑘        (3) 

  𝜎2 =
1

𝑀𝑁
∑ 𝑦2(𝑖, 𝑗) − 𝜇2

𝑖,𝑗𝜖𝑘       (4) 
Where 𝜇  is local mean and 𝜎2 is local variance.  
Then wiener filter creates a pixel wise filtering 

using these estimates and the estimated image is given in (5) 
as below: 

 𝑥(𝑖, 𝑗) =  𝜇 +
𝜎2+𝜎𝑛

2

𝜎2
(𝑦(𝑖, 𝑗) − 𝜇) (5) 

Where 𝜎𝑛
2 is noise variance, if noise variance is not 

given, wiener filter uses average of all local estimated 
variances. 

The Wiener filter in the wavelet domain removes 
the noise pretty well in the smooth regions but performs 
poorly along the edges. That is why it performs better on 
smooth images like Lena than on images with edges like the 
cameraman. For a noise variance of 400, the MSE was 
found to be 107.5 for the cameraman image and 80.5 for the 
Lena image. 

In Global Wiener filtering, the above expression 
for a Wiener filter is applied over the whole image. This 
method does a good job at de-blurring; however, it behaves 
very poorly in the presence of large noise[2][3]. The Wiener 
filter would work well for an image which has similar local 
statistics throughout the entire image. However in most 
natural images, the first order statistics vary from one part 
of an image to another and hence its poor performance in 
the presence of large noise. The advantage of this method is 
that it is not computationally intensive and works well for 
smooth images[1][4]. 

When Wiener filtering is performed on small 
blocks of an image at a time, the method is called Local 
Wiener Filtering. In this method, the PSD (Power Spectral 
Density)  of the unregarded image is estimated for each 
block[4]. This calculated PSD is then used in the expression 
of the Wiener filter. Thus, the local statistics are also 
accounted for in the calculation of the Wiener filtered 
image[6]. Images with many edges are handled much better 
by the local Wiener filter than the global Wiener filter. We 
used a window of size of 3 × 3 in the calculation of the local 
Wiener filtered image. The drawback of this method is that 
it is more computationally demanding[6][1]. 

The de-noising of the image is done in the 
following procedural steps. First select an image, check 
whether it is grey image or colour Image. If it is a colour 

image then firstly convert this image into grey image. Then 
use it as input image[1][4]. 
 The image is further decomposed into four stages 

approximation, horizontal, vertical and diagonal 
versions. The horizontal, vertical and diagonal steps of 
the image are called details of the image. 

 The approximation step is further processed for 
decomposition. The approximation is further carried 
out and divided into four steps again for three 
decompositions. 

  The decomposed images are retrieved by comparing 
approximation coefficients and details coefficients. 
This process is carried out by preceding the 
decomposition levels. The coefficients obtained in first 
stage are considered as finally obtained ones. 

 The retrieved coefficients are then succeeded for soft 
thresholding and subjected to Inverse wavelet 
Transform. 

Here we have considered Dual tree and Hyper 
Analytical wavelet transforms where the give image is 
considered as complex one and is sub divided into real and 
imaginary parts. The marginal variance of the coefficients 
of the image is calculated separately for both real and 
imaginary images[5]. 
 Finally, calculate PSNR between original image and 

noisy image and PSNR between the de-noised image 
and original image. 

                          PROPOSED WORK 

BIVARIATE  SHRINKAGE  FILTER 
Bivariate shrinkage model undergoes the following 

calculations. There are strong dependencies between 
neighbour coefficients such as between a coefficient, its 
parent (adjacent coarser scale locations), and their siblings 
(adjacent spatial locations). 

 Let   𝑤2 represents the parent of 𝑤1  (𝑤2  is the 
wavelet coefficient at the same position as 𝑤1 , but at the 
next coarser scale.) Then 

 𝑦1 = 𝑤1 + 𝑛1 
𝑦2 = 𝑤2 + 𝑛2 

Where 𝑦1 and 𝑦2 are noisy observations of 𝑤1and 𝑤2, 
𝑛1and𝑛2 are  noise samples. We can write 

  y = w + n 
where w=(𝑤1,𝑤2), y = (𝑦1, 𝑦2) and n = (𝑛1, 𝑛2) 
The estimator for w given the corrupted observation y is 

𝑊𝑠 = 𝑎𝑟𝑔𝑊𝑠
𝑚𝑎𝑥(𝑃𝑊𝑥 𝑊𝑠⁄ (𝑊𝑥 𝑊𝑠)⁄  

After some manipulations, this equation can be written as 
𝑎𝑟𝑔𝑊𝑠

𝑚𝑎𝑥(𝑃𝑊𝑠 𝑊𝑥⁄ (𝑊𝑠 𝑊𝑥)⁄ ) 
       𝑎𝑟𝑔𝑊𝑠

𝑚𝑎𝑥(𝑃𝑛(𝑊𝑠 − 𝑊𝑥). 𝑃𝑊𝑠
(𝑊𝑠))          (i) 

For construction of Bi-shrink filter, 
Let us assume Gaussian noise is added to the given image 
then, 

𝑝𝑤𝑛
(𝑊𝑛) =

1

2𝜋𝜎𝑊𝑛
2 𝑒

−  
(𝑊𝑛

1 )
2

+(𝑊𝑛
2 )

2

2𝜎𝑊𝑛
2

 

For a noise free image it is characterised as, 
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𝑝𝑤𝑠
(𝑊𝑠) =

3

2𝜋𝜎𝑊𝑠
2 𝑒

− 
√3

𝜎𝑊𝑠
√(𝑊𝑠

1)
2

+(𝑊𝑠
2)

2

 

By substituting the above equation in equation (i) we finally 
contain the relationship between input and output of the 
given images, 

  𝑊𝑠
1̂ =  

√(𝑊𝑥
1)

2
+(𝑊𝑥

2)
2

  − 
√3 𝜎𝑊𝑛

2

𝜎𝑊𝑠

√(𝑊𝑥
1)

2
+(𝑊𝑥

2)
2

  . 𝑊𝑥
1 

Where   𝜎𝑊𝑛
2 =

𝑚𝑒𝑑𝑖𝑎𝑛 |𝑊𝑥|

0.6745
 

𝜎𝑊𝑠 =  
𝜎𝑊𝑠

1 + 0.5𝜎𝑊𝑠
2

2
 

COMPLEX WAVELET TRANSFORMS: 
The complex wavelet transform [11] is divided into 

different sub transforms among them the following methods 
are applied for denoising process.  

A. DISCRETE WAVELET TRANSFORMS: 
The DWT transform, to which we will refer to as 

classical DWT, presented in section is the most commonly 
used as it is fast, non-redundant and assures the perfect 
reconstruction. Despite all these properties, classical DWT 
might not be good enough for some specific applications. In 
the following, we will present some transforms, derived 
from DWT, that can be encountered in practical 
applications. 

DWT is largely used for one-dimensional discrete 
signals. If we want apply the discrete wavelet transform to 
two-dimensional signals (images, for instance), we need to 
use the DWT’s extension to two dimensions, namely the 2D 

DWT. 

 
 

Figure.2 :One-level 2D DWT decomposition scheme 
 

 
Figure.3 :2D DWT coefficients image 

 

 

 

 

B. DUAL TREE COMPLEX  WAVELET TRANSFORM: 
Kingsbury first introduced the DTCWT, that relies on 

the observation that approximate shift invariance can be 
achieved with a real DWT by doubling the sampling rate at 
each level of the tree. For this to work, the samples must be 
evenly spaced. The sampling rates can be doubled by 
eliminating the down-sampling by two after the level one 
filters. This is equivalent to having two parallel fully-
decimated trees a and b, like in below given figure 4. It is 
found that, to get uniform intervals between samples from 
the two trees below level one, the filters in one tree must 
provide delays that are half a sample different (at each filter 
input rate) from those in the other tree. This statement is 
also supported by Selesnick who gives an alternative 
derivation and explanation of the same result. 
            The implementation of such a transform is done 
using two mother wavelets, one for each tree, one of them 
being (approximately) the Hilbert transform of the other. On 
one hand, the dual-tree DWT can be viewed as an over 
complete wavelet transform with a redundancy factor of 
two. On the other hand, the dual-tree DWT is also a 
complex DWT, where the first and second DWTs represent 
the real and imaginary parts of a single complex 
DWT[1][2][5]. 
            Extension of the DT CWT to two dimensions is 
achieved by separable filtering along columns and then 
rows. However, if column and row filters both suppress 
negative frequencies, then only the first quadrant of the 2-D 
signal spectrum is retained. It is well known, from 2-D 
Fourier transform theory, that two adjacent quadrants of the 
spectrum are required to represent fully a real 2-D 
signal[1][7]. Therefore in the DT CWT it is also filtered 
with complex conjugates of the row (or column) filters in 
order to retain a second (or fourth) quadrant of the 
spectrum. This then gives 4:1 redundancy in the 
transformed 2-D signal. This below shown  figure 4 & 5 
defines the 4 trees T = A, B, C and D. If a and b denote 
approximation and detail coefficients. 

 
Figure.4 :Analysis part of Dual Tree 
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Figure.5 : Synthesis part of Dual tree 

 
Figure.6: Approximation components at levels 1 to       

4 of 16 shifted step responses of the 
(a) DT CWT and (b) Real DWT 

C. HYPER ANALYTICAL WAVELET TRANSFORM: 
In the following we see that the definition of the 

analytic signal associated to a 2D real signal named hyper 
complex signal[3][5]. 

So, the hyper complex mother wavelet associated to the 
real mother wavelet, (x; y) is defined as: 
𝜑𝑎(x,y) =  𝜑 (x,y) + i𝐻𝑥{𝜑(x,y)} + 𝑗𝐻𝑦   {𝜑(x,y)} +  
           k𝐻𝑥{Hy {𝜑  (x, y)}} 
where i2 = j2 = -k2 = -1, ij = ji = k, jk = kj = -i, ki = ik = -j 
and ijk = 1,  
The HWT of an image f (x,y) is: f(x, y)} ,𝜑𝑎 (x,y)} 
                         HWT f{(x,y)} = ⟨f(x, y), 𝜑𝑎(x, y)⟩ 

We can conclude that the HWT of the image  f(x,y) 
can be computed with the aid of the 2D DWT of its 
associated hyper complex image. In consequence the HWT 
implementation uses four trees, each one implementing a 
2D DWT, thus having a redundancy of four[5]. The first 
tree is applied to the input image. The second and the third 
trees are applied to 1D Hilbert transforms computed across 
the lines (𝐻𝑥) or columns (𝐻𝑦 ) of the input image. The 
fourth tree is applied to the result obtained after the 
computation of the two 1D Hilbert transforms of the input 
image[10][5]. 

 
 

Figure.7 : HWT implementation scheme 
 
The below show figure 8 shows the comparison between 
DWT, DT CWT, HWT whose input is as shown in below 
figure. 

 
Figure.8 : The 2D image given as input 

 
Figure.9 : Outputs of different wavelet transform  
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 Finally, to improve the signal to noise ratio of 
image by local adaptive wavelet image de-noising method 
following steps follows: First we apply wavelet transform 
(DWT) i.e.bior4.4 wavelet to decompose the noisy image 
into four sub images: LL, HL, LH and HH. 

 The next step will be to construct bi-shrink method 
using several 1-D windows on the direction information 
contained in each sub image. 

 After this apply bi-shrink filter for LL sub image and 
thresholding to remaining sub images. 

 Then reconstructs image by wavelet inverse transform 
and we get the de-noised image. 

 Finally, to calculate PSNR between original image and 
noisy image and PSNR between the de-noised image 
and original image. 

 By seeing the below figure 10 we can conclude 
that bivariate shrinkage technique when applied sub images 
could suppress additive Gaussian white noise and preserve 
the edge of image. There by the results obtained are 
comparatively far better as of the results obtained by using 
adaptive Weiner filter. 

 
Figure.10 : 1-D window structures: from left to right:  
a) 1-D windows for LH, b) 1-D windows for HL and  

c) 1-D windows for HH. 

The image Lena is decomposed using three 
different wavelet transform techniques as Discrete wavelet 
Transform, Dual Tree Wavelet Transform and Hyper 
Analytical Wavelet Transform. The comparison between 
noisy image and original image is shown in each method. 
Furthermore the noise image (at noise range of 0.01 to 0.1) 
when given as input to wiener filter produces a de-noised 
image and similarly when the noisy image is given as input 
to bishrink filter gives de-noised image which is visually far 
better comparatively[1][2]. 

 

 

 

 

 

 

 

 

 

 

 

III. RESULTS: 

DUAL TREE WAVELET TRANSFORM: 

 

Original Image Noisy Image 

  
Using Bishrink Filter Using Weiner Filter 

  
Figure.11:Image de-noising in DT CWT using both Weiner 

and Bishrink Filters 
DISCRETE WAVELET TRANSFORM: 
 

Original Image Noisy Image 

  
Using Bishrink Filter Using Weiner Filter 

  
Figure.12: Image de-noising in DWT using both Weiner 
and Bishrink Filters 

Original Image Noisy Image

Denoised Image Denoised Image

Original Image Noisy Image

Denoised Image Denoised Image
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HYPER ANALYTICAL WAVELET TRANSFORM 
 

Original Image Noisy Image 

  

Using Bishrink Filter Using Weiner Filter 

  
 

Figure.13: Image de-noising in HWT using both Weiner 
and Bishrink Filters 

PEAK SIGNAL TO NOISE RATIO 

PSNR =  10 1 1020log max 10log ( )MSE  

Where  

   
1 1 2

0 0

1 , ,
m n

i j
MSE i i j k i j

mn

 

 

     

Here max1is maximum possible pixel value of the image 

ROOT MEAN SQUARE ERROR 

 RMSE= MSE θ  

Where θ is estimated which is defined as square root of 

mean square error 

STRUCTURAL SIMILARITY INDEX MEASURE  

SSIM = Sum of total number of pixels /total 
number of pixels present in the image.  

It measures similarity between the original image 
and retrieved image. 

 

 

 

CORRELATION COEFFICIENT: 

Correlation Coefficient is used to verify and determine how 
strongly the recovered image is matched with the original 
Image. 

𝑟 =
𝑛(∑ 𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2 − (∑ 𝑥 ]2 [𝑛 ∑ 𝑦2 − (∑ 𝑦)^2]

 

Where n is number of pairs of pixels, ∑ 𝑥𝑦 is sum of 
product of pixels, ∑ 𝑥 is sum of x pixels, ∑ 𝑦 is sum of y 
pixels. 

Table 1: SSIM Values of each column corresponds to the 
noise values from (0.01, 0.02 …. 0.1) 

0.2000 0.1390 0.1083 0.0904 0.0791 0.0693 0.0626 0.0583 0.0538 0.0498 

0.3823 0.3160 0.2720 0.2441 0.2230 0.2082 0.1971 0.1877 0.1758 0.1684 

0.4479 0.3983 0.3521 0.3246 0.3052 0.2857 0.2818 0.2680 0.2546 0.2439 

0.4254 0.3659 0.3193 0.2935 0.2747 0.2571 0.2434 0.2353 0.2234 0.2142 

0.4910 0.4446 0.4048 0.3793 0.3647 0.3419 0.3315 0.3198 0.3061 0.2969 

0.4424 0.3740 0.3242 0.2963 0.2755 0.2567 0.2413 0.2331 0.2213 0.2116 

0.4866 0.4370 0.3910 0.3655 0.3445 0.3241 0.3095 0.2984 0.2867 0.2742 

Table 2: RMSE Values of each column corresponds to the 
noise values from (0.01, 0.02 …. 0.1) 

25.3372 35.1849 42.4954 48.2149 52.9785 57.2227 60.7445 63.7719 66.5456 69.1627 

9.9283 12.7274 15.0084 16.8412 18.3772 19.7751 21.0784 22.1745 23.1486 24.1961 

7.9943 9.4536 10.8879 11.7979 12.6683 13.6359 14.1504 14.8171 15.5992 16.4111 

9.0276 10.9438 12.6359 14.0337 15.1270 16.4107 17.3227 18.3241 19.0992 20.1232 

6.9579 8.2314 9.4099 10.2635 10.9204 11.8818 12.4633 13.1657 13.8805 14.6462 

8.2661 10.3292 12.0872 13.3964 14.5422 15.7219 16.6162 17.5109 18.3202 19.2562 

7.1750 8.5765 9.8701 10.8048 11.5014 12.5426 13.1495 13.8499 14.6117 15.4312 

Table 3: CC Values of each column corresponds to the 
noise values from (0.01, 0.02 …. 0.1) 

0.8830 0.8015 0.7373 0.6863 0.6451 0.6071 0.5782 0.5522 0.5277 0.5044 

0.9784 0.9646 0.9506 0.9374 0.9251 0.9127 0.9005 0.8893 0.8784 0.8662 

0.9859 0.9803 0.9740 0.9700 0.9659 0.9612 0.9591 0.9564 0.9527 0.9492 

0.9821 0.9736 0.9646 0.9561 0.9488 0.9394 0.9322 0.9238 0.9170 0.9075 

0.9894 0.9852 0.9808 0.9778 0.9755 0.9719 0.9698 0.9673 0.9652 0.9630 

0.9850 0.9764 0.9676 0.9600 0.9528 0.9446 0.9380 0.9310 0.9244 0.9164 

0.9887 0.9840 0.9791 0.9756 0.9732 0.9691 0.9669 0.9646 0.9621 0.9595 

 

Table 4: PSNR Values of each column corresponds to 
the noise values from (0.01, 0.02 ….0.1) 

20.0556 17.2037 15.5640 14.4672 13.6488 12.9794 12.4607 12.0382 11.6684 11.3334 

28.1933 26.0360 24.6041 23.6033 22.8452 22.2084 21.6541 21.2137 20.8403 20.4559 

30.0752 28.6189 27.3919 26.6947 26.0765 25.4371 25.1154 24.7155 24.2687 23.8281 

29.0194 27.3475 26.0987 25.1874 24.5357 23.8283 23.3585 22.8704 22.5105 22.0569 

31.2812 29.8213 28.6591 27.9049 27.3660 26.6331 26.2181 25.7419 25.2827 24.8163 

29.7848 27.8495 26.4843 25.5910 24.8782 24.2007 23.7202 23.2646 22.8722 22.4394 

31.0144 29.4646 28.2444 27.4584 26.9158 26.1631 25.7526 25.3019 24.8368 24.3628 

Original Image Noisy Image

Denoised Image Denoised Image
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GRAPHICAL REPRESENTATION OF 
PARAMETERS 

 
Figure 14: RMSE Comparison  

 

Figure 15: PSNR Comparison  

 

 
Figure 16: SSIM Comparison 

 

 
Figure 17: Correlation Coefficient Comparison 

CONCLUSION  

The de-noising of image is initial step in image 
processing. The quality of the de-noised image depends on 
the two major parts: wavelet transform for decomposition of 
image and adaptive wiener filtering in wavelet domain and 
spatial domain. The performance of the local adaptive 
wavelet image de-noising method is good compared to 
modified de-noising method in terms of PSNR between de-
noised image and original image. But the edges of the image 
are smoothened such that the clarity of the image gets 
damaged. So, in order to overcome this drawback we 
conclude that bivariate shrink technique is more effective 
for suppression of noisy compared to local adaptive wiener 
filter. Thus the image after de-noising have a better visual 
effect and preserve the detail edges of image. 
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