
 International Journal of Computer Trends and Technology (IJCTT) – volume 7 number 1–Jan 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 26

Dynamic Load Balancing Algorithm in the Global-Local Order

Hojiev Sardor Qurbonboyevich1, Tae-Young Choe2
1(Dept. of IT Convergence Engineering/ Kumoh National Institute of Technology, South Korea)

2(Dept. of Computer Engineering/ Kumoh National Institute of Technology, South Korea)

 ABSTRACT : Most traditional dynamic load
balancing schemes for hierarchical environments
have applied local load balancing first and have
expands it to the global load balancing. The major
problem of the approach is that unnecessary task
immigrations can occur, which degrade the system
performance. Carefully designed global load
balancing scheme eliminates the unnecessary task
immigrations. We propose a dynamic load
balancing scheme that balances global level first
followed by local level. Two thresholds that include
communication overheads are applied to the load
balancing scheme. Experiments show that the
proposed scheme 99.7% and 87.2% of average
response time than traditional local-first-global-
later load balancing scheme, in the case of a
uniformly distributed workload and a single hot
spot workload, respectively.

Keywords - Dynamic Load Balancing, Grid
computing, GridSim, Hierarchical distributed
System, Multiple Threshold

I. INTRODUCTION
Grid computing system is an inexpensive

way to use high-end computers [1], and it is a
fundamental structure to support backbone and
infrastructure of Cloud computing [2]. Grid
computing system is used in many fields from
computation oriented applications to small sized
massive queries like Web services. A computation
oriented application is designed to be executed in
the multiple processors systems. It is divided and
allocated to multiple processors or resources in the
programming phase or compile phase. Thus
computation oriented applications are targets of
static scheduling or static load balancing. On the
other side, small sized massive queries invoke
dynamically changing workloads. Thus, dynamic
load balancing schemes are required in the case [3,
4].

According to types of subjects that control
the loads, the dynamic load balancing schemes can
be classified as centralized or decentralized.
Decentralized schemes have some advantages

against centralized schemes like no single point of
failure and free from bottleneck. On the other side,
centralized schemes have better performance if the
given environment is free from faults. In order to
manage the entire system using centralized scheme,
there should be a subject called a manager that
stores statistics, manages meta data, and makes
load balancing Since the manager still suffers from
a bottleneck in the case of large system even in the
fault free environment, a hierarchical scheme
comes on stage.

In the hierarchical scheme, nearby
resources or processors construct a subset. Multiple
subsets construct a higher level subset. Such
construction repeats until the entire set is
constructed. Since the Grid computing system is
composed of multiple clusters, a cluster is mapped
to a subset and the grid is mapped to the entire set
in two-level layers [5].

The objective of load balancing schemes
is to maximize the performance based on criteria
like makespan, throughput, utilization, or response
time. Since the current trend of computing services
moves from computation oriented Grid computing
to service oriented Cloud computing, we
concentrate on minimizing response time of a
request task.

When a dynamic load balancing scheme is
designed in a two-level hierarchical model, at least
the following should be decided:
 Balancing order
 Task immigration decision

Most dynamic load balancing schemes
make load balancing using the local-first-global-
later order in the hierarchical model [5, 6, 7, 8, 9,
10]. That is, a local subnet like a cluster starts load
balancing by its local manager. Next, a global
subnet starts load balancing by the global manager.
Yagoubi and Meddeber explained the reason of the
load balancing order such that the balancing order
reduces response time and communication cost [6].
It looks natural that the area of load balancing starts
from small area and expands the operations to

 International Journal of Computer Trends and Technology (IJCTT) – volume 7 Issue 1–Jan 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 27

larger area. Unfortunately, there was no proof on
the insistence of the balancing order.

We noticed that global-first-local-later
load balancing order reduces communication
overhead compared to local-first load balancing
order, if careful task immigration is supported. For
example, assume that an overloaded resource ܵ
and an under-loaded resource ܵ are located in an
overloaded cluster ܥ . The cluster manager of ܥ
orders to transfer tasks from ܵ to ܵ in the local
load balancing step. Next, the grid manager orders
to transfer tasks in cluster ܥ to other under-loaded
cluster in the global load balancing step. Then
some tasks already immigrated from ܵ to ܵ must
immigrate again. The first local immigrations of
the tasks come to be unnecessary.

Global-first-local-later load balancing
scheme should be more careful on task immigration
because the inter-cluster communication costs more
than the intra-cluster communication. Global load
balancing should consider not only the amount of
load difference but also communication overhead.
Analytic model for the global-first-local-later load
balancing scheme is too complex because of
heterogeneity and dynamically changing grid
components. GridSim is a useful simulation tool
for the purpose [11].

We propose a global-fist load balancing
scheme Global Local Load Balancing (GLLB) in
two-level hierarchical grid model. Also an
immigration decision making condition is
presented in order to make efficient operation of
GLLB scheme. The rest of this paper is organized
as follows: Section 2 describes environment and
system model where our proposed scheme is
applied. Section 3 summarizes related previous
works. Section 4 presents our proposed dynamic
load balancing algorithm GLLB. Experimental
results are shown in Section 5. Finally, Section 6
concludes this work.

II. SYSTEM MODEL
Since Grid or Cloud computing system

consists of multiple clusters, multi-level
hierarchical model is natural. Two-level
hierarchical cluster model is considered as the

system where a load balancing scheme is applied as
shown in Fig. 1.

The system model is consisted of

following entities: resource ܵ, cluster manager ܯ,
and a grid manager GM. Multiple resources are
connected to a cluster manager located in the same
local area network. Multiple cluster managers are
connected to a grid manager through wide area
networks. A cluster can be described as a set ܥ
consist of resources in the cluster. Cluster manager
ܯ takes care of resources in ܥ . A grid can be
described as a set ܩ consist of cluster managers in
the grid.

For each resource, there is a process that
stores tasks in its queue and manages statistics for
load balancing. The processes can be located in
resources if the resources contain a CPU and a
memory. Or they can be located in a server where
multiple resources are connected by high speed
network. Each process represents a resource and a
process as an active subject that controls the
resource is called a resource ܵ for notational
convenience.

Since communication overheads are
different for each inter-cluster and intra-cluster, the
latencies and bandwidths are notated as follows:
 ߣ: communication latency within cluster ܥ ,
 ߚ : communication bandwidth within cluster

ܥ ,

Grid manager

Cluster
manager

Cluster
manager

Resource
s

Resources

Figure 1 Two-level hierarchical cluster model

 International Journal of Computer Trends and Technology (IJCTT) – volume 7 Issue 1–Jan 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 28

 λ : average communication latency between
clusters,

 β : Average communication bandwidth
between clusters.

For example, if a resource ܵ in cluster ܥ sends a
task of packet size to resource ܵ is cluster ܥ ,
the communication overhead of the task
immigration is ߣ + β୩ + ߣ + ߚ + ߣ + ߚ .
In order to simplify computation, average
communication overheads are used instead of one-
to-one communication overheads.

III. PREVIOUS WORKS

Yagoubi et al. proposed a dynamic load
balancing scheme HDLA (Heterogeneous Dynamic
Load balancing Algorithm) in two-level
hierarchical grid model [6]. In the scheme, each
worker node estimates the amount of load assigned
to the node and sends the cluster manager of the
node the amount. Each cluster manager classifies
worker nodes according to two thresholds: a lower
threshold and an upper threshold. The thresholds
are decided by the average and the standard
deviation of the amount of loads in the cluster. A
node is classified as an underloaded if the load of
the node is below the lower threshold. A node is an
overloaded if the load of the node is above the
upper threshold. A cluster manager orders
overloaded nodes to yield overloaded loads and
orders underloaded nodes to accommodate the
loads yielded by overloaded nodes.

After the local load balancing, each cluster
manager sends the grid manager the total amount
of loads in the cluster. The grid manager classifies
clusters as underloaded, normally loaded, or
overloaded according to two thresholds similar to
the local load balancing. The grid manager moves
loads from overloaded cluster to underloaded
cluster.

HDLA has a major problem that load
balancing does not work in the following two
situations: first, a group is saturated; second,
underloaded node has not sufficient capacity for
immigration amount from an overloaded node.

Qurbonboyevich and Choe proposed a
dynamic load balancing scheme in two-level
hierarchical grid model [12]. Since the scheme

balances local level first followed by global load
balancing, we call it LGLB (Local-Global Load
Balancing) scheme. LGLB scheme proposes an
immigration decision that fixes malfunctions of
HDLA. When a cluster manager is ordered to send
an amount of loads, it proportionally withdraws
loads from each worker nodes. Thus, there is no
saturated group.

However, LGLB also makes balancing
local first and global later. As being explained in
the Section 1, HDLA and LGLB scheme can
invoke unnecessary communication if a task
immigrates during local load balancing and
immigrate again during global load balancing at the
next time.

IV. PROPOSED SCHEME

Major objective of the proposed scheme is
to reduce the communication overhead by
reversing load balancing order. Instead of local
balancing first, each cluster manager sends the grid
manager its statistics. After processing the order
from the grid manager, each cluster manager
balance in local network if necessary.

A. Computing Statistics
Following statistics are maintained in each

resource ܵ in cluster ܥ and are announced to the
cluster manager of the cluster periodically:
 ܰ(ܵ) is the number of tasks running or

waiting in the queue of the resource.
 ܧ(ܵ) is the average execution time of each

task assigned to the resource ܵ .
 ܶ(ܵ) is the expected completion time of the

last task in the resource ܵ . Thus ܶ(ܵ) =
ܰ(ܵ) ⋅)ܧ ܵ).

 ܲ(ܵ) is the average packet size of tasks
assigned to the resource ܵ . The value is used
to measure communication cost of load
immigration.

The clocks in resources in a cluster are assumed to
be synchronized within a tolerable rate. In other
words, a cluster manager does not confuse whether
any arrived message is included in which period.

After receiving all messages
)ܧ) ܵ),ܰ(ܵ), ܶ(ܵ), ܲ(ܵ)) from resources ܵ

 International Journal of Computer Trends and Technology (IJCTT) – volume 7 Issue 1–Jan 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 29

in cluster ܥ , a cluster manager ܯ computes
following statistics:
 ܰ = ∑ ܰ(ܵ)ௌ∈ೖ . That is, ܰ is the number

of tasks in cluster ܥ .
 ܧ = ∑)ܧ) ܵ) ⋅ ܰ(ܵ))/ܰௌ∈ೖ .
 ܶ = ∑ ܶ(ܵ)/|ܥ|ௌ∈ೖ , where |ܥ| is the

number of active resources in cluster ܥ. Thus
ܶ is the average completion time of the last

tasks in cluster ܥ .
 ߪ is the standard deviation of ܶ(ܵ) for all

ܵ ∈ ܥ .
 ܲ = ∑ (ܲ(ܵ) ⋅ ܰ(ܵ))/ ܰௌ∈ೖ . Thus ܲ is

the average packet size of tasks assigned to
the cluster ܥ .

A cluster manager sends a message
(N୩, ܶ , ܲ , (|ܥ| to the grid manager. The grid
manager collects all messages and computes grid
level statistics as follows:
 ௧ܰ௧ = ∑ ܰெೖ∈ீ .
 ܧ௩ = ∑ /ܧ ௧ܰ௧ெೖ∈ீ .
 ܶ௩ = ∑ ܶ/|ܩ|ெೖ∈ீ , where |ܩ| is the

number of cluster managers that sent the
message.

 σ is the standard deviation of ܶ .
 ܲ௩ = ∑ (ܲ ⋅ ܰ)/ ௧ܰ௧ெೖ∈ீ .

௧ܰ௧ is the total number of tasks in the grid system
at the moment, ܧ௩ is the average expected
execution time of tasks, ܶ௩ indicates an average
load of the grid system, and ܲ௩ is an average
amount of total packets.

B. Classifying Clusters
The grid manager decides which clusters

are overloaded and which clusters are underloaded
in order to balance loads between clusters. Various
dynamic load balancing algorithms have decided
load balancing based on load differences between
clusters. Unfortunately, they did not give sufficient
attention to other factors like the communication
overhead and task execution time. The proposed
scheme adds the factors to the thresholds that
classify clusters.

Assume that a task is assigned to a
resource ܵ in cluster ܥ as the last task. When the

resource computes current completion time as
ܶ(ܵ), the start time of the task is approximated as
ܶ(ܵ) −)ܧ ܵ) because the execution time of the

task is included in the completion time of the
resource. When the task is about to immigrate to
another resource ܵ , the difference of two resource
completion time is computed as ܶ(ܵ))ܧ− ܵ)−
ܶ(ܵ) . If the difference is less than the

communication overhead from ܵ to ܵ ,
immigration of the task does not provide any
advantage. Thus, not only overhead difference
between clusters but also communication overhead
should be considered in task immigration decision.

In order to simplify the computation,
average communication overhead ܱ is defined as
follows:

ܱ = ߣ + ೌ ೡ
ఉ

+ ௩ߣ)2 + ೌ ೡ
ఉೌೡ

), (1)

where ߣ௩ and ߚ௩ are the average
communication latency and the average
communication bandwidth in intra-cluster
communication, respectively. When a task is
immigrated, a task should be transfered to gateway
of the cluster, be transferred through inter-cluster
network, and be transferred to the target resource.
Thus, there are two local communication overheads.

Another consideration for cluster
classification is the task execution time. If the
expected completion time of a resource ܵ is ܶ(ܵ),
the start time of the last task in the resource is
approximated as ܶ(ܵ)− ܲ(ܵ) . If the
communication overhead is ignored, the
completion time of ܵ should be greater than that of
a target resource in order to profit from
immigration. Thus, if ܵ is the target resource in
cluster ܥ, following condition should satisfied:

ܶ(ܵ) −)ܧ ܵ) > ܶ(ܵ), or

ܶ(S୧)− ܶ൫ ܵ൯ >)ܧ ܵ). (2)
By adding communication overhead (Equation 1)
to execution time (Equation 2) source resource ܵ
and target resource ܵ should satisfies following
condition:

ܶ(ܵ) − ܶ൫ ܵ൯ >)ܧ ܵ) + ܱ. (3)
Load imbalance and communication

overhead is combined by selecting the maximum
value between a load difference and the half of

 International Journal of Computer Trends and Technology (IJCTT) – volume 7 Issue 1–Jan 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 30

communication overhead. Thus, two thresholds that
classify clusters are decided as follows:

ܪܶ = ܶ௩ + max ቀߪߙ, ாೌೡାை
ଶ

ቁ		

ܪܶ = ܶ௩ − max ቀߪߙ, ாೌೡାை
ଶ

ቁ	 (4)

where ߙ is a threshold coefficient in order to
control cluster classification range and average
expected task execution ܧ௩ is used.

Using the Equation 4, the grid manager
classifies cluster ܥ as follows:
 Cluster ܥ is overloaded, if ܶ > .ܪܶ
 Cluster ܥ is under-loaded, if ܶ < .ܪܶ
 Otherwise, cluster ܥ is normally loaded.
If there is at least one overloaded cluster and one
underloaded cluster, the grid manager starts global
load balancing. Otherwise, the grid manager
announces cluster managers to start local load
balancing.

C. Global Load Balancing
The grid manager sorts clusters in the

descending order of their loads ܶ into an ordered
pool of clusters. That is, clusters are ordered in the
pool as (ܥைభ ைయܥ,ைమܥ, , … , C|ృ|) where ைܶ ≥ ைܶశభ	
for 1 ≤ ݅ < The grid manager selects the most .|ܩ|
overloaded cluster and the most under-loaded
cluster, pairs them, extracts the clusters from the
pool, and repeats the pairing until there is no more
overloaded cluster or under-loaded cluster.

The proposed GLLB scheme tries to
minimize the amount of immigration in order to
reduce the communication overhead and to prevent
vibration between overloaded cluster and under-
loaded cluster. Thus, the smaller amount of load is
chosen between two amounts that exceed the
thresholds. For each cluster pair (ܥ ܥ) whereܥ,
is an overloaded cluster and ܥ is an under-loaded
cluster, the grid manager computes immigration
size ܯ, as follows:

,ܯ = min	(ܶ − ܪܶ,ܪܶ − ܶ) (5)
The grid manager sends the immigration size ܯ,
to cluster manager of ܥ .

After receiving the immigration size, a
cluster manager of cluster ܥ computes
immigration amount for resources in the cluster.

The cluster manager cuts peak loads of resources in
order to get effect of local load balancing during
global load balancing process. First, the manager
sorts the resources in the descending order of load
ܶ(ܵ) such that ܶ(ଵܵ) ≥ ܶ(ܵଶ) ≥ ⋯ ≥ ܶ(|ܵೖ|).

Sub sums of overloads ܣ௨	(2 ≤ u ≤ (|ܥ| are
defined as follows:

௨ܣ = ∑ ൫ ܶ(ܵ) − ܶ(ܵ௨)൯௨ିଵ
ୀଵ (6)

Next, the manager finds index ݑ that satisfies the
following condition:

௨ܣ < ,ܯ ≤ ௨ାଵ (7)ܣ
where ܶ൫ |ܵೖ|ାଵ൯ = 0. Then, the immigration size
 , is expressed in the following equation with anܯ
unknown number ݔ as shown in Fig. 2:

,ܯ = ௨ܣ + ݔ ⋅ ,ݑ
which can be rewritten as follows:

ݔ = ெೖ,ିೠ
௨

. (8)

Figure 2 Finding size of immigration for each
resource

For resource ܵ(݅ ≤ ,(ݑ
),ܯ ܵ) = ܶ(ܵ) − ܶ(ܵ௨) + ݔ

From Equations 8 and 9, the immigration size
),ܯ ܵ) from resource ܵ is

),ܯ ܵ) = ܶ(ܵ) − ܶ(ܵ௨) +
,ܯ − ௨ܣ

ݑ

The cluster manager tells the immigration
size to its overloaded resources. Each resource
sends the amount of tasks in the tail of wait queue
to the cluster manager. As the result, peaks of the
overloaded resources are flattened and the amount
of local load balancing reduces. The cluster

…

ܶ(ଵܵ)⬚

ܶ(ଶܵ)

ܶ(ܵଷ)

ܶ(ܵ௨)

ܶ(ܵ௨ାଵ)

1 2 3

ܵ௨

 1+ݑ ݑ 4

,ܯ

 ࢞

ܵ௨ାଵ

 International Journal of Computer Trends and Technology (IJCTT) – volume 7 Issue 1–Jan 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 31

manager of cluster ܥ sends the tasks to cluster
manager of cluster ܥ.

When the cluster manager of cluster ܥ
receives the immigrated tasks, it does the reverse
process of the sender cluster manager of ܥ . First,
the manager sorts resources in the ascending order
of load ܶ(ܵ) such that ܶ(ଵܵ) ≤ ܶ(ܵଶ) ≤ ⋯ ≤
ܶ(|ܵ|). Sub sums of under-loads ܤ௨	(2 ≤ ݑ ≤

 :|) are defined as followsܥ|

௨ܤ = (ܶ(ܵ௨)− ܶ(ܵ))
௨ିଵ

ୀଵ

Next, the manager finds index ݑ that satisfies the
following condition:

௨ܤ < ,ܯ ≤ ௨ାଵܤ
where ܶ൫ |ܵ|ାଵ൯ = ∞, as shown in Fig. 3.

Figure 3 measuring the amount for each under-
loaded resource.

The immigration size ܯ, is
,ܯ = ௨ܤ + ݔ ⋅ ,ݑ

which can be rewritten as follows:
ݔ = ெೖ,ିೠ

௨
. (10)

For resource ܵ	(݅ ≤ ,(ݑ
),ܯ ܵ) = ݔ + ܶ(ܵ௨)− ܶ൫ ܵ൯. (11)

From Equation 10 and 11, the immigration size to
resource ܵ is

,൫ܯ ܵ൯ =
.ܯ ௨ܤ−

ݑ + ܶ(௨ܵ)− ܶ(ܵ)

The cluster manager forward ܯ,(ܵ)
amount of tasks to resource ܵ for 1 ≤ ݅ ≤ Each .ݑ
resource attaches the immigrated tasks to the tail of

the queue. A completed task returns to the client
that issues the task.

After ordering to cluster managers for
global load balancing, the grid manager moves to
local load balancing phase. Since overloaded and
under-loaded clusters start local load balancing just
after finishing the global load balancing step, the
grid manager orders normally loaded clusters to
start local load balancing.

A cluster manager of overloaded or under-
loaded cluster adjusts expected completion times of
resources in the cluster because the values are
changed by the global load balancing.

D. Local Load Balancing
The proposed GLLB scheme improves the

load balancing scheme, LGLB scheme proposed by
Qurbonboyevich and Choe [12]. Like the case of
the global load balancing, GLLB scheme considers
the communication overhead when task
immigration is decided. First, the cluster manager
of cluster ܥ computes local communication
overhead ܱ as follows:

ܱ = ߣ + ܲ/ߚ.
Upper threshold ܶܪ(݇) and lower threshold
ܥ (݇) for clusterܪܶ are defined as follows:

(݇)ܪܶ = ܶ + max ቀߪߙ , ாೖାைೖ
ଶ

ቁ		

(݇)ܪܶ = ܶ − max ቀߪߙ , ாೖାைೖ
ଶ

ቁ	 (12)
Using the Equation 12, the cluster manager
classifies a resource ܵ as overloaded if T୩(ܵ) >
(݇)ܪܶ , under-loaded if T୩(ܵ) < (݇)ܪܶ , and
normally loaded otherwise.

Next, the cluster manager sorts all
resources in the descending order of their loads into
a pool of resources. That is, resources are ordered
in the pool as (ܵைభ , ܵைమ , … , ܵைೖ) where T୩൫ܵை൯ ≥

ܶ(ܵைశభ) for 1 ≤ i < |ܥ| . The cluster manager
selects the most overloaded and the most
underloaded cluster, pairs them, extracts them from
the pool, and repeats the pairing until there is no
more overloaded cluster or under-loaded cluster.

For each resources pair (ܵ , ܵ) where ܵ is
an overloaded resource and ܵ is an under-loaded

… ܶ(ଵܵ) ܶ(ܵଶ) ܶ(ܵ௨) ܶ(ܵ௨ାଵ)

 ௨ܤ
 ,ܯ ௨ାଵܤ

 ݔ

 International Journal of Computer Trends and Technology (IJCTT) – volume 7 Issue 1–Jan 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 32

resource in cluster ܥ , the cluster manager
computes the immigration size ܯ, as follows:
,ܯ = min	(ܶ(ܵ)− (݇)ܪܶ,(݇)ܪܶ − ܶ൫ ܵ൯)

The cluster manager sends the immigration size
,ܯ to resource ܵ. After receiving a message that
includes the size ܯ, , the resource ܵ takes out
tasks of amount ܯ , from its queue and sends them
to resource ܵ . Resource ܵ receives the immigrated
tasks into its queue.

V. EXPERIMENTAL RESULTS
The proposed GLLB scheme is

implemented using Java programming language
and simulated on GridSim, a discrete-event based
grid simulation toolkit [11]. In order to measure the
performance of the proposed scheme and to
compare it with other schemes, a grid structure
with resources is modeled as shown in Table 1. PE
(Processing Element) performance distributes in a
range from one hundred to one thousand uniformly.

Table 1 Characteristics of resources in the
simulation (PE: Processing Elements, MI: Million
Instructions)

Machines per resource 1
PEs per machines 1
PE performance 100-1000 MIs

Tasks used in the simulation are

independent each other and their characteristics are
shown in Table 2. The distribution of the file sizes
ranges from 110 to 140 Kbytes and that of output
sizes ranges from 275 to 350 Kbytes uniformly.

Table 2 Characteristics of tasks in the simulation

Task length 100-50,000 MIPS
File size 110-140 KB
Output size 275-350 KB

Characteristics of the simulated grid

system are shown in Table 3. For each experiment,
each client issues the same number of tasks to its
corresponding resource. The number of the issued
tasks increases in order to test capacity of the grid
system. Parameter ߙ is the threshold coefficient to

control the range of normally loaded resources or
clusters. Network delays are assumed to be zero.

Table 3 Characteristics of the simulated grid
system

Clients 16
Resources per cluster 4
Clusters 4
Tasks 800-16,000

Threshold coefficient α 0.5

Arrival rate of tasks 0.25
Local network bandwidth 40,000 bps
Global network bandwidth 10,000 bps

In order to compare performances with

other schemes, we implemented LGLB scheme [12]
and HDLA scheme [5] in GridSim. We will call the
proposed load balancing scheme as GLLB (Global-
first Local-second Load Balancing). Since the
workload for our experiments is generated by
individual users, the performance is concentrated
on minimizing average response time.

Threshold coefficient α is a factor that
decides whether a resource is overloaded, under-
loaded, or normally loaded. Figure 4 shows average
response time of the proposed GLLB scheme by
varying α and the number of tasks. Since value 0.5
of α shows the best performance, the value is used
for the following experiments.

Figure 4 Performance comparison by different
values of threshold coefficient α

0

5000

10000

15000

20000

25000

30000

av
er

ag
e

re
sp

on
se

 ti
m

e (
m

se
c)

the number of tasks

α=0.5
α=0.75
α=0.85

 International Journal of Computer Trends and Technology (IJCTT) – volume 7 Issue 1–Jan 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 33

Figure 5 shows average response times of
three schemes when arrival rates of tasks are all the
same. In the case, operations of GLLB and LGLB
are almost same because most resources and
clusters are normally loaded. Only HDLA shows a
little abnormal activity.

Figure 5 Average response times of three
schemes HDLA, LGLB, and GLLB in the same
arrival rate of tasks

In order to check the performance of
dynamic load balancing, loads should be
unbalanced. Thus, in the next experiment, a
resource ଵܵ in the cluster ܥଵ receives ten times
amount of requests compared with one of the other
resources. Figure 6 shows average response time of
three schemes. Before a cluster manager order to
move overloaded tasks from an overloaded
resource to an under-loaded resource, it checks if
the under-loaded resource has the capability of
immigrating tasks. If the mount of requests to be
immigrated exceeds the capacity of the under-
loaded resource, the load balancing algorithm of
HDLA diagnosis the system is ‘saturated’. In the
situation of resource 1 in the Figure 6, the resource
is diagnosed as saturated and loads are not
distributed.

LGLB scheme processes local load
balancing. Thus a cluster that consists of resources
ଵܵ, ܵଶ, ܵଷ, and ܵସ is balanced. After the balancing,

global balancing is not applied because clusters are

located within the two thresholds. Since GLLB
scheme makes global balancing at the first step,
some loads are distributed globally. Because
remainder loads are distributed in the second step,
the amount of local load immigration is smaller
than that of LGLB scheme.

Figure 6 Average response times in the case of
highly unbalanced workload

Figure 7 shows the performance
comparison of three schemes according to
increasing the number of tasks per resource. The
number of tasks per resource is decided by the
arrival rate of tasks in each resource. The arrival
rate is 0.25 in the case of 100 tasks per resource
and the rate proportionally increases in order to
increase the number of tasks given fixed duration.
In the case of 500 tasks per resource, the average
response time of GLLB is about 77.4%, compared
with that of HDLA.

Figure 8 shows the range of response
times in the big scale system with five clusters and
100 resources with one hot spot. Since GLLB
distributes overloads to other clusters, loads are
more balanced. As the result, GLLB has more
stable response time.

VI. CONCLUSIONS

In this paper, we propose two-level
hierarchical dynamic load balancing scheme GLLB
that balances global loads followed by local load.
Such load balancing order reduces the amount of

0

5000

10000

15000

20000

25000

30000

av
er

ag
e

re
sp

on
se

 t
im

e
(m

se
c)

the number of tasks

GLLB

LGLB

HDLA

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A

ve
ra

ge
 R

es
po

ns
e

tim
e

resource ID

GLLB

LGLB

HDLA

 International Journal of Computer Trends and Technology (IJCTT) – volume 7 Issue 1–Jan 2014

ISSN: 2231-2803 www.internationaljournalssrg.org Page 34

unnecessary task immigration with a support of
careful immigration decision. The immigration
decision is composed of statistics and
communication overheads. Experimental results
show that the average response time of the
proposed GLLB is 99.7% and 95%, compared to
that of LGLB and HDLA, respectively in the case
of the uniformly distributed work-load. In the case
of the one hot spot work-load distribution, the
average response time of the GLLB is 87.2% and
78.2%, compared to that of LGLB and HDLA,
respectively.

Figure 7 Tendency of average response time as
the number of allocated tasks per resource
increases

Figure 8 The range of response times in the big
scale system with a hot spot resource

REFERENCES

[1] Ian Foster, Carl Kesselman, Jeffrey M Nick, and
Steven Tuecke, “Grid services for distributed system
integration”, Computer, 35(6), pp. 37-46, 2002.

[2] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu,
“Cloud computing and grid computing 360-degree compared”,
in Grid Computing Environments Workshop, 2008. GCE'08.
IEEE, 2008, pp. 1-10.

[3] Thomas L. Casavant and Jon G. Kuhl, “A taxonomy
of scheduling in general-purpose distributed computing
systems”, Software Engineering, IEEE Transactions on, 14(2),
pp. 141-154, 1988.

[4] Mohammed Javeed Zaki, Wei Li, and Srinivasan
Parthasarathy, “Customized dynamic load balancing for a
network of workstations”, in High Performance Distributed
Computing, 1996., Proceedings of 5th IEEE International
Symposium on. IEEE, 1996, pp. 282-291.

[5] Belabbas Yagoubi and Yahya Slimani, “Dynamic
load balancing strategy for grid computing”, Transactions on
Engineering, Computing and Technology, 13, pp. 260-265,
2006.

[6] Belabbas Yagoubi and Meriem Meddeber,
“Distributed load balancing model for grid computing”, Revue
ARIMA, 12, pp. 43-60, 2010.

[7] Said Fathy El-Zoghdy, “A load balancing policy for
heterogeneous computational grids”, International Journal of
Advanced computer Science and Applications, 2(5), pp. 93-100,
2011.

[8] Malarvizhi Nandagopal and Rhymend V Uthariaraj,
“Hierarchical status information exchange scheduling and load
balancing for computational grid environments”, IJCSNS
International Journal of Computer Science and Network
Security, 10(2), pp. 177-185, 2010.

[9] Minakshi Tripathy and CR Tripathy, “Dynamic load
balancing with work stealing for distributed shared memory
clusters”, in Industrial Electronics, Control & Robotics (IECR),
2010 International Conference on. IEEE, 2010, pp. 43-47.

[10] Seyed Rasool Moosavi-Nejad, S. S. Mortazavi, and
Bijan Vosoughi Vahdat, “Fuzzy based design and tuning of
distributed systems load balancing controller”, in 5th
Symposium on Advances in Science & Technology (SASTech),
Mashhad, Iran, May 2011.

[11] Rajkumar Buyya and Manzur Murshed, “Gridsim: A
toolkit for the modeling and simulation of distributed resource
management and scheduling for grid computing”, Concurrency
and Computation: Practice and Experience, 14(13-15), pp.
1175-1220, 2002.

[12] Hojiev Sardor Qurbonboyevich and Tae-Young
Choe, “Two-level dynamic load balancing algorithm using load
thresholds and pairwise immigration”, International Journal on
Computer Science and Engineering (IJCSE), 5(4), pp. 211-220,
April 2013.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600

A
ve

ra
ge

 R
es

po
ns

e
tim

e
(s

ec
)

Number of Tasks per Resource

GLLB

LGLB

HDLA

0

20000

40000

60000

80000

100000

120000

GLLB LGLB HDLA

R
es

po
se

 ti
m

e
(m

se
c)

max
min

