
International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 2 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 113

An Analytical Evaluation of Matricizing Least-Square-Errors

Curve Fitting to Support High Performance Computation on

Large Datasets
Poorna Banerjee Dasgupta

M.Tech Computer Science and Engineering, Nirma Institute of Technology

Ahmedabad, Gujarat - India

Abstract — The procedure of Least Square-Errors

curve fitting is extensively used in many computer

applications for fitting a polynomial curve of a given

degree to approximate a set of data. Although

various methodologies exist to carry out curve fitting

on data, most of them have shortcomings with

respect to efficiency especially where huge datasets

are involved. This paper proposes and analyzes a

matricized approach to the Least Square-Errors

curve fitting with the primary objective of

parallelizing the whole algorithm so that high

performance efficiency can be achieved when

algorithmic execution takes place on colossal

datasets.

Keywords — Data Approximation, Least Square-

Errors, Parallel Computing, High Performance

Computing.

I. INTRODUCTION

The technique of Least Square-Errors (LSE) curve

fitting on data is a standard tool in statistical

regression analysis. Figure 1 shows an example of

LSE data-fitting with a quadratic function
[7]

.

Fig. 1. Fitting data points with a quadratic LSE function

LSE curve fitting on data has been largely deployed

in many scientific computer applications – be it

determining Light Transfer Characteristics of an

optical imaging system in a satellite or for Weather

Forecasting. When such applications involve large

datasets, commercially available software algorithms

typically slow down the curve fitting process, mostly

because inherent parallelism in the input datasets is

not fully exploited. This paper suggests and explores

a matricized algorithmic approach for parallelizing

the LSE curve fitting procedure, in order to achieve

high performance efficiency, especially so that the

suggested algorithm can be deployed on many-core

parallel processors like General Purpose Graphic

Processing Units (GPGPUs)
[4]

. The algorithmic

approach described in this paper has been specially

formulated for lower-order polynomial curve fitting.

II. MATRICIZING LEAST SQUARE-ERRORS CURVE

FITTING

In order to parallelize and hence improve efficiency

of the LSE curve fitting, it is customary that the

input data as well as the LSE coefficients be

represented in the form of matrices and vectors. This

is explained further below:

If the input data-set is represented by pairs of the

type (xi , yi) where 1 ≤ i ≤ n, n ≥ 2, and n is the

number of data-points, then the best fitting curve f(x)

has the least square error, i.e
.[1][5]

:

П = ∑[yi-f(xi)]
2
 = minimum, where i = 1 to n

For, example if we want to determine a best-fit, LSE

straight line on the given set of data, then f(x) will be

given by:

f(x) = a + bx, where a and b are coefficients to be

determined.

Similarly, if we want to determine a second degree

best-fit LSE curve, then f(x) will be given by:

f(x) = a + bx + cx
2
, where a, b and c are coefficients

to be determined. Similarly, for a m
th

 degree

polynomial fit:

f(x) = a0 + a1x + a2x
2
 +...+ amx

m
, where a0, a1,

a2,...,am are coefficients to be determined.

To obtain the least square error, the unknown

coefficients must yield zero first derivatives, which

lead to the following equations:
∂П / ∂aj = 2∑ [yi - (a0 + a1xi + a2xi

2
 +...+ amxi

m
)] = 0,

where i = 1 to n, j = 0 to m.

Expanding the above set of equations, we get:

∑ xi
j
yi = a0∑ xi

j
 + a1∑xi

j+1
 +...+ am∑xi

j+m
,

where i = 1 to n, j = 0 to m.

The unknown coefficients a0, a1,...,am can hence be

obtained by solving the above set of linear

equations.
The set of equations described above indicate that in

order to determine the unknown coefficients a0,

a1,...,am, we have to solve a system of linear

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 2 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 114

equations of the form AX = B, where the matrices

A, X and B are given as shown:

Matrix X = [a0 a1 a2 ... am]

Matrix B = [∑ yi ∑ xi

yi ∑ xi

2
yi ... ∑ xi

m
yi]

Matrix A =
1 ∑ xi ∑ xi

2 ... ∑ xi
m

∑ xi ∑ xi
2 ∑ xi

3 ... ∑ xi
m+1

...

∑ xi
m ∑ xi

m+2 ∑ xi
m+3 ... ∑ xi

2m

The matrix X can now be solved by evaluating the

inverse of matrix A, i.e. X =A
-1

B. In this paper’s

algorithmic implementation for testing accuracy of

results, the matrix X has been solved for using the

method of Gaussian Elimination.

III. ACCURACY ANALYSIS OF RESULTS

After the matricization for LSE curve fitting has

been done, its now time to test the accuracy of

results produced by the proposed approach. As a

standard for comparison, MATLAB’s polyfit()

function has been also used on the same input data

for fitting linear, quadratic and cubic curves and the

determined coefficients have then been compared.

MATLAB's polyfit() function uses an indirect

method of determining the least-squares coefficients.

This method is based on constructing the

Vandermonde matrix V and then performing QR

factorisation of V, where Q is an orthogonal matrix

and R is an upper triangular matrix as shown. The

QR factorisation is usually carried out using Holder

Reflections
[2]

. Therefore we have:

V p = Y

If V = QR, where Q is an orthogonal matrix, then:

 Q.Q
T
 = I, where T is transpose operator and I is the

identity matrix. Substituting these values, we have:

(QR) p = Y or (Q Q
T
)R p = Q

T
Y

i.e. p = R
-1

(Q
T
Y) or p = (Q

T
Y) \ R, where \ is the

special matrix division operator used by MATLAB.

Hence, the polyfit() function returns the unknown

coefficients in the array p.
Matrix p = [a0 a1 a2 ... am]

Matrix Y = [y1 y2 y3 ... yn]

For testing purposes, several comparisons were

made for different polynomial orders and the

coefficients were calculated for each order along

with the corresponding least-squares errors for the

fitted data. The calculated coefficients, along with

polyfit()’s coefficients are shown in the following

tables. Table 1 shows a sample dataset, Tables 2, 3

and 4 show the calculated coefficients for this

dataset for polynomial orders 1, 2 and 3 respectively

and Table 5 shows the fitted data with calculated

coefficients and the corresponding least squared

errors.

TABLE I

SAMPLE DATASET

x y

39.206 751.912

29.74 567.121

21.31 403.746

12.087 221.738

1.812 18.8418

0.001 1.88672

TABLE II

ORDER 1 COEFFICIENTS FOR BEST-FIT LSE CURVE

Generated Values polyfit() Values

a0=-8.356 a0=-8.356

a1=19.3496 a1=19.3496

R = 0.9997

TABLE III

ORDER 2 COEFFICIENTS FOR BEST-FIT LSE CURVE

Generated Values polyfit() Values

a0= -6.5106 a0= -6.5109

a1= 18.8735 a1= 18.8735

a2 = 0.0127 a2 = 0.0127

R = 0.9998

TABLE IV

ORDER 3 COEFFICIENTS FOR BEST-FIT LSE CURVE

Generated Values polyfit() Values

a0= -4.7553 a0= -4.7551

a1= 17.5105 a1= 17.5109

a2 = 0.1086 a2 = 0.1086

a3 = -0.0016 a3 = -0.0016

R = 0.9996

TABLE V

FITTED DATA WITH ORDER 3 COEFFICIENTS

y yf =f(x) yp=fp(x) ef=y-yf ep=y-yp

751.912 751.18396 752.285156 0.728027 -0.37317

567.121 569.500305 569.985718 -2.37933 -2.86475

403.746 402.053284 402.235626 1.69272 1.510376

221.738 219.903793 219.939758 1.83421 1.798248

18.8418 27.321678 27.321703 -8.47988 -8.4799

1.88672 -4.736779 -4.737589 6.6235 6.624309

 ∑ ef
2

=

128.1999

∑ ep
2

=

129.6512

R represents the Correlation Coefficient in Tables 2,

3 and 4. In Table 5, the function f(x) represents the

best-fit polynomial with generated coefficients. The

function fp(x) represents the best-fit polynomial with

MATLAB's polyfit() coefficients. From Table 5, the

sum of Least Square errors were calculated, i.e.:

∑ ef
2

 = 128.199937, ∑ ep
2
 = 129.651164.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 30 Number 2 – December 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 115

According to the definition, the best-fit curve is the

one which yields minimum least squared errors. It

can be seen that the generated coefficients yield a

lower least-squares error than the polyfit()

coefficients and hence a best-fit curve is produced as

compared to polyfit(). This procedure was repeated

for several other data-sets, and consistent results

were obtained.

IV. PERFORMANCE SPEED-UP ANALYSIS

As mentioned in the previous sections of this paper,

the primary objective of Matricizing the LSE curve

fitting procedure is to achieve higher efficiency and

speed-up during execution, by exploiting parallelism.

Many-core processors like General Purpose Graphic

Processing Units (GPGPUs) and programming

languages like CUDA are specially designed to

parallely operate on datasets represented in the form

of vectors and matrices
[3][6]

. Datasets involved in

LSE curve fitting are hitherto in the form of vectors

involving two or more variables and after

matricizing the LSE equations, the process of curve

fitting becomes ideal for implementation on parallel

processors. For testing purposes, one such

implementation has been done in the scope of this

paper where the programming language has been

chosen to be CUDA and the parallel platform has

been chosen as NVIDIA Quadro 4000 with compute

capability 2.0 and 256 cores. It has been found that

even with a dataset having thousands of data-points,

speed-ups of the order of ~100 can be achieved

compared to the sequential execution of the same on

any normal multi-core processor.

V. CONCLUSIONS & FUTURE SCOPE OF WORK

The procedure of curve fitting based on Least Square

Errors has many scientific computer applications and

involves fitting a polynomial function that best

approximates a given set of data-points. Such a best-

fit polynomial is then described in terms of

polynomial coefficients. This paper proposes and

elucidates how to matricize the entire procedure to

exploit parallelism and obtain higher execution

speed, especially where colossal datasets are

involved. In order to qualitatively assess the

precision of the results obtained, a comparative

analysis with MATLAB's polyfit() function has been

done, and minimum least square errors and hence a

best-fit curve has been obtained.

As further extension to the research work carried out

in this paper, methods other than Gaussian

elimination can be carried out for calculating the

inverse matrices and determinants. Also the analysis

can be further extended for higher order polynomials

as well.

REFERENCES

[1] S. S Sastry. "Introductory Methods of Numerical analysis".

PHI Publications, 2007.

[2] Giorgia Zucchelli , Marieke van Gere. "Speed up numerical

analysis with MATLAB". 2011 Technology Trend Seminar,
MathWorks Inc.

[3] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi,

Sam S. Stone. "Optimization Principles and Application
Performance Evaluation of a Multithreaded GPU Using

CUDA". Proceedings of 13th ACM SIGPLAN Symposium

on Principles and Practices of Parallel Programming, Pages
73-82, 2008.

[4] Zhe Fan, Feng Qiu, Arie Kaufman, Suzanne Yoakum-

Stover. "GPU Cluster for High Performance Computing".
ACM / IEEE Supercomputing Conference 2004,

November 06-12, Pittsburgh, PA.

[5] Poorna Banerjee, Amit Dave. “GPGPU Based Parallelized
Client-Server Framework For Providing High

Performance Computation Support”. International Journal

of Computer Science & Telecommunications, Vol-4, Issue-
1, 2013.

[6] David B. Kirk, Wen-mei W. Hwu. "Programming

Massively Parallel Processors - A Hands-on Approach".
Morgan Kaufman Publishers, 2010.

[7] (2002) Least Squares - Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Least_squares.

AUTHOR’S PROFILE

Poorna Banerjee

Dasgupta has received her

B.Tech & M.Tech Degrees

in Computer Science and

Engineering from Nirma

Institute of Technology,

Ahmedabad, India. She

did her M.Tech

dissertation at Space

Applications Center, ISRO,

Ahmedabad, India and has

also worked as Assistant

Professor in Computer Engineering dept. at

Gandhinagar Institute of Technology, Gandhinagar,

India from 2013-2014 and has published research

papers in reputed international journals. Her research

interests include image processing, high

performance computing, parallel processing and

wireless sensor networks

http://www.ijcttjournal.org/

