
International Journal of Computer Trends and Technology- volume3Issue6- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 774

A Framework for the Engineering of Reliable Distributed

Systems
(1) ChandraBose A

Research Scholar,

Madurai Kamaraj University,Madurai.

(2) Dr.K.Alagarsamy,

 Associate Professor

Madurai Kamaraj University,Madurai.

Abstract

 Engineering distributed systems is a challenging activity. This is partly due to their
intrinsic complexity, and partly due to the practical obstacles that developers face when
evaluating and adjusting their design and implementation decisions. This paper aims to design
framework to automate experiments. Keeping all facts, experiment automation framework is
designed in a generic and programmable way to be used with different types of distributed
systems for wide-ranging experimental goals. The models are used by generative techniques to
automate construction of a control system for deploying, executing, and post-processing the
specific experiment. We have validated our approaches by performing experiments with a
variety of distributed systems on different test beds to achieve wide-ranging experimental goals.

Keywords: Generative Programming, Simulation, Distributed systems, Framework

1. Introduction

 The vision of this paper is to support
systematic, repeated experimentation with
distributed systems, especially highly
distributed systems, in realistic network
environments by creating a consistent,
unified, reliable experimentation framework.
For any experiment with a distributed
system, this framework helps software
engineers quickly setup each trial control
system that is customized to the specific

trial, and easily manage the execution and
analysis of the trial. Through it, software
engineers can achieve efficient cost savings
in conducting experiments by automating
their experiment trials. The workloads for
different experiment trials are to be
produced by different numbers of user actors
using the same behavior model just
described. We first programmed the actor
behavior model. Then for each different
trial, we simply adjusted the number of user
actor declarations in the actor configuration.

International Journal of Computer Trends and Technology- volume3Issue6- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 775

Fig.1.1 Showing the process of automated framework

In the fig. 1.1, As a result, the clients
of a distributed system are also highly
distributed geographically. It is a big
challenge to coordinate execution and
communication of these remote resources in
the experiments. The distributed property of
a distributed system also poses a big
challenge in handling distributed
components’ execution status and
experiment results, which are recorded
during experiments.

2. Related Work

 For the challenges early on in the
development process, formal methods and
simulations can offer valuable guidance to
the engineers. The formal method verifies
distributed designs using arguments based

on mathematical models. Example
technologies of the formal method are
formal specification, model checking, and
performance modeling. Another more
flexible and thus more popular method,
simulation, is based on operational models
of a distributed system design, the system’s
clients, and operating environments.
Although both formal methods and
simulations can provide valuable
information about high-level design
alternatives, the abstract models that they
are based on often fail to capture important
details of actual system behavior. Thus, they
are not the proper solutions to the
difficulties typical of the later development
stages, in which details and accuracy
become essential. Instead, software
engineers must conduct systematic, repeated
experimentation with executable prototypes

International Journal of Computer Trends and Technology- volume3Issue6- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 776

of a distributed system in realistic execution
environments to yield more accurate results.
An experiment in this context is “a rigorous,
controlled investigation of an activity, where
key factors are identified and manipulated to
document their effects on the outcome.
Specifically, each experiment consists of a
number of closely related trials of a
particular distributed system with different
values for the key factors. For instance, an
experiment aimed at evaluating the
performance of a web proxy might consist
of a number of trials whose key factors are
the parameters controlling its caching
policy. Hence of we have gone for the
associated with separation of concerns is the
concept of abstraction. To abstract means to
execution phase can be reflected in the
experiment results. Since the execution of a
distributed system is a non-linear process,
even if a failed operation is re-conducted
successfully, the system state modification
caused by the previous failed operation may
still exist. Designers should concentrate on
the elaboration of designs, using the
specification language merely as a vehicle
for the representation of design
characteristics ignore characteristics of an
object which are not relevant from some
point of view? Different hierarchically
related points of view determine different

abstraction levels. In design methodologies,
the object we consider is the system to be
designed. At the beginning of the design
trajectory we abstract from design concerns
that determine the irrelevant details of the
construction of the system. These design
concerns become relevant throughout the
design trajectory. This allows one to
structure the design trajectory according to
well-defined goals and activities, i.e.
providing these construction details step-by-
step, until the realization of the system are
obtained. Errors can arise any time in a trial,
and their effects on the experiment results
are different. The trial execution phase is
meant to study the performance of the
operation. The system states along the whole
A specification language can only be a
useful general purpose language if its
language elements, syntax and semantics,
are defined based on the needs of those who
are supposed to use this specification
language in the elaboration of designs. The
formal semantics of a specification language
has the primary goal of allowing one to
compare specifications, such that these
specifications can be distinguished or
considered identical.

International Journal of Computer Trends and Technology- volume3Issue6- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 777

Fig. 2.1 Process of relation between Design and Specification.

 In the fig.2.1, it depicts the
distinction between a design and its
specification, and their relationship with
design concepts and specification language.
The increasing number of abstraction levels
in the representation of designs can be
compared with the introduction of
programming languages and compilers to
replace hand coding in machine code in the
early years of computer science. In both
cases the objective has been to define
concepts which are closer to the intellectual
capabilities of human beings than their
implementation forms. Once these concepts
are introduced, they can be used as building
blocks for the definition of more complex
concepts. This can be vital for a company
since it may cause the loss of competition

with respect to other companies that may not
structure the design process so well, but are
able to reach the concrete products in a
shorter time scale. Defining too few design
steps may make these steps too complex and
are therefore bound to contain errors.

3. Methods

 In the environment of industrial
competition, the introduction of high level
design concepts is often considered
ineffective. Normally only the burden of the
many design concerns and many alternative
orders in which these can be handled is felt,
while the benefits brought on by a
systematic approach and the potential

International Journal of Computer Trends and Technology- volume3Issue6- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 778

improvement on the quality of the final
product are not recognized. Very often these
benefits are not exploited due to lack of
insight. Many real issues require the ability
to conduct this experimentation process for
distributed systems as quickly as possible.
The growth of software development tools
has helped software engineers dramatically
improve their productivity in software
development. They can now deliver
software faster. But this also increases the

pressure on the software evaluation activity.
They need to dramatically improve their
efficiency in conducting experiments.
Furthermore, rapid and unpredictable
change of network status will threaten to
make the experimentation results obsolete
before the experiment is conducted. For
example, some assumptions about traffic
mix, topology or protocols of the network
might only be valid for less than a few
months.

Fig.3.1 Architecture step wise process to experiment the software process of the framework

International Journal of Computer Trends and Technology- volume3Issue6- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 779

In the fig.3.1, describes the process
of preparation, analysis, execution etc.In this
paper, we learn from the related work and
create a consistent, unified framework to
automate the experimentation activity in
engineering distributed systems. We have
two hypotheses in building up this
framework. First, we proposed a simulation-
based workload generation approach to
model workload scenarios using discrete-
event simulation. The workload can then be
generated by running the simulation
program, with the execution trace serving as
the synthetic workload. Second, we
predicted that any experiments with
distributed systems can be abstracted in a
suite of models. By configuring these
higher-level models, an experiment trial can
be specified. The low-level, customized trial
scripts automating the whole trial process
can be automatically generated using
generative techniques. We call this approach
model based generative approach. Based on
these two hypotheses, our experimentation
framework can facilitate experimentation
activity for distributed systems by providing
engineers with a flexible, configurable, and
automated, thus, repeatable process for
evaluating their distributed systems on
distributed test beds.

Generative Programming is “a software
engineering paradigm based on modeling
software system families such that, given a
particular requirement specification, a
highly customized and optimized
intermediate or end-product can be
automatically manufactured on demand
from elementary, reusable implementation
components by means of configuration

knowledge. Instead of building from scratch,
it generates specific software systems based
on a common generative domain model for
the family of these systems. The generative
programming paradigm provides us a new
way of thinking. There exists a great amount
of repetition in experiment script
programming for different distributed
system experiments. These scripts operate as
members of a family sharing the common
generative domain model for distributed
system experiments. If we have the
generative domain model available, the
process to produce concrete scripts for a
specific experiment is automated and
straightforward through a generator.

Evaluation

 In this paper, we have thoroughly
evaluated our implemented prototype, using
case studies and meaningful experiments.
Specifically, our evaluation is divided into
the following parts.
 Fidelity of the workload models:
Simulation based workload generation
approach can really support software
engineers in modeling different distributed
system experimental scenarios.

 Versatility of the trial
configuration models: In this, a suite of
trial configuration models is able to define
and fully describe an experiment trial with a
distributed system.

 Scalability of the deployment and
execution mechanisms: The realistic
experimental analysis of scalability in Chord
than that of a published study by performing
an experiment that used a similar number of
distributed components deployed over an
order of magnitude more machines.

International Journal of Computer Trends and Technology- volume3Issue6- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 780

Fig. 3.2 Median factor as function of rate at which nodes are joining at the routing point.

In the fig 3.2, it has been observed higher
retrieve failure rates in this experiment than
the corresponding results from the last
experiment, in which we randomly chose
nodes to fail and join. It validates our
prediction that the failure of heavier loaded
nodes has more effect on the performance of
the network.

4. Conclusion

 In this paper, we have presented a
framework for automating experimentation
with distributed systems on distributed test
beds. It is targeted at different types of
highly distributed systems, removing many
practical obstacles, such as scale and
heterogeneity that hinder their
experimentation in real environments. We

consider an experiment made up of a set of
closely related trials. The automation
framework works at the trial level. It
automates the three key steps of each
experiment trial: workload generation, trial
deployment and execution, and trial post-
processing. We designed our approaches for
the first two steps, namely the simulation-
based workload generation approach and the
model-based generative approach. The
simulation based approach offers a flexible,
complementary workload generation means
to the widely used analytical approaches.
The model-based generative approach
provides a higher-level automation service
than other available experimental tools by
automating the trial control system
construction based on the configuration

International Journal of Computer Trends and Technology- volume3Issue6- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 781

modeling of each experiment trial. In
summary, through this paper work, we made
the following contributions to the research in
promoting the experimentation activity of
distributed systems: We proposed an
approach to categorize distributed actor
behaviors based on their dependency on
other actor behaviors or on the real system
execution.

5. Reference

[1] R. M. Smith and K. S. Trivedi. The analysis of
computer systems using markov reward processes.
Stochastic Analysis of Computer and Communication
Systems, H. Takagi (ed.), pages 589–629, 1990. Elsevier
Science Publishers B.V. (North-Holland).

[2] K. S. Trivedi. Probability & Statistics with Reliability,
Queuing and Computer Science Applications. John Wiley
& Sons, New York, second edition, 2001.

[3] O. C. Ibe, H. C. Choi, and K. S. Trivedi. Performance
evaluation of client-server systems. IEEE Transactions on
Parallel and Distributed Systems, 4(11):1217–1229,
November 1993.

[4] J. F. Meyer. On evaluating the performability of
degradable computer systems. IEEE Transactions on
Computers, 29(8):720–731, 1980.

[5] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan.
A fault tolerance framework for CORBA. In Proc. of
International Symposium on Fault-Tolerant Computing
(FTCS-29), pages 150–157, Madison, Wisconsin, June 15-
18 1999.

[6] A. Puliafito, S. Riccobene, and M. Scarpa. Modelling of
client-server systems. In Proc. of the Third International
Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS
’95), pages 340–344, Durham, NC, USA, January 18-20
1995.

[7] S. Ramani, B. Dasarathy, and K. S. Trivedi. Reliable
messaging using the CORBA Notification service. In Proc.
of 3rd International Symposium on Distributed Objects and
Applications (DOA ’01), pages 229–238, Rome, Italy,
September 18-20 2001.

[8] S. Ramani, K. S. Trivedi, and B. Dasarathy.
Performance analysis of the CORBA Notification service.
In Proc. of 20thIEEE Symposium on Reliable Distributed
Systems (SRDS ’01), pages 227–236, New Orleans, USA,
October 28-31 2001.

