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Abstract-  The main ability of neural network 
is to learn from its environment and to improve 
its performance through learning. For this 
purpose there are two types of learning 
supervised or  active learning – learning with 
an external ‘teacher’ or a supervisor who present 
a training set to the network. But another type of 
learning also exists : unsupervised learning[1] . 
Unsupervised learning is self organized 
learning doesn’t require an external teacher. 
During training session neural network receives 
a number of input patterns , discovers significant 
features in these patterns and learns how to 
classify input data into appropriate categories. It 
follows the neuro - biological organization of the 
brain. These algorithms aim to learn rapidly so 
learn much faster than back-propagation 
networks and thus can be used in real time. 
Unsupervised NN are effective in dealing with 
unexpected and changing conditions[3]. 
 
There are basically two major self – organising 
networks based learning : Hebbian and 
competitive  learning. We will use Hebbian 
learning in this paper to visualize that how it can 
help in feature extraction from any data. We will 
use input vector weight matrix examples and 
denote presence of a feature by 1 and absence of 
a feature by 0. In this method we will see that 
how features are identified and we can discover 
patterns in given data. We can use this method 
for classification and clustering purpose also. 
Then we will apply this learning rule on web 
data or content  for discovers pattern & 
extraction of features. Weight increases when 
same pattern repeats and decrease when it 
doesn’t  repeat. The network associates some 
input xi with some outputs yi and yj because 
input xi and xj coupled during training. But it 
cannot associate some input x with some output 
y because that input didn’t appear during training 
and our network has lost the ability to recognize 
it.  Thus, a neural network really can learn to 
associate stimuli commonly presented together 
and most important, the network can learn 

without a teacher. After that we will study 
applications and limitation of this method. 
Although it has some limitations but still it is a 
very useful and fast method that can be used in 
real time systems where accuracy is bit low but 
speed in finding association between data is very 
high  for discover patterns and classification of 
data according to these features[4].     

1.ARTIFICIAL NEURAL NETWORKS 
One type of network sees the nodes as ‘artificial 
neurons’. These are called artificial neural 
networks (ANNs). An artificial neuron is a 
computational model inspired in the natural 
neurons. Natural neurons receive signals through 
synapses located on the dendrites or membrane 
of the neuron. When the signals received are 
strong enough (surpass a certain threshold), the 
neuron is activated and emits a signal though the 
axon. This signal might be sent to another 
synapse, and might activate other neurons 

 
          Fig.1 Natural neurons 

The complexity of real neurons is highly 
abstracted when modelling artificial neurons. 
These basically consist of inputs (like synapses), 
which are multiplied by weights (strength of the 
respective signals), and then computed by a 
mathematical function which determines the 
activation of the neuron. Another function 
(which may be the identity) computes the  output 
of the artificial neuron (sometimes in 
dependance of a certain threshold). ANNs 
combine artificial neurons in order to process 
information[6]. 
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 Fig.2 An artificial neuron 

The higher a weight of an artificial neuron is, the 
stronger the input which is multiplied  by it will 
be. Weights can also be negative, so we can say 
that the signal is inhibited by the negative 
weight. Depending on the weights, the 
computation of the neuron will be different. By 
adjusting the weights of an artificial neuron we 
can obtain the output we want for specific inputs. 
But when we have an ANN of hundreds or 
thousands of neurons, it would be quite 
complicated to find by hand all the necessary 
weights. But we can find algorithms which can 
adjust the weights of the ANN in order to obtain 
the desired output from the network. This 
process of adjusting the weights is called 
learning or training. 

                      

 
                        Fig.3 functioning of ANN 

The number of types of ANNs and their uses is 
very high. Since  the  first neural model by 
McCulloch and Pitts (1943) there have been 
developed hundreds of different models 
considered as ANNs[11].  

 
       Fig.4 ANN model 

The differences in them might be the functions, 
the accepted values, the topology, the learning 
algorithms, etc. Also there are many hybrid 

models where each neuron has more properties 
than the ones we are reviewing here. Because of 
matters of space, we will present only an ANN 
which learns using the backpropagation 
algorithm (Rumelhart and McClelland, 1986) for 
learning the appropriate weights, since it is one 
of the most common models used in ANNs, and 
many others are based on it. Since the function 
of ANNs is to process information, they are used 
mainly in fields related with it. There are a wide 
variety of ANNs that are used to model real 
neural networks, and study behaviour and 
control in animals and machines, but also there 
are ANNs which are used for engineering 
purposes, such as pattern recognition, 
forecasting, and data compression. 

 

             Fig.5 A computational neuron 

 
  2. SUPERVISED LEARNING 
The Backpropagation Algorithm 
It is a supervised learning method, and is a 
generalization of the delta rule. It requires a 
dataset of the desired output for many inputs, 
making up the training set. It is most useful for 
feed-forward networks (networks that have no 
feedback, or simply, that have no connections 
that loop). The term is an abbreviation for 
"backward propagation of errors". 
Backpropagation requires that theactivation 
function used by the artificial neurons (or 
"nodes") be differentiable. 
 
For better understanding, the backpropagation 
learning algorithm can be divided into two 
phases: propagation and weight update. 
 
Phase 1: Propagation 
Each propagation involves the following steps: 
Forward propagation of a training pattern's input 
through the neural network in order to generate 
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the propagation's output activations.Backward 
propagation of the propagation's output 
activations through the neural network using the 
training pattern's target in order to generate the 
deltas of all output and hidden neurons. 
Phase 2: Weight update 
For each weight-synapse follow the following 
steps: 
Multiply its output delta and input activation to 
get the gradient of the weight.Bring the weight in 
the opposite direction of the gradient by 
subtracting a ratio of it from the weight.This 
ratio influences the speed and quality of learning; 
it is called the learning rate. The sign of the 
gradient of a weight indicates where the error is 
increasing, this is why the weight must be 
updated in the opposite direction.Repeat phase 1 
and 2 until the performance of the network is 
satisfactory. 
 
Modes of learning 
There are two modes of learning to choose from: 
One is on-line(incremental) learning and the 
other is batch learning. In on-line(incremental) 
learning, each propagation is followed 
immediately by a weight update. In batch 
learning, many propagations occur before weight 
updating occurs. Batch learning requires more 
memory capacity, but on-line learning requires 
more updates. 
 
Algorithm 
Actual algorithm for a 3-layer network (only one 
hidden layer): 
Initialize the weights in the network (often 
randomly) 
 
Do 
For each example e in the training set 
O = neural-net-output(network, e) ; forward pass 
T = teacher output for e 
Calculate error (T - O) at the output units 
Compute delta_wh for all weights from hidden 
layer to output layer ; backward pass 
Compute delta_wi for all weights from input 
layer to hidden layer ; backward pass continued 
Update the weights in the network 
Until all examples classified correctly or 
stopping criterion satisfied 
Return the network 
 
As the algorithm's name implies, the errors 
propagate backwards from the output nodes to 
the inner nodes. Technically speaking, 
backpropagation calculates the gradient of the 
error of the network regarding the network's 

modifiable weights.[6] This gradient is almost 
always used in a simple stochastic gradient 
descent algorithm to find weights that minimize 
the error. Often the term "backpropagation" is 
used in a more general sense, to refer to the 
entire procedure encompassing both the 
calculation of the gradient and its use in 
stochastic gradient descent. Backpropagation 
usually allows quick convergence on 
satisfactory local minima for error in the kind of 
networks to which it is suited. 
Backpropagation networks are 
necessarily multilayer perceptrons (usually with 
one input, one hidden, and one output layer). In 
order for the hidden layer to serve any useful 
function, multilayer networks must have non-
linear activation functions for the multiple 
layers: a multilayer network using only linear 
activation functions is equivalent to some single 
layer, linear network. Non-linear activation 
functions that are commonly used include 
the logistic function, the softmax function, and 
the gaussian function. 
The backpropagation algorithm for calculating a 
gradient has been rediscovered a number of 
times, and is a special case of a more general 
technique called automatic differentiation in the 
reverse accumulation mode. 
It is also closely related to the Gauss–Newton 
algorithm, and is also part of continuing research 
in neural backpropagation. 
 
Multithreaded backpropagation 
Backpropagation is an iterative process that can 
often take a great deal of time to complete. 
When multicore  computers are 
used multithreaded techniques can greatly 
decrease the amount of time that 
backpropagation takes to converge. If batching is 
being used, it is relatively simple to adapt the 
backpropagation algorithm to operate in a 
multithreaded manner. 
The training data is broken up into equally large 
batches for each of the threads. Each thread 
executes the forward and backward 
propagations. The weight and threshold deltas 
are summed for each of the threads. At the end of 
each iteration all threads must pause briefly for 
the weight and threshold deltas to be summed 
and applied to the neural network. This process 
continues for each iteration. This multithreaded 
approach to backpropagation is used by 
the Encog Neural Network Framework.  
 
Limitations 
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The convergence obtained from backpropagation 
learning is very slow.The convergence in 
backpropagation learning is not guaranteed.The 
result may generally converge to any local 
minimum on the error surface, since stochastic 
gradient descent exists on a surface which is not 
flat.Backpropagation learning requires input 
scaling or normalization.for supervised learning 
process a teacher is required. 
 
•To train neural network: adjust weights of each 
unit such that the error between the desired 
output and the actual output is reduced 

•Process requires that the neural network 
compute the error derivative of the weights (EW) 

•it must calculate how the error changes as each 
weight is increased or decreased slightly[12]. 

 

3 .UNSUPERVISED LEARNING 
HEBBIAN’S   LEARNING FOR FEATURE 
DETECTION IN GIVEN DATA  

We will follow self organising neural networks 
or unsupervised learning & use Hebbian learning 
for this purpose. According to Hebb’s law if 
neuron i is near enough to excite neuron j and 
repeatedly participates in its activation the 
synaptic connection between these two neurons 
is strengthened and neuron j becomes more 
sensitive to stimuli from neuron i. We can 
represent Hebb’s law in the form of two rules as 
follows :- 

i.)If two neurons on either side of connection are 
activated synchronously then the weight of that 
connection is increased. 

ii.)If two nerons on either side of connection are 
activated asynchronously, then the weight of that 
connection is decreased. 

 
                                       Fig 6 

We can express the adjustment applied to the 
weight wij at iteration p  in the following form :  

)](),([)( ppFp xyw ijij
   

yj(p) output from layer j in iteration p 

xi(p) input to layer i in iteration p 

where F[yj(p),xi(p)] is a function of both 
postsynaptic and presynaptic activities. As a 
special case we can represent Hebb’s law as 
follows(Haykin 1999) : 

)()()( ppp xyw ijij
   

Where α is learning rate parameter. 

This equation is called activity product rule. It 
shows how a change in the in the weight of the  
connection between a pair of neurons is related 
to a product of incoming and outgoing 
signals[4]. 

Hebbian learning implies that weight can only 
increase. In other words Hebb’s law allows the 
strength of connection to increase, but it doesn’t 
provide a mean to decrease the strength. Thus 
repeated application of the input signal may 
drive the weight wij into saturation. To resolve 
this problem , we might impose a limit on the 
growth of weights. It can be done by introducing 
a non-linear forgetting factor into Hebb’s law as 
follows : 

)()()( ppp xyw ijij
  -  

� y j
(p) )( pwij

 

Where �  is forgetting factor 

Forgetting factor � specifies the weight decay in 
a single learning cycle. It usually falls in the 
interval between 0 & 1. If the forgetting factor is 
0, the neural network is capable only of 
strengthening its weights, and as a result these 
weights grow towards infinity. On the other 
hand, if the forgetting factor is close to 1, the 
network remembers very little of what it learns. 
Therefore, a rather small forgetting factor should 
be chosen, typically between 0.01 and 0.1, to 
allow only a little forgetting while limiting the 
weight growth[1]. 

So the former equation may also be written in 
the form reffered to as a generalized activity 
product rule : 

 )()[()( ppp xyw ijij
 )( pwij

] 
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  Where  = α / � 

This rule implies that if the input(log) of 
neuron(machine)  i  at iteration p, xi(p)  is less 
than wij(p) / λ , then the modified weight at 
iteration (p+1) , wij(p+1), will decrease by an 
amount proportional to the output of neuron j at 
iteration p, yj(p). On the other hand , if  xi(p)  is 
greater than wij(p) / λ, then the modified weight 
at iteration (p+1), wij(p+1), will increase also in 
proportion to the output of neuron j, yj(p) in 
other words, we can determine the activity 
balance point for modifying the weights as a 
variable equal to wij(p) / λ. This approach solves 
the problem of an infinite increase of the 
weights. So the generalized Hebbian learning 
algo. Is[8] : 

Step 1 : Initialisation 

Set initial weights & threshold to small random 
values, say in an interval [0,1]. Also assign small 
positive values to the learning rate parameter  ₤ 
& forgetting factor  Ø. 

Step 2 : Activation 

Compute the neuron output at iteration p 

 jij

n

i
ij

ppp wxy 


)()()(
1

 

where n is the no. of neurons inputs and θj is the 
threshold value of neuron j.  

Step 3 : Learning 

Update the weights in network : 

)()()1( ppp www ijijij
  

where ∆ wij(p) is the weight correction in 
iteration p. Weight correction is : 

 )()[()( ppp xyw ijij
 )( pwij

] 

Step 4 : Iteration 

Increase iteration p by 1, go back to step 2 and 
continue until the weights reach their  steady 
state value. 

Hebbian learning example  

To illustrate Hebbian learning, consider a fully 
connected feedforward network with a single 
layer of five computation neurons. Each neuron 
is represented by a McCulloch and Pitts model 
with the sign activation function. The network is 
trained on the following set of input vectors:  
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     A test input vector, or probe, is defined as  

 

 

 

 

When this probe is presented to the 
network, we obtain:  
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Learning is often made possible through 
some notion of which features in the 
input set are important. But often we 
don’t know in advance which features 
are important and asking a learning 
system to deal with raw input data can 
be computationally expensive. 
Unsupervised learning can be used as 
“feature discovery” module that preceds 
supervised learning. 

Consider the above example. The group 
of ten animals each described by its 
own set of features, breaks down 
naturally into three groups : mammals, 
reptiles and birds. We would like to 
buid the network that can learn which 
group a particular animal belongs to, 
and to generalize so that it can identify 
animals it has not yet seen.  

In this example fig 8 , in  input vector 
X2 and X6  input values x8,x9 and x10 
always come together. In input vector 
X3,X4 and X6 input values x5,x6 and 
x7 always come together so.they can 
make an association and can be 
classified into two different groups. 
According to features of concerned 
group they can be classified into reptiles 
and birds & the rest one is mammals. So 
according to types and  their contents or 
class and their features network can 
make an auto association and hence 
when  a new input vector applied to this 
network, it tries to find association of 
this data into network and by Hebb’s 
law it extract features from this given 
data and discover pattern in this data. 
When some association is found it 
classify data[13]. 

 

 
 Fig 8 

An associative memory is a brain-like 
distributed memory that learns 
associations. Association is a known 
and prominent feature of human 
memory. 

Association takes two forms: 

Auto-association: Here the task of a 
network is to store a set of patterns 
(vectors) by repeatedly presenting them 
to the network. The network 
subsequently is presented with a partial 
description or distorted (noisy) version 
of the original pattern stored in it, and 
the task is to retrieve (recall) that 
particular pattern. 

Hetero-association: In this task we 
want to pair an arbitrary set of input 
patterns to an arbitrary set of output 
patterns. Auto-association involves the 
use of unsupervised learning (Hebbian, 
Hopfield) while hetero-association 
involves the use of unsupervised 
(Hebbian) or supervised learning (e.g. 
MLP/BP) approaches. 

Let xk denote a key pattern applied to an 
associative memory and yk denote a 
memorised pattern. The pattern 
association performed by the network is 
described by: 

xk  yk ,   k=1,2,…,q 
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Where q is the number of patterns 
stored in the network. The key pattern 
xk acts as a stimulus that not only 
determines the storage location of 
memorised pattern yk but also holds the 
key for its retrieval.  In an auto-
associative memory, yk = xk , so the 
input and output spaces have the same 
dimensionality. In a hetero-associative 
memory, yk  xk , hence in this case the 
dimensionality of the output space may 
or may not equal the dimensionality of 
the input space. 

There are two phases involved in the 
operation of the associative memory: 

Storage phase: which refers to the 
training               of the network in 
accordance with a suitable rule; 

Recall phase: which involves the 
retrieval of a memorised pattern in 
response to the presentation of a noisy 
version of a key pattern to the network. 
Let the stimulus x (input) represent a 
noisy version of a key pattern xj. This 
stimulus produces a response y (output). 
For perfect recall, we should find that 
y= yj where yj is the memorised pattern 
associated with the key pattern xj. When 
y  yj for x = xj , the associative 
memory is said to have made an error 
in recall. 

The number q of patterns stored in an 
associative memory provides a direct 
measure of the storage capacity of the 
network. In designing an associative 
memory, we want to make the storage 
capacity q (expressed as a percentage of the 
total number N of neurons) as large as 
possible and yet insist that a large fraction of 
the patterns is recalled correctly.  
The net input that arrives to every unit is 
calculated as: 

Where i is an output neuron and j an index 
of an input neuron. The dimensionality of 
the input space is N and of the output space 
is M. wij is the weight from neuron j to 
neuron i. aj is the activation of a neuron j.  

The activation of each neuron is produced 
by using a suitable threshold function and a 
threshold. For example we can assume that 
the activations are binary (i.e. either 0 or 1) 

and to achieve this we use the step 
function[8]. 

The training of the network takes place by 
using for example the Hebbian form. Thus 
what we have is a matrix of weights, with all 
of them zero initially, assuming an input 
pattern of (101010) and an output pattern 
(1100):  

 
If we assume a learning rate =1 and 
after a single learning step we get: 

 
To recall from the matrix we simply 
apply the input pattern and we perform 
matrix multiplication of the weight 
matrix with the input vector. We get in 
our example:  

 
If we assume a threshold of 2 we can 
get the correct answer (1100) using a 
step function as activation function. 

We can learn multiple associations 
using the same weight matrix. For 
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example assume that a new input vector 
(110001) is given with corresponding 
output vector as (0101). In this case 
after a single presentation (with =1) 
we will get an updated weight matrix: 

 
Again we can get the correct output 
vectors when we introduce the 
corresponding input vector: 

 
 

 
 

Again by using the threshold of 2 and a step 
function we can get the correct answers of 
(1100) and (0101). 

However, keep in mind that there is only a 
limited number of patterns which can be stored 
before perfect recall fails. Typical capacity of an 
associator network is 20% of the total number of 
neurons. 

Recall accuracy reflects the similarity of a key 
pattern with the stored patterns. The network can 
generalise in the sense when an input pattern is 
not exactly the same with any of the stored 

patterns, then it returns the (stored) patterns 
which more closely resembles the input[5]. 

 
In above data table there are different kind 
of websites having different type of features 
and contents. So according to features 
provided by them  they can be divided into 
various groups. When an input pattern is 
presented to the network and suppose our 
network is trined on above data. Now 
according to positions of input values and 
their corresponding vector feature and type 
we can map and associate new input pattern 
according to its class and identify features 
hidden in given input. In above example 
googlenews and msnindia can make a class 
of news because their last two input values 
are same so weight between these two 
increases. Again if an input who has 1 at last 
or second last position, we can associate 
with that to News group. Since during 
training last two inputs of both were 
coupled. In input vector X1 & X3, input 
values x1 and x2 comes together so same 
input repeated at same positions so weight 
will increase thus new input associate at 
those positions with highest probability with 
mail group[7]. 

Now we will compare artificial neural 
network with conventional network sysrem.  
Conventional system is  consists of   web 
clients , proxy servers and web servers while 
ANN consists of input layer, hidden layers 
and output layer corresponding to client, 
proxy and server respectively. So we can 
receive input at web clients corresponding to 
input layer, then we can do computation at 
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proxy servers corresponding to hidden layer 
and collect output at web servers 
corresponding to output layer. At web 
clients we can receive different input 
patterns and according to the features that 
we want to map, presence of a feature and 
absence of a feature can be taken 1 & 0 as 
input values corresponding to input vectors. 
Then we assign some weights randomly in 
the range of 0 to 1 to each input value. This 
calculation is performed between input and 
hidden layer corresponding to web client 
and proxy servers. Then we apply hebbian’s 
learning for weight training purpose & use 
generalized activity product rule between 
hidden layer and output layer corresponding 
to proxy and web server. The output we get  
by this process is different from input in 
aspects of their pattern and features. So this 
is a very useful process for pattern 
discovery, recognition and feature extraction 
to make association[11].   

A neuro-fuzzy system is based on a fuzzy 
system which is trained by a learning 
algorithm derived from neural network 
theory. The (heuristical) learning procedure 
operates on local information, and causes 
only local modifications in the underlying 
fuzzy system. A neuro-fuzzy system can be 
viewed as a 3-layer feedforward neural 
network. The first layer represents input 
variables, the middle (hidden) layer 
represents fuzzy rules and the third layer 
represents output variables. Fuzzy sets are 
encoded as (fuzzy) connection weights. It is 
not necessary to represent a fuzzy system 
like this to apply a learning algorithm to it. 
However, it can be convenient, because it 
represents the data flow of input processing 
and learning within the model.A neuro-
fuzzy system can be always (i.e.\ before, 
during and after learning) interpreted as a 
system of fuzzy rules. It is also possible to 
create the system out of training data from 
scratch, as it is possible to initialize it by 
prior knowledge in form of fuzzy rules. The 
learning procedure of a neuro-fuzzy system 
takes the semantical properties of the 
underlying fuzzy system into account. This 
results in constraints on the possible 
modifications applicable to the system 
parameters. A neuro-fuzzy system 
approximates an $n$-dimensional 
(unknown) function that is partially defined 
by the training data. The fuzzy rules 

encoded within the system represent vague 
samples, and can be viewed as prototypes of 
the training data. A neuro-fuzzy system 
should not be seen as a kind of (fuzzy) 
expert system, and it has nothing to do with 
fuzzy logic in the narrow sense. So the 
neuro fuzzy approach to solve feature 
extraction  problem from web data will be a 
very good and efficient method as seen in 
fig 9.[4] 

Properties of pattern associators: 

 Generalisation; 

 Fault Tolerance; 

 Distributed representations are 
necessary for generalisation and fault 
tolerance; 

 Prototype extraction and noise removal; 

 Speed; 

 Interference is not necessarily a bad 
thing (it is the basis of generalisation). 
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Fig.9 Neural fuzzy expert system 

 Hebbian learning is the oldest learning 
law discovered in neural networks 

 It is used mainly in order to build 
associators of patterns. 

 The original Hebb rule creates 
unbounded weights. For this reason 
there are other forms which try to 
correct this problem. There are also 
temporal forms of the Hebbian rule. A 
hybrid case is the memory case 
presented before in the VisNet case. 

 It has wide applications in pattern 
association problems and models of 
computational neuroscience & cognitive 
science. 

 
4. CONCLUSION 

 If the inputs to a system cause the same 
pattern of activity to occur repeatedly, 
the set of active elements constituting 
that pattern will become increasingly 
strongly interassociated. That is, each 
element will tend to turn on every other 
element and (with negative weights) to 
turn off the elements that do not form 
part of the pattern. To put it another 
way, the pattern as a whole will become 
'auto-associated'. We may call a learned 
(auto-associated) pattern. 

 For example, we have heard the word 
Nokia for many years, and are still 
hearing it. We are pretty used to hearing 
Nokia Mobile Phones, i.e. the word 
'Nokia' has been associated with the 
word 'Mobile Phone' in our Mind. 
Every time we see a Nokia Mobile, the 
association between the two words 
'Nokia' and 'Phone' gets strengthened in 
our mind. The association between 
'Nokia' and 'Mobile Phone' is so strong 
that if someone tried to say Nokia is 
manufacturing Cars and Trucks, it 
would seem odd.  

 It can provides us good mapping of 
information  between proxy server and 
web server and we can maintain good 
cache as well at proxy level. So end 
user will be benefited at access of 
information will be fast. 
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