
International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 723

Feature Extraction from web data using Artificial
Neural Networks (ANN)

1Manoj Kumar Sharma, 2Vishal Shrivastav

 1 Research Scholar, M.Tech Arya College Of Engineering and IT

2 Associate Professor, M.Tech, Arya College Of Engineering and IT

Abstract- The main ability of neural network
is to learn from its environment and to improve
its performance through learning. For this
purpose there are two types of learning
supervised or active learning – learning with
an external ‘teacher’ or a supervisor who present
a training set to the network. But another type of
learning also exists : unsupervised learning[1] .
Unsupervised learning is self organized
learning doesn’t require an external teacher.
During training session neural network receives
a number of input patterns , discovers significant
features in these patterns and learns how to
classify input data into appropriate categories. It
follows the neuro - biological organization of the
brain. These algorithms aim to learn rapidly so
learn much faster than back-propagation
networks and thus can be used in real time.
Unsupervised NN are effective in dealing with
unexpected and changing conditions[3].

There are basically two major self – organising
networks based learning : Hebbian and
competitive learning. We will use Hebbian
learning in this paper to visualize that how it can
help in feature extraction from any data. We will
use input vector weight matrix examples and
denote presence of a feature by 1 and absence of
a feature by 0. In this method we will see that
how features are identified and we can discover
patterns in given data. We can use this method
for classification and clustering purpose also.
Then we will apply this learning rule on web
data or content for discovers pattern &
extraction of features. Weight increases when
same pattern repeats and decrease when it
doesn’t repeat. The network associates some
input xi with some outputs yi and yj because
input xi and xj coupled during training. But it
cannot associate some input x with some output
y because that input didn’t appear during training
and our network has lost the ability to recognize
it. Thus, a neural network really can learn to
associate stimuli commonly presented together
and most important, the network can learn

without a teacher. After that we will study
applications and limitation of this method.
Although it has some limitations but still it is a
very useful and fast method that can be used in
real time systems where accuracy is bit low but
speed in finding association between data is very
high for discover patterns and classification of
data according to these features[4].

1.ARTIFICIAL NEURAL NETWORKS
One type of network sees the nodes as ‘artificial
neurons’. These are called artificial neural
networks (ANNs). An artificial neuron is a
computational model inspired in the natural
neurons. Natural neurons receive signals through
synapses located on the dendrites or membrane
of the neuron. When the signals received are
strong enough (surpass a certain threshold), the
neuron is activated and emits a signal though the
axon. This signal might be sent to another
synapse, and might activate other neurons

 Fig.1 Natural neurons

The complexity of real neurons is highly
abstracted when modelling artificial neurons.
These basically consist of inputs (like synapses),
which are multiplied by weights (strength of the
respective signals), and then computed by a
mathematical function which determines the
activation of the neuron. Another function
(which may be the identity) computes the output
of the artificial neuron (sometimes in
dependance of a certain threshold). ANNs
combine artificial neurons in order to process
information[6].

International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 724

 Fig.2 An artificial neuron

The higher a weight of an artificial neuron is, the
stronger the input which is multiplied by it will
be. Weights can also be negative, so we can say
that the signal is inhibited by the negative
weight. Depending on the weights, the
computation of the neuron will be different. By
adjusting the weights of an artificial neuron we
can obtain the output we want for specific inputs.
But when we have an ANN of hundreds or
thousands of neurons, it would be quite
complicated to find by hand all the necessary
weights. But we can find algorithms which can
adjust the weights of the ANN in order to obtain
the desired output from the network. This
process of adjusting the weights is called
learning or training.

 Fig.3 functioning of ANN

The number of types of ANNs and their uses is
very high. Since the first neural model by
McCulloch and Pitts (1943) there have been
developed hundreds of different models
considered as ANNs[11].

 Fig.4 ANN model

The differences in them might be the functions,
the accepted values, the topology, the learning
algorithms, etc. Also there are many hybrid

models where each neuron has more properties
than the ones we are reviewing here. Because of
matters of space, we will present only an ANN
which learns using the backpropagation
algorithm (Rumelhart and McClelland, 1986) for
learning the appropriate weights, since it is one
of the most common models used in ANNs, and
many others are based on it. Since the function
of ANNs is to process information, they are used
mainly in fields related with it. There are a wide
variety of ANNs that are used to model real
neural networks, and study behaviour and
control in animals and machines, but also there
are ANNs which are used for engineering
purposes, such as pattern recognition,
forecasting, and data compression.

 Fig.5 A computational neuron

 2. SUPERVISED LEARNING
The Backpropagation Algorithm
It is a supervised learning method, and is a
generalization of the delta rule. It requires a
dataset of the desired output for many inputs,
making up the training set. It is most useful for
feed-forward networks (networks that have no
feedback, or simply, that have no connections
that loop). The term is an abbreviation for
"backward propagation of errors".
Backpropagation requires that theactivation
function used by the artificial neurons (or
"nodes") be differentiable.

For better understanding, the backpropagation
learning algorithm can be divided into two
phases: propagation and weight update.

Phase 1: Propagation
Each propagation involves the following steps:
Forward propagation of a training pattern's input
through the neural network in order to generate

International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 725

the propagation's output activations.Backward
propagation of the propagation's output
activations through the neural network using the
training pattern's target in order to generate the
deltas of all output and hidden neurons.
Phase 2: Weight update
For each weight-synapse follow the following
steps:
Multiply its output delta and input activation to
get the gradient of the weight.Bring the weight in
the opposite direction of the gradient by
subtracting a ratio of it from the weight.This
ratio influences the speed and quality of learning;
it is called the learning rate. The sign of the
gradient of a weight indicates where the error is
increasing, this is why the weight must be
updated in the opposite direction.Repeat phase 1
and 2 until the performance of the network is
satisfactory.

Modes of learning
There are two modes of learning to choose from:
One is on-line(incremental) learning and the
other is batch learning. In on-line(incremental)
learning, each propagation is followed
immediately by a weight update. In batch
learning, many propagations occur before weight
updating occurs. Batch learning requires more
memory capacity, but on-line learning requires
more updates.

Algorithm
Actual algorithm for a 3-layer network (only one
hidden layer):
Initialize the weights in the network (often
randomly)

Do
For each example e in the training set
O = neural-net-output(network, e) ; forward pass
T = teacher output for e
Calculate error (T - O) at the output units
Compute delta_wh for all weights from hidden
layer to output layer ; backward pass
Compute delta_wi for all weights from input
layer to hidden layer ; backward pass continued
Update the weights in the network
Until all examples classified correctly or
stopping criterion satisfied
Return the network

As the algorithm's name implies, the errors
propagate backwards from the output nodes to
the inner nodes. Technically speaking,
backpropagation calculates the gradient of the
error of the network regarding the network's

modifiable weights.[6] This gradient is almost
always used in a simple stochastic gradient
descent algorithm to find weights that minimize
the error. Often the term "backpropagation" is
used in a more general sense, to refer to the
entire procedure encompassing both the
calculation of the gradient and its use in
stochastic gradient descent. Backpropagation
usually allows quick convergence on
satisfactory local minima for error in the kind of
networks to which it is suited.
Backpropagation networks are
necessarily multilayer perceptrons (usually with
one input, one hidden, and one output layer). In
order for the hidden layer to serve any useful
function, multilayer networks must have non-
linear activation functions for the multiple
layers: a multilayer network using only linear
activation functions is equivalent to some single
layer, linear network. Non-linear activation
functions that are commonly used include
the logistic function, the softmax function, and
the gaussian function.
The backpropagation algorithm for calculating a
gradient has been rediscovered a number of
times, and is a special case of a more general
technique called automatic differentiation in the
reverse accumulation mode.
It is also closely related to the Gauss–Newton
algorithm, and is also part of continuing research
in neural backpropagation.

Multithreaded backpropagation
Backpropagation is an iterative process that can
often take a great deal of time to complete.
When multicore computers are
used multithreaded techniques can greatly
decrease the amount of time that
backpropagation takes to converge. If batching is
being used, it is relatively simple to adapt the
backpropagation algorithm to operate in a
multithreaded manner.
The training data is broken up into equally large
batches for each of the threads. Each thread
executes the forward and backward
propagations. The weight and threshold deltas
are summed for each of the threads. At the end of
each iteration all threads must pause briefly for
the weight and threshold deltas to be summed
and applied to the neural network. This process
continues for each iteration. This multithreaded
approach to backpropagation is used by
the Encog Neural Network Framework.

Limitations

International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 726

The convergence obtained from backpropagation
learning is very slow.The convergence in
backpropagation learning is not guaranteed.The
result may generally converge to any local
minimum on the error surface, since stochastic
gradient descent exists on a surface which is not
flat.Backpropagation learning requires input
scaling or normalization.for supervised learning
process a teacher is required.

•To train neural network: adjust weights of each
unit such that the error between the desired
output and the actual output is reduced

•Process requires that the neural network
compute the error derivative of the weights (EW)

•it must calculate how the error changes as each
weight is increased or decreased slightly[12].

3 .UNSUPERVISED LEARNING
HEBBIAN’S LEARNING FOR FEATURE
DETECTION IN GIVEN DATA

We will follow self organising neural networks
or unsupervised learning & use Hebbian learning
for this purpose. According to Hebb’s law if
neuron i is near enough to excite neuron j and
repeatedly participates in its activation the
synaptic connection between these two neurons
is strengthened and neuron j becomes more
sensitive to stimuli from neuron i. We can
represent Hebb’s law in the form of two rules as
follows :-

i.)If two neurons on either side of connection are
activated synchronously then the weight of that
connection is increased.

ii.)If two nerons on either side of connection are
activated asynchronously, then the weight of that
connection is decreased.

 Fig 6

We can express the adjustment applied to the
weight wij at iteration p in the following form :

)](),([)(ppFp xyw ijij


yj(p) output from layer j in iteration p

xi(p) input to layer i in iteration p

where F[yj(p),xi(p)] is a function of both
postsynaptic and presynaptic activities. As a
special case we can represent Hebb’s law as
follows(Haykin 1999) :

)()()(ppp xyw ijij


Where α is learning rate parameter.

This equation is called activity product rule. It
shows how a change in the in the weight of the
connection between a pair of neurons is related
to a product of incoming and outgoing
signals[4].

Hebbian learning implies that weight can only
increase. In other words Hebb’s law allows the
strength of connection to increase, but it doesn’t
provide a mean to decrease the strength. Thus
repeated application of the input signal may
drive the weight wij into saturation. To resolve
this problem , we might impose a limit on the
growth of weights. It can be done by introducing
a non-linear forgetting factor into Hebb’s law as
follows :

)()()(ppp xyw ijij
 -

� y j
(p))(pwij

Where � is forgetting factor

Forgetting factor � specifies the weight decay in
a single learning cycle. It usually falls in the
interval between 0 & 1. If the forgetting factor is
0, the neural network is capable only of
strengthening its weights, and as a result these
weights grow towards infinity. On the other
hand, if the forgetting factor is close to 1, the
network remembers very little of what it learns.
Therefore, a rather small forgetting factor should
be chosen, typically between 0.01 and 0.1, to
allow only a little forgetting while limiting the
weight growth[1].

So the former equation may also be written in
the form reffered to as a generalized activity
product rule :

)()[()(ppp xyw ijij
)(pwij

]

International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 727

 Where  = α / �

This rule implies that if the input(log) of
neuron(machine) i at iteration p, xi(p) is less
than wij(p) / λ , then the modified weight at
iteration (p+1) , wij(p+1), will decrease by an
amount proportional to the output of neuron j at
iteration p, yj(p). On the other hand , if xi(p) is
greater than wij(p) / λ, then the modified weight
at iteration (p+1), wij(p+1), will increase also in
proportion to the output of neuron j, yj(p) in
other words, we can determine the activity
balance point for modifying the weights as a
variable equal to wij(p) / λ. This approach solves
the problem of an infinite increase of the
weights. So the generalized Hebbian learning
algo. Is[8] :

Step 1 : Initialisation

Set initial weights & threshold to small random
values, say in an interval [0,1]. Also assign small
positive values to the learning rate parameter ₤
& forgetting factor Ø.

Step 2 : Activation

Compute the neuron output at iteration p

 jij

n

i
ij

ppp wxy 


)()()(
1

where n is the no. of neurons inputs and θj is the
threshold value of neuron j.

Step 3 : Learning

Update the weights in network :

)()()1(ppp www ijijij


where ∆ wij(p) is the weight correction in
iteration p. Weight correction is :

)()[()(ppp xyw ijij
)(pwij

]

Step 4 : Iteration

Increase iteration p by 1, go back to step 2 and
continue until the weights reach their steady
state value.

Hebbian learning example

To illustrate Hebbian learning, consider a fully
connected feedforward network with a single
layer of five computation neurons. Each neuron
is represented by a McCulloch and Pitts model
with the sign activation function. The network is
trained on the following set of input vectors:

























0
0
0
0
0

1X

























1
0
0
1
0

2X

























0
1
0
0
0

3X

























0
0
1
0
0

 4X

























1
0
0
1
0

5X

Initial and final states of the network

Initial and final weight matrices

 A test input vector, or probe, is defined as

When this probe is presented to the
network, we obtain:

O u t p u t l a y e r

I n
 p

 u
 t

 l
a

y
e

r























1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

21 43 5

1

2

3

4

5

O u t p u t l a y e r
I n

 p
 u

 t
 l

a
y

e
r












0
0
0
0
0
1 2 3 4 5

1

2

3

4

5

0
0

2.0204
0

2.0204

1.0200
0
0

0
0 0.9996

0
0

0

0
0
0

2.0204
0

2.0204










(b).

























1
0
0
0
1

X

























































































































1
0
0
1
0

0737.0
9478.0
0907.0
2661.0
4940.0

1
0
0
0
1

2.0204 0 0 2.0204 0
0 0.9996 0 0 0
0 0 1.0200 0 0

2.0204 0 0 2.0204 0
0 0 0 0 0

 signY

Input layer

x1 1

Output layer

2

1 y1

y2x2 2

x3 3

x4 4

x5 5

4

3 y3

y4

5 y5

1

0

0

0

1

1

0

0

0

1

Input layer

x1 1

Output layer

2

1 y1

y2x2 2

x3 3

x4 4

x5

4

3 y3

y4

5 y5

1

0

0

0

1

0

0

1

0

1

2

5

International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 728

Learning is often made possible through
some notion of which features in the
input set are important. But often we
don’t know in advance which features
are important and asking a learning
system to deal with raw input data can
be computationally expensive.
Unsupervised learning can be used as
“feature discovery” module that preceds
supervised learning.

Consider the above example. The group
of ten animals each described by its
own set of features, breaks down
naturally into three groups : mammals,
reptiles and birds. We would like to
buid the network that can learn which
group a particular animal belongs to,
and to generalize so that it can identify
animals it has not yet seen.

In this example fig 8 , in input vector
X2 and X6 input values x8,x9 and x10
always come together. In input vector
X3,X4 and X6 input values x5,x6 and
x7 always come together so.they can
make an association and can be
classified into two different groups.
According to features of concerned
group they can be classified into reptiles
and birds & the rest one is mammals. So
according to types and their contents or
class and their features network can
make an auto association and hence
when a new input vector applied to this
network, it tries to find association of
this data into network and by Hebb’s
law it extract features from this given
data and discover pattern in this data.
When some association is found it
classify data[13].

 Fig 8

An associative memory is a brain-like
distributed memory that learns
associations. Association is a known
and prominent feature of human
memory.

Association takes two forms:

Auto-association: Here the task of a
network is to store a set of patterns
(vectors) by repeatedly presenting them
to the network. The network
subsequently is presented with a partial
description or distorted (noisy) version
of the original pattern stored in it, and
the task is to retrieve (recall) that
particular pattern.

Hetero-association: In this task we
want to pair an arbitrary set of input
patterns to an arbitrary set of output
patterns. Auto-association involves the
use of unsupervised learning (Hebbian,
Hopfield) while hetero-association
involves the use of unsupervised
(Hebbian) or supervised learning (e.g.
MLP/BP) approaches.

Let xk denote a key pattern applied to an
associative memory and yk denote a
memorised pattern. The pattern
association performed by the network is
described by:

xk  yk , k=1,2,…,q

International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 729

Where q is the number of patterns
stored in the network. The key pattern
xk acts as a stimulus that not only
determines the storage location of
memorised pattern yk but also holds the
key for its retrieval. In an auto-
associative memory, yk = xk , so the
input and output spaces have the same
dimensionality. In a hetero-associative
memory, yk  xk , hence in this case the
dimensionality of the output space may
or may not equal the dimensionality of
the input space.

There are two phases involved in the
operation of the associative memory:

Storage phase: which refers to the
training of the network in
accordance with a suitable rule;

Recall phase: which involves the
retrieval of a memorised pattern in
response to the presentation of a noisy
version of a key pattern to the network.
Let the stimulus x (input) represent a
noisy version of a key pattern xj. This
stimulus produces a response y (output).
For perfect recall, we should find that
y= yj where yj is the memorised pattern
associated with the key pattern xj. When
y  yj for x = xj , the associative
memory is said to have made an error
in recall.

The number q of patterns stored in an
associative memory provides a direct
measure of the storage capacity of the
network. In designing an associative
memory, we want to make the storage
capacity q (expressed as a percentage of the
total number N of neurons) as large as
possible and yet insist that a large fraction of
the patterns is recalled correctly.
The net input that arrives to every unit is
calculated as:

Where i is an output neuron and j an index
of an input neuron. The dimensionality of
the input space is N and of the output space
is M. wij is the weight from neuron j to
neuron i. aj is the activation of a neuron j.

The activation of each neuron is produced
by using a suitable threshold function and a
threshold. For example we can assume that
the activations are binary (i.e. either 0 or 1)

and to achieve this we use the step
function[8].

The training of the network takes place by
using for example the Hebbian form. Thus
what we have is a matrix of weights, with all
of them zero initially, assuming an input
pattern of (101010) and an output pattern
(1100):

If we assume a learning rate =1 and
after a single learning step we get:

To recall from the matrix we simply
apply the input pattern and we perform
matrix multiplication of the weight
matrix with the input vector. We get in
our example:

If we assume a threshold of 2 we can
get the correct answer (1100) using a
step function as activation function.

We can learn multiple associations
using the same weight matrix. For

International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 730

example assume that a new input vector
(110001) is given with corresponding
output vector as (0101). In this case
after a single presentation (with =1)
we will get an updated weight matrix:

Again we can get the correct output
vectors when we introduce the
corresponding input vector:

Again by using the threshold of 2 and a step
function we can get the correct answers of
(1100) and (0101).

However, keep in mind that there is only a
limited number of patterns which can be stored
before perfect recall fails. Typical capacity of an
associator network is 20% of the total number of
neurons.

Recall accuracy reflects the similarity of a key
pattern with the stored patterns. The network can
generalise in the sense when an input pattern is
not exactly the same with any of the stored

patterns, then it returns the (stored) patterns
which more closely resembles the input[5].

In above data table there are different kind
of websites having different type of features
and contents. So according to features
provided by them they can be divided into
various groups. When an input pattern is
presented to the network and suppose our
network is trined on above data. Now
according to positions of input values and
their corresponding vector feature and type
we can map and associate new input pattern
according to its class and identify features
hidden in given input. In above example
googlenews and msnindia can make a class
of news because their last two input values
are same so weight between these two
increases. Again if an input who has 1 at last
or second last position, we can associate
with that to News group. Since during
training last two inputs of both were
coupled. In input vector X1 & X3, input
values x1 and x2 comes together so same
input repeated at same positions so weight
will increase thus new input associate at
those positions with highest probability with
mail group[7].

Now we will compare artificial neural
network with conventional network sysrem.
Conventional system is consists of web
clients , proxy servers and web servers while
ANN consists of input layer, hidden layers
and output layer corresponding to client,
proxy and server respectively. So we can
receive input at web clients corresponding to
input layer, then we can do computation at

International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 731

proxy servers corresponding to hidden layer
and collect output at web servers
corresponding to output layer. At web
clients we can receive different input
patterns and according to the features that
we want to map, presence of a feature and
absence of a feature can be taken 1 & 0 as
input values corresponding to input vectors.
Then we assign some weights randomly in
the range of 0 to 1 to each input value. This
calculation is performed between input and
hidden layer corresponding to web client
and proxy servers. Then we apply hebbian’s
learning for weight training purpose & use
generalized activity product rule between
hidden layer and output layer corresponding
to proxy and web server. The output we get
by this process is different from input in
aspects of their pattern and features. So this
is a very useful process for pattern
discovery, recognition and feature extraction
to make association[11].

A neuro-fuzzy system is based on a fuzzy
system which is trained by a learning
algorithm derived from neural network
theory. The (heuristical) learning procedure
operates on local information, and causes
only local modifications in the underlying
fuzzy system. A neuro-fuzzy system can be
viewed as a 3-layer feedforward neural
network. The first layer represents input
variables, the middle (hidden) layer
represents fuzzy rules and the third layer
represents output variables. Fuzzy sets are
encoded as (fuzzy) connection weights. It is
not necessary to represent a fuzzy system
like this to apply a learning algorithm to it.
However, it can be convenient, because it
represents the data flow of input processing
and learning within the model.A neuro-
fuzzy system can be always (i.e.\ before,
during and after learning) interpreted as a
system of fuzzy rules. It is also possible to
create the system out of training data from
scratch, as it is possible to initialize it by
prior knowledge in form of fuzzy rules. The
learning procedure of a neuro-fuzzy system
takes the semantical properties of the
underlying fuzzy system into account. This
results in constraints on the possible
modifications applicable to the system
parameters. A neuro-fuzzy system
approximates an n-dimensional
(unknown) function that is partially defined
by the training data. The fuzzy rules

encoded within the system represent vague
samples, and can be viewed as prototypes of
the training data. A neuro-fuzzy system
should not be seen as a kind of (fuzzy)
expert system, and it has nothing to do with
fuzzy logic in the narrow sense. So the
neuro fuzzy approach to solve feature
extraction problem from web data will be a
very good and efficient method as seen in
fig 9.[4]

Properties of pattern associators:

 Generalisation;

 Fault Tolerance;

 Distributed representations are
necessary for generalisation and fault
tolerance;

 Prototype extraction and noise removal;

 Speed;

 Interference is not necessarily a bad
thing (it is the basis of generalisation).

International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 732

Fig.9 Neural fuzzy expert system

 Hebbian learning is the oldest learning
law discovered in neural networks

 It is used mainly in order to build
associators of patterns.

 The original Hebb rule creates
unbounded weights. For this reason
there are other forms which try to
correct this problem. There are also
temporal forms of the Hebbian rule. A
hybrid case is the memory case
presented before in the VisNet case.

 It has wide applications in pattern
association problems and models of
computational neuroscience & cognitive
science.

4. CONCLUSION

 If the inputs to a system cause the same
pattern of activity to occur repeatedly,
the set of active elements constituting
that pattern will become increasingly
strongly interassociated. That is, each
element will tend to turn on every other
element and (with negative weights) to
turn off the elements that do not form
part of the pattern. To put it another
way, the pattern as a whole will become
'auto-associated'. We may call a learned
(auto-associated) pattern.

 For example, we have heard the word
Nokia for many years, and are still
hearing it. We are pretty used to hearing
Nokia Mobile Phones, i.e. the word
'Nokia' has been associated with the
word 'Mobile Phone' in our Mind.
Every time we see a Nokia Mobile, the
association between the two words
'Nokia' and 'Phone' gets strengthened in
our mind. The association between
'Nokia' and 'Mobile Phone' is so strong
that if someone tried to say Nokia is
manufacturing Cars and Trucks, it
would seem odd.

 It can provides us good mapping of
information between proxy server and
web server and we can maintain good
cache as well at proxy level. So end
user will be benefited at access of
information will be fast.

5. REFERENCES
[1] Becker, S & Plumbley, M (1996).
Unsupervised neural network learning procedures
for feature extraction and classification.
International Journal of Applied Intelligence, 6,
185-203

[2] Mumford, D (1994). Neuronal architectures
for pattern-theoretic problems. In C Koch and J
Davis, editors, Large-Scale Theories of the
Cortex. Cambridge, MA: MIT Press, 125-152.

[3] Artificial neural networks for pattern
recognition B YEGNANARAYANA Scidhanci,
Vol. 19, P a r t 2, April 1994, pp. 189-238.

[4] Artificial Intelligence: A Guide to Intelligent
Systems, 2/E, Michael Negnevitsky. ISBN-10:
0321204662 ISBN-13: 9780321204660.
Publisher: Addison-Wesley.

[5] An Introduction to Feature Extraction Isabelle
Guyon, and Andr´e Elisseeff

[6] S.Haykin, Neural Networks and Learning
Machines,2010,PHI

[7] Xianjun Ni , Research of Data Mining Based
on Neural Networks, World Academy of Science,
Engineering and Technology ,39,2008, p 381-38

[8] Networks of Neural Computation WK7 –
Hebbian Learning Dr. Stathis Kasderidis Dept.
of Computer Science University of Crete Spring
Semester, 2009.

[9] Leen, T. K. (1991). Dynamics of learning in
linear feature-discovery networks.
Network,2:85-105

[10] Baldi, P. and Hornik, K. (1989). Neural
networks and principal component analysis:
Learning from examples without local minima.
Neural Networks, 2:53-58.

[11] P. Dayan and L. Abbott, Theoretical
Neuroscience: Computational and
Mathematical Modeling of Neural Systems, The
MIT Press, Cambridge, MA, 2001.

[12] Artificial Neural Networks, Sargur Srihari.

[13] Artificial Intelligence, third edition
Elaine Rich, Kevin Knight, B Nair.

[14] [Chang et al., 2000] H. Chang, D. Cohn, and
A. K. McCallum. Learning to create customized
authority lists. In Proceedings of the 17th
International Conference on Machine Learning,
pages 127–134. Morgan Kaufmann, 2000

