
International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 715

Particle Swarm Optimization in Transliteration
Dr. Pothula Sujatha

Assistant Professor, Department of Computer science
School of Engineering & Technology, Pondicherry University

Pondicherry, India.

Abstract— Transliteration is the process of transforming a word
written in a source language into a word in a target language
without the aid of a resource like a bilingual dictionary. This
process generates the target language word for a given source
language word, but need to find the similarity between source
and target words. That is, in order to check how far the
generated target word is right equivalent an edit distance
calculation is needed between source and target languages words.
Presently there was no automated process for finding edit cost
between source and target languages words. This work proposes
a new Particle Swarm Optimization (PSO) algorithm which is
used in the transliteration algorithm process for finding optimal
cost between source and target words.

Keywords—Swarm intelligence, particle swarm optimization,
transliteration, grapheme, phoneme, hybrid

I. INTRODUCTION
Transliteration is the process of transforming a word

written in a source language into a word in a target language
without the aid of a resource like a bilingual dictionary. It
refers to expressing a word in one language using the
orthography of another language. Orthography means the art
or study of correct spelling according to established usage.
Transliteration can be classified into two directions. Given a
pair (s, t), where s is the source word in source language and t
is the transliterated word in target language. Two types of
transliteration are available in the literature: forward and
backward translation. Forward transliteration is the process of
converting s into t. Backward or back transliteration is the
process to correctly find or generate s for a given t. Backward
transliteration is more challenging than forward transliteration.
This paper is adopting forward transliteration.

The major techniques for transliteration can be classified
into three categories: grapheme-based transliteration model,
phoneme-based transliteration model, and grapheme- and
phoneme-based transliteration model [5].

Grapheme refers to the basic unit of written language (or
smallest contrastive units). For example, English has 26
graphemes or letters (21 consonants and 5 vowels), Hindi has
46 letters (33 consonants and 13 vowels), Tamil has 30 letters
(18 consonants and 12 vowels), and Telugu has 56 letters (40
consonants and 16 vowels). Grapheme-based transliteration
(spelling) is referred to as the direct method because it directly
transforms source language graphemes into target language
graphemes without any phonetic knowledge of the source
language words. Here transliteration is identified by mapping

the source language names to their equivalent names in a
target language and generating them.

Phoneme refers to the simplest significant unit of sound or
the smallest contrastive units of a spoken language. In
Phoneme-based transliteration pronunciation rather than
spelling of the original string is considered as a basis for
transliteration. Phoneme based transliteration is referred as a
pivot method because it uses source language phonemes as a
pivot, when it produces target language graphemes from
source language graphemes. It usually needs two steps:

• Produce source language phonemes from source
language graphemes.

• Produce target language graphemes from source
phonemes.

 These two steps are explicit if the transliteration system
produces target language transliterations after producing the
pronunciations of the source language words; they are implicit
if the system uses phonemes implicitly in the transliteration
stage and explicitly in the learning stage [6]. ARPAbet
symbols are used to represent source phonemes. ARPAbet is
one of the methods used for coding source phonemes into
ASCII characters [7]. Grapheme-based and phoneme-based
transliteration is referred to as hybrid transliteration. It makes
use of both source language graphemes and source language
phonemes, when producing target language transliterations.
Here after, a source language grapheme is a source grapheme,
a source language phoneme is a source phoneme, and a target
language grapheme is a target grapheme.

 In each model, transliteration of a source language to
target language is an interesting and challenging task. This
paper proposes transliteration algorithm and PSO algorithm.
Grapheme based transliteration is used for transliterating
source name to target name and edit distance between source
and target is calculated using the proposed similarity PSO
algorithm.

 The organization of the paper is as follows. Section II,
describes previous studies on PSO algorithm and
transliteration technique. Section III, explains the proposed
transliteration algorithm along with PSO similarity algorithm.
Conclusion and future scope of the paper is given in section
IV.

II. RELATED WORK
A lot of research is going on in SI particularly PSO. The

biologic principles of SI are explained in [8]. Extension of
PSO called Geometric Particle Swarm Optimization (GPSO)
is described in [2]. This GPSO can be applied to both

International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 716

continuous and combinatorial spaces. Tree based edit distance
using PSO is explained in [9]. The model is efficient and more
transparent as probabilistic approaches as well as less
complexity.

 An n-gram based statistical transliteration model for
English to Arabic names was described in [10]. It presents a
simple statistical technique, which does not require any
heuristics or linguistic knowledge of either language. It is
specified that transliteration either of Out Of Vocabulary
(OOV) named entities or of all OOV words is an effective
approach for CLIR. A decision tree based transliteration
model [11] is a language independent methodology for
English to Korean transliteration and back transliteration. It is
composed of character alignment and decision tree learning.
Transliteration rules and back transliteration rules are induced
for each English alphabet and each Korean alphabet. A
maximum entropy based model [12] is an automatic
transliteration model from English to Japanese words and it
successfully transliterates an English word not registered in
any bilingual or pronunciation dictionaries by converting each
partial letters in the English word into Japanese characters. A
new substring based transliteration method based on phrase-
based models of machine translation was described in [13].
Substring based transliteration method is applied on Arabic to
English words. A rule based model for English to Korean
transliteration using pronunciation and context rules is
described in [14]. It uses phonetic information such as
phoneme and its context as well as orthography of English
language as the basis for transliteration. A machine-learned
phonetic similarity model [15] is a backward transliteration
model and provides learning algorithm to automatically
acquire phonetic similarities from a corpus. Given a
transliterated word, similarity based model compares the list
of source candidate words and the one with highest similarity
will be chosen as the original word. Oh and Choi [16]
proposed a model for improving machine transliteration using
an ensemble of three different transliteration models
(grapheme, phoneme and both) for English to Korean and
English to Japanese languages. Bilac and Tanaka [17]
proposed a new hybrid back transliteration system for
Japanese, which contains segmentation, phoneme-based and
grapheme-based transliteration modules. Context,
transliteration similarity mechanism to align English-Hindi
texts at the sentence and word level in parallel corpora was
proposed by [18]. This is based on a grapheme-based model.
It describes a simple sentence length approach to perform
sentence alignment and multi feature approach to perform
word alignment. Punjabi machine transliteration was
described by [19]. A word origin based approach for splitting
Indian and foreign origin words and transliterating them based
on their phoneme equivalents was shown by [20]. The given
transliteration mechanism is applicable for Indian languages
and shown that word origin is an important factor in achieving
higher accuracy in transliteration. A phrase based (grapheme-
based) statistical machine transliteration of named entities
from English to Hindi using a small set of training and
development data was presented by [21].

III. PROPOSED ALGORITHMS
Transliteration is the process of transforming a word

written in a source language into a word in a target language
without the aid of a resource like a bilingual dictionary [22].
Transliteration algorithm from source language name to target
language is shown in Fig 1. and notations used in the proposed
algorithms are given in Table 1. It uses grapheme based model
for transliterating source to target name. The proposed
transliteration algorithm contains character level alignments
between source and target languages. i.e. for a given Source
Name (SN), it divides into individual characters (S_1^(n))
and perform the level wise alignments using intermediate
scheme. The roman scheme is used as intermediate scheme for
transliteration. Mapping is done with either one-to-many and
one-to-one configuration or many-to-one and one-to-one
configuration [22]. The selection of the scheme depends on
the source and target languages. Using roman scheme
individual target characters (T_1^(m)) are generated and
finally Target Name (TN) is generated. After generating TN
edit distance is calculated between SN and TN for finding
how far generated transliteration is right equivalent. Normally
similarity measures are used to calculate edit distance between
source and target languages but the process is manual.

Transliteration Algorithm:

Fig.1If necessary, the images can be extended both columns Transliteration

Algorithm

The main goal is to automate the similarity measure
between source and target languages. For that proposed a PSO
algorithm which calculates optimal edit cost between SN and
TN. The proposed PSO edit distance algorithm is shown in
Fig 2. and the notations used in the PSO algorithm are given
in Table 1. First it generates the random swarm particles
(P_1^(k)). For each particle defined three cost operations.
These operations include insertion (α), deletion (β) and
substitution (γ). Insertion operation includes insertion of
character, deletion operation includes deletion of the character
and substitution includes substituting a character. These
operations are applied for finding the similarity measure

Transliteration (ࡺࡿ)

Start

Initialize ݊
 For ݅ = 1 to ݊ do

Divide ܵܰ into ܵଵ௡
Character level alignments // n-gram alignment
Generate ଵܶ

௠using roman scheme
Generate ܶܰ

End For
 (ࡺࢀ,ࡺࡿ) PSOEditCost= ߝ

 If ߝ = 0 then
Exact equivalent is ܶܰ

Else
 Exact equivalent is not ܶܰ

 End If
Return ܶܰ

End

International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 717

between source and target names. For each particle set
randomly their position (〖Pos〗_k^l) and relative velocities
(V_k^l). After setting their positions, for each particle obtain
the fitness function value based on the following objective
function or fitness function (OF).

The objective function is based on the minimum number of

edit operations (between source and target language
names. Each particle in the swarm has local best fitness
value . Each time the local best fitness value is
compared with the new position fitness function value ().
If is better than that of then the new position
fitness function is assigned as a local best fitness value. From
the of all individual particles set the global position as

To attain update velocity (and position
() of individual particles. The updation can be performed
using the following equations.

PSO Algorithm:
PSOEditCOST ()
Start
 Generate Swarm of particles
 For each particle do
 // Define 3 cost operations
  Insertion

 =  Deletion
 Substitution

 Set random position
 Set random velocity
 End For
 DO
 For each particle’s position do
 // obtain fitness function value

=
=

 = 0

 If fitness () is better than fitness () then

End If

 Set best of as
 For each particle do
 //Update velocity

 //Update position

 End For

Until (Maximum number of iterations is reached probably set as 10)
 Return ()
End

Fig. 2PSO Edit Calculation

TABLE I
ALGORITHM NOTATIONS

Notation Description
 Source language name
 Target language name

 Source name length
 Target name length

=
{ , … } Individual source characters

=
{ , … }

Individual target characters

 Edit distance
=

{ , … }
Random swarm of particles

 Cost operations
 { 0,1}
 Objective function or Fitness function

 Fitness function value
 Best local position of the particle based on

fitness (solution)
 Global position from the fitness of all individual

neighborhood particles
 Velocity of the particle’s at iteration

 Position of the particle’s at iteration
 Random variables drawn from uniform

distribution in the range [0,1]
 Two acceleration constants or Learning factors

(usually = = 2)
 Weighting function (usually selected less than 1

for global exploration)
 Optimal Cost

 Constants

IV. CONCLUSIONS
PSO is a population based stochastic global optimization

algorithm. A novel PSO algorithm is proposed for calculating
optimal edit cost between source and target language name.
This PSO algorithm is used in the transliteration systems
which follows grapheme based character level alignment
process for transliterating source to target name. The proposed
PSO algorithm can automate the process for calculating
optimal cost. This current work can be extended to applying
Ant Colony Optimization (ACO) algorithm in the
transliteration process for reducing transliteration errors.

REFERENCES
[1] E. Bonabeau, M. Dorego and G. Theraulaz, “Swarm Intelligence: From

natural to artificial systems” Bio-Inspired Computing, 2003.
[2] Julian Togelius , Renzo De Nardi , Alberto Moraglio, “Geometric

PSO + GP = Particle Swarm Programming,” In: Proceedings of CEC
2008, pp. 3594–3600.

[3] M. Clerc, “Discrete particle swarm optimization, illustrated by the
traveling salesman problem,” New Optimization Techniques in
Engineering, Springer, 2004, pp. 219–239.

[4] J. Kennedy and R. C. Eberhart, A discrete binary version of the particle
swarm algorithm, IEEE Transactions on Systems, Man,
andCybernetics 5 (1997), 4104–4108.

Where =
 1 Else

International Journal of Computer Trends and Technology- volume3Issue5- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 718

[5] J. H. Oh and K. S. Choi, “An ensemble of transliteration models for
information retrieval,” Information Processing and Management: an
International Journal, v.42 n.4, pp. 980-1002, July 2006.

[6] S. Bilac and H. Tanaka, “Improving back-transliteration by combining
information sources,” In Proceedings of IJC-NLP, pp. 542–547, 2003.

[7] D. Jurafskyand J. H. Martin, “Speech and Language processing: An
introduction to natural language processing,” Computational
Linguistics and Speech Recognition, 2007.

[8] S. Garnier, J. Gautrais and G. Theraulaz, “The biological principles of
swarm intelligence,” Swarm Intelligence, pp. 3-31, 2007.

[9] Y. Mehdad, “Automatic cost estimation for tree edit distance using
particle swarm optimization,” Proceedings of the ACL-IJCNLP 2009
Conference Short Papers, pages 289–292, 2009.

[10] N. A. Jaleel and L. S. Larkey, “Statistical transliteration for english-
arabic cross language information retrieval,” In Proceedings of the
twelfth international conference on Information and knowledge
management, November 03-08, 2003, New Orleans, LA, USA.

[11] B. J. Kang and K. S. Choi, “Automatic transliteration and back-
transliteration by decision tree learning,” In: Proc. Of the Second
International Conferenceon Language Resources and Evaluation, 2000.

[12] W. H. Lin and H. H. Chen, “Backward machine transliteration by
learning phonetic similarity,” In: Proc. of the Sixth Conference on
Natural Language Learning, pp. 139–145, 2002.

[13] T. Sherif and G. Kondrak,”Substring based transliteration,” In
proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics, pp. 944-951, 2007.

[14] J. H. Oh and K. S. Choi, “An English-Korean transliteration model
using pronunciation and contextual rules,” In: Proc. Of the 19th
International Conference on ComputationalLinguistics, pp. 758–764,
2002.

[15] [15] W. H. Lin and H. H. Chen, “Backward machine transliteration by
learning phonetic similarity,” In: Proc. Of the Sixth Conference on
Natural Language Learning, pp. 139–145, 2002.

[16] J. H. Oh and K. S. Choi, “An ensemble of transliteration models for
information retrieval,” Information Processing and Management: an
International Journal, v.42 n.4, pp. 980-1002, July 2006.

[17] S. Bilac and H. Tanaka, “A hybrid back-transliteration system for
Japanese,” In: Proc. Of the 20th International Conference on
Computational Linguistics (COLING 2004), pp. 597–603, 2004.

[18] N. Aswaniand and R. Gaizauskas, “A hybrid approach to align
sentences and words in English-Hindi parallel corpora,” In
Proceedings of the ACL Workshop on Building and Exploiting Parallel
Texts, 2005.

[19] M. G. A. Malik. “Punjabi machine transliteration,” In Proceedings of
the 21st International Conference on Computational Linguistics and the
44th annual meeting of the ACL, pp. 1137–1144, 2006.

[20] H. Surana and A. K. Singh, ” A more discerning and adaptable
multilingual transliteration mechanism for Indian languages,” In
Proceedings of International Joint Conference on Natural Language
Processing (ĲCNLP), 2008, Hyderabad, India.

[21] T. Rama and K. Gali, “Modeling machine transliteration as a phrase
based statistical machine translation problem,” In proceedings of the
Named Entities Workshop, ACL–IJCNLP’09, pp. 124-127, August
2009.

[22] VasiNarasimhulu, P. Sujatha, P. Dhavachelvan and M. S. SaleemBasha,
“Enhanced Named Entity Transliteration Model Using Machine
Learning Algorithm”, International journal of Advancements in
Computing Technology Volume 2, Number 3, August, 2010.

