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Abstract— Transliteration is the process of transforming a word 
written in a source language into a word in a target language 
without the aid of a resource like a bilingual dictionary.  This 
process generates the target language word for a given source 
language word, but need to find the similarity between source 
and target words. That is, in order to check how far the 
generated target word is right equivalent an edit distance 
calculation is needed between source and target languages words. 
Presently there was no automated process for finding edit cost 
between source and target languages words. This work proposes 
a new Particle Swarm Optimization (PSO) algorithm which is 
used in the transliteration algorithm process for finding optimal 
cost between source and target words. 
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I. INTRODUCTION 
Transliteration is the process of transforming a word 

written in a source language into a word in a target language 
without the aid of a resource like a bilingual dictionary.  It 
refers to expressing a word in one language using the 
orthography of another language.  Orthography means the art 
or study of correct spelling according to established usage. 
Transliteration can be classified into two directions. Given a 
pair (s, t), where s is the source word in source language and t 
is the transliterated word in target language. Two types of 
transliteration are available in the literature: forward and 
backward translation. Forward transliteration is the process of 
converting s into t. Backward or back transliteration is the 
process to correctly find or generate s for a given t.  Backward 
transliteration is more challenging than forward transliteration. 
This paper is adopting forward transliteration. 

The major techniques for transliteration can be classified 
into three categories: grapheme-based transliteration model, 
phoneme-based transliteration model, and grapheme- and 
phoneme-based transliteration model [5]. 

Grapheme refers to the basic unit of written language (or 
smallest contrastive units). For example, English has 26 
graphemes or letters (21 consonants and 5 vowels), Hindi has 
46 letters (33 consonants and 13 vowels), Tamil has 30 letters 
(18 consonants and 12 vowels), and Telugu has 56 letters (40 
consonants and 16 vowels). Grapheme-based transliteration 
(spelling) is referred to as the direct method because it directly 
transforms source language graphemes into target language 
graphemes without any phonetic knowledge of the source 
language words. Here transliteration is identified by mapping 

the source language names to their equivalent names in a 
target language and generating them. 

Phoneme refers to the simplest significant unit of sound or 
the smallest contrastive units of a spoken language. In 
Phoneme-based transliteration pronunciation rather than 
spelling of the original string is considered as a basis for 
transliteration. Phoneme based transliteration is referred as a 
pivot method because it uses source language phonemes as a 
pivot, when it produces target language graphemes from 
source language graphemes. It usually needs two steps: 

• Produce source language phonemes from source 
language graphemes. 

• Produce target language graphemes from source 
phonemes. 

    These two steps are explicit if the transliteration system 
produces target language transliterations after producing the 
pronunciations of the source language words; they are implicit 
if the system uses phonemes implicitly in the transliteration 
stage and explicitly in the learning stage [6]. ARPAbet 
symbols are used to represent source phonemes. ARPAbet is 
one of the methods used for coding source phonemes into 
ASCII characters [7]. Grapheme-based and phoneme-based 
transliteration is referred to as hybrid transliteration. It makes 
use of both source language graphemes and source language 
phonemes, when producing target language transliterations. 
Here after, a source language grapheme is a source grapheme, 
a source language phoneme is a source phoneme, and a target 
language grapheme is a target grapheme. 

      In each model, transliteration of a source language to 
target language is an interesting and challenging task.  This 
paper proposes transliteration algorithm and PSO algorithm. 
Grapheme based transliteration is used for transliterating 
source name to target name and edit distance between source 
and target is calculated using the proposed similarity PSO 
algorithm. 

     The organization of the paper is as follows. Section II, 
describes previous studies on PSO algorithm and 
transliteration technique. Section III, explains the proposed 
transliteration algorithm along with PSO similarity algorithm. 
Conclusion and future scope of the paper is given in section 
IV. 

II. RELATED WORK 
A lot of research is going on in SI particularly PSO. The 

biologic principles of SI are explained in [8]. Extension of 
PSO called Geometric Particle Swarm Optimization (GPSO) 
is described in [2]. This GPSO can be applied to both 
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continuous and combinatorial spaces. Tree based edit distance 
using PSO is explained in [9]. The model is efficient and more 
transparent as probabilistic approaches as well as less 
complexity.  

 An n-gram based statistical transliteration model for 
English to Arabic names was described in [10]. It presents a 
simple statistical technique, which does not require any 
heuristics or linguistic knowledge of either language. It is 
specified that transliteration either of Out Of Vocabulary 
(OOV) named entities or of all OOV words is an effective 
approach for CLIR. A decision tree based transliteration 
model [11] is a language independent methodology for 
English to Korean transliteration and back transliteration. It is 
composed of character alignment and decision tree learning. 
Transliteration rules and back transliteration rules are induced 
for each English alphabet and each Korean alphabet. A 
maximum entropy based model [12] is an automatic 
transliteration model from English to Japanese words and it 
successfully transliterates an English word not registered in 
any bilingual or pronunciation dictionaries by converting each 
partial letters in the English word into Japanese characters. A 
new substring based transliteration method based on phrase-
based models of machine translation was described in [13]. 
Substring based transliteration method is applied on Arabic to 
English words. A rule based model for English to Korean 
transliteration using pronunciation and context rules is 
described in [14]. It uses phonetic information such as 
phoneme and its context as well as orthography of English 
language as the basis for transliteration. A machine-learned 
phonetic similarity model [15] is a backward transliteration 
model and provides learning algorithm to automatically 
acquire phonetic similarities from a corpus. Given a 
transliterated word, similarity based model compares the list 
of source candidate words and the one with highest similarity 
will be chosen as the original word. Oh and Choi [16] 
proposed a model for improving machine transliteration using 
an ensemble of three different transliteration models 
(grapheme, phoneme and  both) for English to Korean and 
English to Japanese languages. Bilac and Tanaka [17] 
proposed a new hybrid back transliteration system for 
Japanese, which contains segmentation, phoneme-based and 
grapheme-based transliteration modules. Context, 
transliteration similarity mechanism to align English-Hindi 
texts at the sentence and word level in parallel corpora was 
proposed by [18]. This is based on a grapheme-based model. 
It describes a simple sentence length approach to perform 
sentence alignment and multi feature approach to perform 
word alignment. Punjabi machine transliteration was 
described by [19]. A word origin based approach for splitting 
Indian and foreign origin words and transliterating them based 
on their phoneme equivalents was shown by [20]. The given 
transliteration mechanism is applicable for Indian languages 
and shown that word origin is an important factor in achieving 
higher accuracy in transliteration. A phrase based (grapheme-
based) statistical machine transliteration of named entities 
from English to Hindi using a small set of training and 
development data was presented by [21]. 

III. PROPOSED ALGORITHMS 
Transliteration is the process of transforming a word 

written in a source language into a word in a target language 
without the aid of a resource like a bilingual dictionary [22].  
Transliteration algorithm from source language name to target 
language is shown in Fig 1. and notations used in the proposed 
algorithms are given in Table 1. It uses grapheme based model 
for transliterating source to target name. The proposed 
transliteration algorithm contains character level alignments 
between source and target languages. i.e. for a given Source 
Name (SN), it divides into individual characters (S_1^(n )) 
and perform the level wise alignments using intermediate 
scheme. The roman scheme is used as intermediate scheme for 
transliteration. Mapping is done with either one-to-many and 
one-to-one configuration or many-to-one and one-to-one 
configuration [22]. The selection of the scheme depends on 
the source and target languages. Using roman scheme 
individual target characters (T_1^(m )) are generated and 
finally Target Name ( TN) is generated. After generating TN 
edit distance is calculated between SN and TN for finding 
how far generated transliteration is right equivalent. Normally 
similarity measures are used to calculate edit distance between 
source and target languages but the process is manual. 
 
Transliteration Algorithm: 

 
Fig.1If necessary, the images can be extended both columns Transliteration 

Algorithm 

The main goal is to automate the similarity measure 
between source and target languages. For that proposed a PSO 
algorithm which calculates optimal edit cost between SN and 
TN. The proposed PSO edit distance algorithm is shown in 
Fig 2. and the notations used in the PSO algorithm are given 
in Table 1.  First it generates the random swarm particles 
(P_1^(k )). For each particle defined three cost operations. 
These operations include insertion (α), deletion (β) and 
substitution (γ). Insertion operation includes insertion of 
character, deletion operation includes deletion of the character 
and substitution includes substituting a character. These 
operations are applied for finding the similarity measure 

Transliteration (ࡺࡿ) 
 
Start 

Initialize ݊ 
 For ݅ = 1 to ݊ do 

Divide ܵܰ into ܵଵ௡  
Character level alignments // n-gram alignment 
Generate ଵܶ

௠using roman scheme 
Generate ܶܰ 

End For 
 (ࡺࢀ,ࡺࡿ) PSOEditCost= ߝ

 If ߝ =  0 then 
Exact equivalent is ܶܰ 

Else 
  Exact equivalent is not ܶܰ 

 End If 
Return ܶܰ 

End 
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between source and target names. For each particle set 
randomly their position (〖Pos〗_k^l ) and relative velocities 
(V_k^l). After setting their positions, for each particle obtain 
the fitness function value based on the following objective 
function or fitness function (OF). 

 

 
The objective function is based on the minimum number of 

edit operations (  between source and target language 
names. Each particle in the swarm has local best fitness 
value . Each time the local best fitness value is 
compared with the new position fitness function value ( ). 
If  is better than that of then the new position 
fitness function is assigned as a local best fitness value. From 
the of all individual particles set the global position as 

To attain update velocity (  and position 
( ) of individual particles. The updation can be performed 
using the following equations. 

 
 

 
 

PSO Algorithm: 
PSOEditCOST ( ) 
Start 
            Generate Swarm of particles  
            For each particle do 
                         // Define 3 cost operations 
   Insertion 

 =         Deletion 
 Substitution 

            Set random position  
            Set random velocity  
 End For 
 DO 
 For each particle’s position  do 
 // obtain fitness function value                                                                  

=  
=  

 
             =                                                                  0           
 
 
 

 
  If fitness ( ) is better than fitness ( ) then  

  
End If 

            Set best of as  
 For each particle do 
 //Update velocity 
  
 //Update position 
  
 End For 

Until (Maximum number of iterations is reached probably set as 10)
 Return ( ) 
End 

Fig. 2PSO Edit Calculation 

TABLE I 
ALGORITHM NOTATIONS 

Notation Description 
 Source language name 
 Target language name 

 Source name length 
 Target name length 

= 
{ , … } Individual source characters 

= 
{ , … } 

Individual target characters 

 Edit distance 
= 

{ , … } 
Random swarm of particles 

 Cost operations 
 { 0,1} 
 Objective function or Fitness function 

 Fitness function value 
 Best local position of the particle based on 

fitness (solution) 
 Global position from the fitness of all individual 

neighborhood particles 
 Velocity of the particle’s at iteration  

 Position of the particle’s at iteration  
 Random variables drawn from uniform 

distribution in the range [0,1] 
 Two acceleration constants or Learning factors 

(usually = = 2 ) 
 Weighting function (usually selected less than 1 

for global exploration) 
 Optimal Cost 

 Constants 
 

IV. CONCLUSIONS 
PSO is a population based stochastic global optimization 

algorithm. A novel PSO algorithm is proposed for calculating 
optimal edit cost between source and target language name. 
This PSO algorithm is used in the transliteration systems 
which follows grapheme based character level alignment 
process for transliterating source to target name. The proposed 
PSO algorithm can automate the process for calculating 
optimal cost. This current work can be extended to applying 
Ant Colony Optimization (ACO) algorithm in the 
transliteration process for reducing transliteration errors. 
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