
International Journal of Computer Trends and Technology- volume3Issue4- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 548

Development of Data leakage Detection Using
Data Allocation Strategies

Polisetty Sevani Kumari1, Kavidi Venkata Mutyalu2
1 M.Tech, CSE, Sri Vasavi Engineering College, Pedatadepalli, Tadepalligudem

W.G.Dt., A.P. India.
2Asst. Professor, Dept of IT, Sri Vasavi Engineering College, Pedatadepalli, Tadepalligudem.

W.G.Dt. A.P., India

Abstract— A data distributor has given sensitive data to a set
of supposedly trusted agents (third parties). Some of the data
are leaked and found in an unauthorized place. The distributor
must assess the likelihood that the leaked data came from one
or more agents, as opposed to having been independently
gathered by other means. We propose data allocation strategies
(across the agents) that improve the probability of identifying
leakages. These methods do not rely on alterations of the
released data (e.g., watermarks). In some cases, we can also
inject “realistic but fake” data records to further improve our
chances of detecting leakage and identifying the guilty party.
In previously only one agent is going to leak the data but by
using allocation strategies we are going to create multiple
agents. this project is possible to show in stand alone system,
but now we are going to show the result dynamically using
MVC architecture.

I. INTRODUCTION
 In the course of doing business, sometimes sensitive data
must be handed over to supposedly trusted third parties. For
example, a company may have partnerships with other
companies that require sharing customer data. Another
enterprise may outsource its data processing, so data must be
given to various other companies. Our goal is to detect when
the distributor’s sensitive data have been leaked by agents,
and if possible to identify the agent that leaked the data.
Perturbation is a very useful technique where the data are
modified and made “less sensitive” before being handed to
agents For example, one can replace exact values by ranges,
or one can add random noise to certain attributes.
Traditionally, leakage detection is handled by watermarking.
We annunciate the need for watermarking database relations
to deter their piracy, identify the unique characteristics of
relational data which pose new challenges for watermarking,
and provide desirable properties of watermarking system for
relational data. A watermark can be applied to any database
relation having attributes which are such that changes in a
few of their values do not affect the applications.
Watermarking means a unique code is embedded in each
distributed copy If that copy is later discovered in the hands
of an unauthorized party, the leaker can be identified.
Furthermore, watermarks can sometimes be destroyed if the
data recipient is malicious.
 In this paper, we study unobtrusive techniques for detecting
leakage of a set of objects or records. Specifically, we study

the following scenario: After giving a set of objects to
agents, the distributor discovers some of those same objects
in an unauthorized place. At this point, the distributor can
assess the likelihood that the leaked data came from one or
more agents, as opposed to having been independently
gathered by other means. Using an analogy with cookies\
stolen from a cookie jar, if we catch Freddie with a single
cookie, he can argue that a friend gave him the cookie. But if
we catch Freddie with five cookies, it will be much harder
for him to argue that his hands were not in the cookie jar. If \
the distributor sees “enough evidence” that an agent leaked
data, he may stop doing business with him, or may initiate\
legal proceedings.
 In this paper, we develop a model for assessing the “guilt”
of agents. We also present algorithms for distributing objects
to agents, in a way that improves our chances of identifying
a leaker. Finally, we also consider the option of adding
“fake” objects to the distributed set. Such objects do not
correspond to real entities but appear realistic to the agents.
In a sense, the fake objects act as a type of watermark for the
entire set, without modifying any individual members.

Fig1.System Architecture

II. DATA ALLOCATION PROBLEM

A. Fake objects

 Request data

Distributor

Agent

Database
View Data to

transfer the agents

Add the fake
objects to the
original data

Find the guilty
agents

Probability
distribution of data

leaked by guilty

Login
registration

Explicit Data
request

Transfer data to
agents

E-Random
(Algorithm

)

E-Optimal
(Algorithm)

International Journal of Computer Trends and Technology- volume3Issue4- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 549

 The distributor may be able to add fake objects to the
distributed data in order to improve his effectiveness in
detecting guilty agents. However, fake objects may impact
the correctness of what agents do, so they may not always be
allowable.
The idea of perturbing data to detect leakage is not new,
e.g., [1]. However, in most cases, individual objects are
Perturbed, e.g., by adding random noise to sensitive
salaries,or adding fake elements.

Fig2. Leakage problem instances.

 In some applications, fake objects may cause fewer
problems that perturbing real objects.
Creation. The creation of fake but real-looking objects is a
nontrivial problem whose thorough investigation is beyond
the scope of this paper. Here, we model the creation of a
fake object for agent Ui as a black box function
CREATEFAKEOBJECT (Ri, Fi, condi) that takes as input
the set of all objects Ri, the subset of fake objects Fi that Ui
has received so far, and condi, and returns a new fake object.
This function needs condi to produce a valid object that
satisfies Ui’s condition. Set Ri is needed as input so that the
created fake object is not only valid but also
indistinguishable from other real objects. For example, the
creation function of a fake payroll record that includes an
employee rank and a salary attribute may take into account
the distribution of employee ranks, the distribution of
salaries, as well as the correlation between the two
attributes. Ensuring that key statistics do not change by the
introduction of fake objects is important if the agents will be
using such statistics in their work. Finally, function
CREATEFAKEOBJECT () has to be aware of the fake
objects Fi added so far, again to ensure proper statistics. The
distributor can also use function CREATEFAKEOBJECT ()
When it wants to send the same fake object to a set of
agents. In this case, the function arguments are the union of
the Ri and Fi tables, respectively, and the intersection of the
conditions condi s.
 Although we do not deal with the implementation of
CREATEFAKEOBJECT (), we note that there are two main
design options. The function can either produce a fake object
on demand every time it is called or it can return an
appropriate object from a pool of objects created in advance.
We are using the following strategies to add the fake object
to finding guilty agent,

Fig3. Adding the Original records

Fig4. Adding the fake objects

B. optimization problem
The distributor’s data allocation to agents has one constraint
and one objective. The distributor’s constraint is to satisfy
agents’ requests, by providing them with the number of
objects they request or with all available objects that satisfy
their conditions. His objective is to be able to detect an agent
who leaks any portion of his data. We consider the
constraint as strict. The distributor may not deny serving an
agent request and may not provide agents with different
perturbed versions of the same objects as in [1]. We consider
fake object distribution as the only possible constraint
relaxation. Our detection objective is ideal and intractable.
Detection would be assured only if the distributor gave no
data object to any agent. We use instead the following

International Journal of Computer Trends and Technology- volume3Issue4- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 550

objective: maximize the chances of detecting a guilty agent
that leaks all his data objects. We now introduce some
notation to state formally the distributor’s objective. Recall
that Pr {Gj/S= Ri} or simply Pr {Gj/Ri}is the probability
that agent Uj is guilty if the distributor discovers a leaked
table S that contains all Ri objects. We define the difference
functions ∆(i, j) as
∆(i, j)=Pr{Gi /Ri}-Pr{Gj/Ri} i, j=1,…..n. …………(1)
Note that differences _ have nonnegative values: given that
Set Ri contains all the leaked objects, agent Ui is at least as
likely to be guilty as any other agent. Difference ∆(i,j) is
positive for any agent Uj, whose set Rj does not contain all
data of S. It is zero if Ri Rj. In this case, the distributor
will consider both agents Ui and Uj equally guilty since they
have both received all the leaked objects. The larger a ∆ (i, j)
value is, the easier it is to identify Ui as the leaking agent.
Thus, we want to distribute data so that _ values are large.
Problem Definition. Let the distributor have data requests
from n agents. The distributor wants to give tables R1, . .
..,Rn to agents U1, . . . , Un, respectively, so that . he
satisfies agents’ requests, and . he maximizes the guilt
probability differences ∆(I,j) for all i ,j=1and i≠ j. Assuming
that the Ri sets satisfy the agents’ requests, we can express
the problem as a multicriterion optimization problem:
maximize (….,∆(i ,j),..) i≠ j. ……….. (2)
If the optimization problem has an optimal solution, it
means that there exists an allocation D*= (R1*,…, Rn*}
 such that any other feasible allocation yields
D*=(R1*,…,Rn*} yields ∆(i,j)≥∆*(i,j) for all i; j. This
means that allocation Tj* allows the distributor to discern
any guilty agent with higher confidence than any other
allocation, since it maximizes the probability Pr {Gi/Ri}
with respect to any other probability Pr {Gi/Rj} with j ≠i.
Even if there is no optimal allocation D*, a multicriterion
problem has Pareto optimal allocations.

C. Objective Approximation
 We can approximate the objective of (2) with (3) that does
not depend on agents’ guilt probabilities, and therefore, on
p:
 Maximise (..,|RiRj|/|Ri|,….) i ≠j. …………(3)
(over R1,..Rn)
This approximation is valid if minimizing the relative
overlap |RiRj|/|Ri| maximizes ∆ (i ,j).
 The intuitive argument for this approximation is that the
fewer leaked objects set Rj contains, the less guilty agent Uj
will appear compared to Ui (since S = Ri). In Fig. 1, we see
that if S = R1, the difference Pr {G1/S}-Pr {G2/S} decreases
as the relative overlap|jR2S| /|S| increases.
Theorem 1: If a distribution D= {R1,….., Rn} that satisfies
agents’ requests minimizes {RiRj|/|Ri| and |Vt|=|Vt’| for all
t,tT, then D Maximizes(i,j).The approximate optimization
problem has still multiple criteria and it can yield either an
optimal or multiple Pareto optimal solutions. Pareto optimal
solutions let us detect a guilty agent Ui with high
confidence, at the expense of an inability to detect some

other guilty agent or agents. Since the distributor has no a
priori information for the agents’ intention to leak their data,
he has no reason to bias the object allocation against a
particular agent. Therefore, we can scalarize the problem
objective by assigning the same weights to all vector
objectives.
Maximize i=1 1/|Ri|j=1|Ri  Rj| …….. (4a)
(Over R1… Rn)
Maximize max |Ri  Rj| /|Ri| ……… (4b)
(Over R1… Rn)
 Both scalar optimization problems yield the optimal
solution of the problem of (3), if such solution exists. If
there is no global optimal solution, the sum-objective yields
the Pareto optimal solution that allows the distributor to
detect the guilty agent, on average (over all different agents),
with higher confidence than any other distribution. The max-
objective yields the solution that guarantees that the
distributor will detect the guilty agent with certain
confidence in the worst case. Such guarantee may adversely
impact the average performance of the distribution.

III. ALLOCATION STRATEGIES
 In this section, we describe allocation strategies that solve
exactly or approximately the scalar versions of (3) for the
different instances presented in Fig. 2. We resort to
approximate solutions in cases where it is inefficient to solve
accurately the optimization problem. In Section (a), we deal
with problems with explicit data requests, and in Section (b),
with problems with sample data requests. proofs of theorems
that are stated in the following sections are available in [14].

A. Explicit Data Requests
 In problems of class EF, the distributor is not allowed to
add fake objects to the distributed data. So, the data
allocation is fully defined by the agents’ data requests.
Therefore, there is nothing to optimize. In EF problems,
objective values are initialized by agents’ data requests. Say,
for example, that T= {t1, t2} and there are two agents with
explicit data requests such\ that R1= {t1, t2} and R2 = {t1|.
The value of the sum objective is in this case
i=1 1/|Ri|j=1|Ri  Rj|=1/2+1/1=1.5.
The distributor cannot remove or alter the R1 or R2 data to
decrease the overlap R1R2. However, say that the
distributor can create one fake object (B= 1) and both agents
can receive one fake object (b1= b2= 1). In this case, the
distributor can add one fake object to either R1 or R2 to
increase the corresponding denominator of the summation
term. Assume that the distributor creates a fake object f and
he gives it to agent R1. Agent U1 has now R1= {t1, t2, f}
and F1={f} and the value of the sum-objective decreases
to 1/3+1/1=1.33<1.5.
Algorithm 1. Allocation for Explicit Data Requests (EF)
Input: R1. . . Rn, cond1; . . . ; condn, b1,. . . , bn, B
Output: R1. . . Rn, F1. . . Fn
1: R  Agents that can receive fake objects
2: for i =1… n do

International Journal of Computer Trends and Technology- volume3Issue4- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 551

3: if bi > 0 then
4: RR {i}
5: Fi  ;
6: while B > 0 do
7: i  SELECTAGENT(R, R1. . .Rn)
8: f  CREATEFAKEOBJECT (Ri, Fi, condi)
9: Ri  Ri  {f}
10: Fi  Fi {f}
11: bi  bi _ 1
12: if bi = 0then
13: R R/ {Ri}
14: B B _ 1
Algorithm 2. Agent Selection for e-random
1: function SELECTAGENT (R, R1; . . ., Rn)
2: i select at random an agent from R
3: return i
 In lines 1-5, Algorithm 1 finds agents that are eligible to
receiving fake objects in O(n) time. Then, in the main loop
in lines 6-14, the algorithm creates one fake object in every
iteration and allocates it to random agent. The main loop
takes O (B) time. Hence, the running time of the algorithm is
O(n+ B). If B ≥n i=1 bi, the algorithm minimizes every
term of the objective summation by adding the maximum
number bi of fake objects to every set Ri, yielding the
optimal solution. Otherwise, if B < i=1 bi (as in our
example where B=1 < b1+b2 =2), the algorithm just selects
at random the agents that are provided with fake objects. We
return back to our example and see how the objective would
change if the distributor adds fake object f to R2 instead of
R1. In this case, the sum-objective would be 1/
2+1/2=1<1.33. The reason why we got a greater
improvement is that the addition of a fake object to R2 has
greater impact on the corresponding summation terms, since
1/|R1|-1/|R1|+1=1/6<1/|R2|-1/|R2|+1=1/2.
The left-hand side of the inequality corresponds to the
objective improvement after the addition of a fake object to
R1 and the right-hand side to R2.
 Algorithm 3. Agent Selection for e-optimal
1: function SELECTAGENT (R,R1; . . .;Rn)
2: i argmax (1/|Ri|-1/|Ri|+1)|RiRj|
3: return i
 Algorithm 3 makes a greedy choice by selecting the agent
that will yield the greatest improvement in the sum objective
the cost of this greedy choice is O (n2) in every iteration.
The overall running time of e-optimal is O (n+n2B) =O
(n2B). Theorem 2 shows that this greedy approach finds an
optimal distribution with respect to both optimization
objectives defined in (4).
Theorem 2. Algorithm e-optimal yields an object allocation
that minimizes both sum- and max-objective in problem
instances of class EF.

B. Sample Data Requests
 With sample data requests, each agent Ui may receive any
T subset out of (|T|) different ones. Hence, there are
i=1(|T|) different object allocations. In every allocation,

the distributor can permute T objects and keep the same
chances of guilty agent detection. The reason is that the guilt
probability depends only on which agents have received the
leaked objects and not on the identity of the leaked objects.
Therefore, from the distributor’s perspective, different
allocations. The distributor’s problem is to pick one out so
that he optimizes his objective. We formulate the problem
as a nonconvex QIP that is NP-hard.
 Note that the distributor can increase the number of
possible allocations by adding fake objects (and increasing
|T|) but the problem is essentially the same. So, in the rest of
this section, we will only deal with problems of class SF, but
our algorithms are applicable to SF problems as well.

Fig5. Requesting the data

C. Random
 An object allocation that satisfies requests and ignores the
distributor’s objective is to give each agent Ui a randomly
selected subset of T of size mi. We denote this algorithm by
S-random and we use it as our baseline. We present S-
random in two parts: Algorithm 4 is a general allocation
algorithm that is used by other algorithms in this section. In
line 6 of Algorithm 4, there is a call to function
SELECTOBJECT () whose implementation differentiates
algorithms that rely on Algorithm 4. Algorithm 5 shows
function SELECTOBJECT () for s-random.
Algorithm 4. Allocation for Sample Data Requests (SF)
Input: m1, . . ,mn, |T| . Assuming mi <|T|
 Output: R1, . . .,Rn
1: a 0|T|. a[k]:number of agents who have received
object tk
2: R1 . . . Rn 
3: remaining i=1 mi
4: while remaining > 0 do

International Journal of Computer Trends and Technology- volume3Issue4- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 552

5: for all i = 1. . . n: |Ri| <mi do
6: k SELECTOBJECT (i, Ri) May also use
additional parameters
7: Ri  Ri {tk}
8: a[k]  a[k] + 1
9: remaining remaining _ 1
Algorithm 5. Object Selection for s-random
1: function SELECTOBJECT (i, Ri)
2: k select at random an element from set
{K/tkRi}
3: return k

Fig6. Transferring the object to third person

D. Overlap Minimization
 In the last example, the distributor can minimize both
objectives by allocating distinct sets to all three agents. Such
an optimal allocation is possible, since agents request in total
fewer objects than the distributor has. We can achieve such
an allocation by using Algorithm 4 and SELECTOBJECT ()
of Algorithm 6. We denote the resulting algorithm by s-
overlap. Using Algorithm 6, in each iteration of Algorithm
4, we provide agent Ui with an object that has been given to
the smallest number of agents. So, if agents ask for fewer
objects than |T|, Algorithm 6 will return in every iteration an
object that no agent has received so far. Thus, every agent
will receive a data set with objects that no other agent has.

Algorithm 6. Object Selection for s-overlap
1: function SELECTOBJECT (i, Ri, a)
2: K{k| k= argmin a[k]}
3: k select at random an element from set
{k|kktkRi}
4: return k
 The running time of Algorithm 6 is O (1) if we keep in

memory the set {k| k= argmin k a[k]}. This set contains
initially all indices {1. . . |T|}, since a[k]} for all
k =1, .. |T|. After every Algorithm 4 main loop iteration,
We remove from this set the index of the object that we give
to an agent. After |T| iterations, this set becomes empty and
we have to reset it again to {1,..,|T|}, since at this point,
a[k]= 1 for all k = 1, . . . ; |T|. The total running time of
Algorithm s-random is thus O (i=1 mi).
Let M =i=1 mi. If M |T|, algorithm s-overlap yields
disjoint data sets and is optimal for both objectives (9a) and
(9b). If M >|T|, it can be shown that algorithm s-random
yield an object sharing distribution such that:
 a[k]= M |T|+ 1 for M mod|T| entries of vector a;
 M |T| for the rest:

Theorem 3. In general, Algorithm s-overlap does not
minimize sum-objective. However, s-overlap does minimize
the sum of overlaps. To illustrate that s-overlap does not
minimize the sum objective, assume that set T has four
objects and there are four agents requesting samples with
sizes m1=m2= 2 and m3 = m4= 1. A possible data allocation
from s-overlap is R1= {t1, t2}, R2= {t3, t4}; R3= {t1}, R4 =
{t3}. ……….. (5)
 Allocation (10) yields:
1/|Ri||RiRj|=1/2+1/2+1/1+1/1=3
 With this allocation, we see that if agent U3 leaks his data,
We will equally suspect agents U1 and U3. Moreover, if
agent U1 leaks his data, we will suspect U3 with high
probability, since he has half of the leaked data. The
situation is similar for agents U2 and U4. However, the
following object allocation R1= {t1,t2}, R2 ={t1, t2},
R3={t3},R4={t4} ………. (6)
 Yields a sum-objective equal to 2/ 2+2/2+0+0=2<3 which
shows that the first allocation is not optimal. With this
allocation, we will equally suspect agents U1 and U2 if
either of them leaks his data. However, if either U3 or U4
leaks his data, we will detect him with high confidence.
Hence, with the second allocation we have, on average,
better chances of detecting a guilty agent.

E. Approximate Sum-Objective Minimization
 The last example showed that we can minimize the sum
objective, and therefore, increase the chances of detecting a
guilty agent, on average, by providing agents who have mall
requests with the objects shared among the fewest agents.
This way, we improve our chances of detecting guilty
agents with small data requests, at the expense of reducing
our chances of detecting guilty agents with large data
requests. However, this expense is small, since the
probability to detect a guilty agent with many objects is less
affected by the fact that other agents have also received his
data. We provide an algorithm that implements this intuition
and we denote it by s-sum. Although we evaluate this
algorithm in Section 8, we do not present the pseudo code
here due to the space limitations

International Journal of Computer Trends and Technology- volume3Issue4- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 553

SELECTOBJECT () procedure in Algorithm 7. We denote
the new algorithm by s-max. In this algorithm, we allocate to
an agent the object that yields the minimum increase of the
maximum relative overlap among any pair of agents. If we
apply s-max to the example above, after the first five main
loop iterations in Algorithm 4, the Ri sets are:
R1={t1, t2}; R2 ={t2,},R3 ={t3}; and R4 ={t4}:
 In the next iteration, function SELECTOBJECT () must
decide which object to allocate to agent U2. We see that
only objects t3 and t4 are good candidates, since allocating
t1 to U2 will yield a full overlap of R1 and R2. Function
SELECTOBJECT () of s-max returns indeed t3 or t4.

Algorithm 7. Object Selection for s-max
1: function SELECTOBJECT (i, R1, . . .,Rn,m1, . . .,mn)
2: min_ overlap1 the minimum out of the maximum
relative overlaps that the allocations of different objects to
Ui yield
3: for k  {k|tk Ri} do
4: max_ rel_ ov0. the maximum relative overlap between
Ri and any set Rj that the allocation of tk to Ui yields
5: for all j = 1… n: j ≠ i and tk  Rj do
6: abs_ ov|Ri  Rj |+ 1
7: rel_ ov abs_ ov/min (mi, mj)
8: max _rel_ ov Max (max_ rel_ ov, rel_ ov)
9: if max_ rel_ ov  min_ overlap then
10: min_ overlap max_ rel_ ov
11: ret _k k
12: return ret_ k

IV. BENEFITS
In Section 7, we presented algorithms to optimize the
Problem of (3) that is an approximation to the original
optimization problem of (2). In this section, we evaluate the
Presented algorithms with respect to the original problem.
In this way, we measure not only the algorithm performance,
but also we implicitly evaluate how effective the
approximation is.
The objectives in (2) are the ∆difference functions. Note
that there are n(n-1)objectives, since for each agent Ui,
there are n-1 differences∆(i, j)for j=1, . . . , n and j ≠ i.
We evaluate a given allocation with the following objective
scalarizations as metrics:
∆:=i , j=1,..n, i≠ j ∆(i, j)/n(n-1) ……….(7a)

min∆ :=min i , j=1,..n ,i≠ j ∆ (i, j). ………(7b)

 Metric ∆ is the average of ∆ (i, j) values for a given
allocation and it shows how successful the guilt detection is,
On average, for this allocation. For example, if∆=0:4, then,
on average, the probability Pr{Gi/Ri} for the actual guilty
agent will be 0.4 higher than the probabilities of nonguilty
agents. Note that this scalar version of the original problem
Objective is analogous to the sum-objective scalarization of
the problem of (3). Hence, we expect that an algorithm that
is designed to minimize the sum-objective will maximize _.

Metric min ∆ is the minimum∆ (i, j) value and it corresponds
to the case where agent Ui has leaked his data and both Ui
and another agent Uj have very similar guilt probabilities. If
min ∆ is small, then we will be unable to Identify Ui as the
leaker, versus Uj. If min∆ is large, say, 0.4, then no matter
which agent leaks his data, the probability that he is guilty
will be 0.4 higher than any other nonguilty agent. This
metric is analogous to the max-objective scalarization of the
approximate optimization problem. The values for these
metrics that are considered acceptable will of course depend
on the application. In particular, they depend on what might
be considered high confidence that an agent is guilty. For
instance, say that Pr {Gi/Ri} = 0.9 is enough to arouse our
suspicion that agent Ui leaked data.
 Furthermore, say that the difference between Pr {Gi/Ri}
and any other Pr{Gj/Ri} is at least 0.3. In other words, the
guilty agent is (0.9 – 0.6)/0.6 100% = 50% more likely to
be guilty compared to the other agents. In this case, we may
be willing to take action against Ui (e.g., stop doing business
with him, or prosecute him). In the rest of this section, we
will use value 0.3 as an example of what might be desired in
values. To calculate the guilt probabilities and differences,
we use throughout this section p =0.5. Although not reported
here, we experimented with other p values and observed that
the relative performance of our algorithms and our main
conclusions do not change. If p approaches to 0, it becomes
easier to find guilty agents and algorithm performance
converges. On the other hand, if p approaches 1, the relative
differences among algorithms grow since more evidence is
needed to find an agent guilty.

V. SAMPLE IMPLEMENTATION CODE
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.http.HttpSession.*;
import java.io.*;
import java.util.*;
import javax.sql.*;
public class FakeRegistration extends HttpServlet

 {
 HttpSession hs;

 PrintStream ps,ps1;
 Connection con;

PreparedStatement st;
ResultSet rs;

 // String str=null;
String name = null;

 int pid ;
String sex= null;
String cp= null;
int bs;
String exang = null;
String slope = null;
int ca;
int bp;

International Journal of Computer Trends and Technology- volume3Issue4- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 554

int thalach;
//String acno = null;
//String trapass = null;
RequestDispatcher rd=null;
int i;
public void init(ServletConfig sc)throws

ServletException
{
super.init(sc);
}

public void service (HttpServletRequest

req,HttpServletResponse res)
throws ServletException, IOException
{
doPost (req, res);
}
public void doGet(HttpServletRequest

req,HttpServletResponse res)
throws ServletException,IOException
{
doPost (req, res);
}
Public void doPost(HttpServletRequest

req,HttpServletResponse res)throws
ServletException,IOException

{

PrintWriter out=res.getWriter();
res.setContentType("text/html");
name = req.getParameter("fname");
pid = Integer.parseInt(req.getParameter("fpid"));
sex = req.getParameter("gender");
cp = req.getParameter("select");
bs = Integer.parseInt(req.getParameter("fblood"));
exang = req.getParameter("exang");
slope = req.getParameter("select2");
ca = Integer.parseInt(req.getParameter("fca"));
bp= Integer.parseInt(req.getParameter("fbp"));
 thalach =

Integer.parseInt(req.getParameter("fthalach"));
 // acno = req.getParameter("acno");
 // trapass = req.getParameter("trapass");

 try {
 Class.forName("com.mysql.jdbc.Driver");

con =
DriverManager.getConnection("jdbc:mysql://localhost:3306/
distributor", "root", "password");

 //String query = "insert into
pat_info values(

 st = con.prepareStatement("insert into Fakerecord
values('"+name+"','"+pid+"','"+sex+"','"+cp+"','"+bs+"','"+ex
ang+"','"+slope+"','"+ca+"', '"+bp+"', '"+thalach+"')");
 i = st.executeUpdate();
System.out.println("query executed");

if(i!=0){
 rd=req.getRequestDispatcher("success.jsp");
}
else
 {
 rd=req.getRequestDispatcher("error.jsp");
}
}
catch (Exception e)
 {
rd=req.getRequestDispatcher("error.html");
e.printStackTrace();
 }
 rd.forward(req, res);
 }
}

VI. CONCLUSION AND FUTURE WORK
 In a perfect world, there would be no need to hand over
sensitive data to agents that may unknowingly or
maliciously leak it. And even if we had to hand over
sensitive data, in a perfect world, we could watermark each
object so that we could trace its origins with absolute
certainty.
 Our model is relatively simple, but we believe that it
captures the essential trade-offs. The algorithms we have
presented implement a variety of data distribution strategies
that can improve the distributor’s chances of identifying a
leaker. We have shown that distributing objects judiciously
can make a significant difference in identifying guilty
agents, especially in cases where there is large overlap in the
data that agents must receive.
 Our future work includes the investigation of agent guilt
models that capture leakage scenarios. Another open
problem is the extension of our allocation strategies so that
they can handle agent requests in an online fashion.

REFERENCES
 [1] A.subbiah and D.M.Blough.An Approach for fault tolerant and secure
data storage in collaborative Work environments.
[2].B.Mungamuru and H.Garcia-molina,”privacy,preservation and
Performance: The 3 p’s of Distributed Data Management,” technical report,
Stanford univ.,2008
[3] M. Atallah and s.Wagstaff. Watermarking with quadratic residues. In
proc.of IS&T/SPIE Conference on Security and Watermarking of
Multimedia Contents, January 1999.
 [4] P. Buneman and W.-C. Tan, “Provenance in Databases,” Proc.
ACM SIGMOD, pp. 1171-1173, 2007
[5] S.Katzenbeisser and F.A.peticolas,editors. Information Hiding
Techniques for Steganography and Digital Watermarking. Artech
House,2000.
[6] R. Agrawal and J. Kiernan, “Watermarking Relational Databases,”
Proc. 28th Int’l Conf. Very Large Data Bases (VLDB ’02), VLDB
Endowment, pp. 155-166, 2002.
[7] Y. Cui and J. Widom, “Lineage Tracing for General Data
Warehouse Transformations,” The VLDB J., vol. 12, pp. 41-58,
2003.

