
International Journal of Computer Trends and Technology- volume3Issue4- 2012 
 

ISSN: 2231-2803     http://www.internationaljournalssrg.org Page 548 
 

Development of Data leakage Detection Using 
Data Allocation Strategies 

Polisetty Sevani Kumari1, Kavidi Venkata Mutyalu2 
1 M.Tech, CSE, Sri Vasavi Engineering College, Pedatadepalli, Tadepalligudem 

W.G.Dt., A.P. India. 
2Asst. Professor, Dept of IT, Sri Vasavi Engineering College, Pedatadepalli, Tadepalligudem. 

W.G.Dt. A.P., India 
 
 
Abstract—  A data distributor has given sensitive data to a set 
of supposedly trusted agents (third parties). Some of the data 
are leaked and found in an unauthorized place. The distributor 
must assess the likelihood that the leaked data came from one 
or more agents, as opposed to having been independently 
gathered by other means. We propose data allocation strategies 
(across the agents) that improve the probability of identifying 
leakages. These methods do not rely on alterations of the 
released data (e.g., watermarks). In some cases, we can also 
inject “realistic but fake” data records to further improve our 
chances of detecting leakage and identifying the guilty party. 
In previously only one agent is going to leak the data but by 
using allocation strategies we are going to create multiple 
agents. this project is possible to show in stand alone system, 
but now we are going to show the result  dynamically using 
MVC architecture. 

I. INTRODUCTION 
  In the course of doing business, sometimes sensitive data 
must be handed over to supposedly trusted third parties. For 
example, a company may have partnerships with other 
companies that require sharing customer data. Another 
enterprise may outsource its data processing, so data must be 
given to various other companies. Our goal is to detect when 
the distributor’s sensitive data have been leaked by agents, 
and if possible to identify the agent that leaked the data. 
Perturbation is a very useful technique where the data are 
modified and made “less sensitive” before being handed to 
agents For example, one can replace exact values by ranges, 
or one can add random noise to certain attributes.  
Traditionally, leakage detection is handled by watermarking. 
We annunciate the need for watermarking database relations 
to deter their piracy, identify the unique characteristics of 
relational data which pose new challenges for watermarking, 
and provide desirable properties of watermarking system for 
relational data. A watermark can be applied to any database 
relation having attributes which are such that changes in a 
few of their values do not affect the applications. 
Watermarking means a unique code is embedded in each 
distributed copy If that copy is later discovered in the hands 
of an unauthorized party, the leaker can be identified. 
Furthermore, watermarks can sometimes be destroyed if the 
data recipient is malicious.  
  In this paper, we study unobtrusive techniques for detecting 
leakage of a set of objects or records. Specifically, we study 

the following scenario: After giving a set of objects to 
agents, the distributor discovers some of those same objects 
in an unauthorized place. At this point, the distributor can 
assess the likelihood that the leaked data came from one or 
more agents, as opposed to having been independently 
gathered by other means. Using an analogy with cookies\ 
stolen from a cookie jar, if we catch Freddie with a single 
cookie, he can argue that a friend gave him the cookie. But if 
we catch Freddie with five cookies, it will be much harder 
for him to argue that his hands were not in the cookie jar. If \ 
the distributor sees “enough evidence” that an agent leaked 
data, he may stop doing business with him, or may initiate\ 
legal proceedings. 
   In this paper, we develop a model for assessing the “guilt” 
of agents. We also present algorithms for distributing objects 
to agents, in a way that improves our chances of identifying 
a leaker. Finally, we also consider the option of adding 
“fake” objects to the distributed set. Such objects do not 
correspond to real entities but appear realistic to the agents. 
In a sense, the fake objects act as a type of watermark for the 
entire set, without modifying any individual members. 
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  The distributor may be able to add fake objects to the 
distributed data in order to improve his effectiveness in 
detecting guilty agents. However, fake objects may impact 
the correctness of what agents do, so they may not always be 
allowable.  
The idea of perturbing data to detect leakage is not new, 
e.g., [1]. However, in most cases, individual objects are 
Perturbed, e.g., by adding random noise to sensitive 
salaries,or adding fake elements. 

 
Fig2.  Leakage problem instances. 

 
   In some applications, fake objects may cause fewer 
problems that perturbing real objects. 
Creation. The creation of fake but real-looking objects is a 
nontrivial problem whose thorough investigation is beyond 
the scope of this paper. Here, we model the creation of a 
fake object for agent Ui as a black box function 
CREATEFAKEOBJECT (Ri, Fi, condi) that takes as input 
the set of all objects Ri, the subset of fake objects Fi that Ui 
has received so far, and condi, and returns a new fake object.  
This function needs condi to produce a valid object that 
satisfies Ui’s condition. Set Ri is needed as input so that the 
created fake object is not only valid but also 
indistinguishable from other real objects. For example, the 
creation function of a fake payroll record that includes an 
employee rank and a salary attribute may take into account 
the distribution of employee ranks, the distribution of 
salaries, as well as the correlation between the two 
attributes. Ensuring that key statistics do not change by the 
introduction of fake objects is important if the agents will be 
using such statistics in their work. Finally, function 
CREATEFAKEOBJECT () has to be aware of the fake 
objects Fi added so far, again to ensure proper statistics. The 
distributor can also use function CREATEFAKEOBJECT () 
When it wants to send the same fake object to a set of 
agents. In this case, the function arguments are the union of 
the Ri and Fi tables, respectively, and the intersection of the 
conditions condi s. 
   Although we do not deal with the implementation of 
CREATEFAKEOBJECT (), we note that there are two main 
design options. The function can either produce a fake object 
on demand every time it is called or it can return an 
appropriate object from a pool of objects created in advance. 
We are using the following strategies to add the fake object 
to finding guilty agent, 
 

 
 

Fig3. Adding the Original records 

 

 
 

Fig4. Adding the fake objects 

B. optimization problem 
The distributor’s data allocation to agents has one constraint  
and one objective. The distributor’s constraint is to satisfy 
agents’ requests, by providing them with the number of 
objects they request or with all available objects that satisfy 
their conditions. His objective is to be able to detect an agent 
who leaks any portion of his data. We consider the 
constraint as strict. The distributor may not deny serving an 
agent request and may not provide agents with different 
perturbed versions of the same objects as in [1]. We consider 
fake object distribution as the only possible constraint 
relaxation. Our detection objective is ideal and intractable. 
Detection would be assured only if the distributor gave no 
data object to any agent. We use instead the following 
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objective: maximize the chances of detecting a guilty agent 
that leaks all his data objects. We now introduce some 
notation to state formally the distributor’s objective. Recall 
that Pr {Gj/S= Ri} or simply Pr {Gj/Ri}is the probability 
that agent Uj is guilty if the distributor discovers a leaked 
table S that contains all Ri objects. We define the difference 
functions ∆(i, j) as 
∆(i, j)=Pr{Gi /Ri}-Pr{Gj/Ri}  i, j=1,…..n.    …………(1) 
Note that differences _ have nonnegative values: given that 
Set Ri contains all the leaked objects, agent Ui is at least as 
likely to be guilty as any other agent. Difference ∆(i,j) is 
positive for any agent Uj, whose set Rj does not contain all 
data of S. It is zero if Ri Rj. In this case, the distributor 
will consider both agents Ui and Uj equally guilty since they 
have both received all the leaked objects. The larger a ∆ (i, j) 
value is, the easier it is to identify Ui as the leaking agent. 
Thus, we want to distribute data so that _ values are large. 
Problem Definition. Let the distributor have data requests 
from n agents. The distributor wants to give tables R1, . . 
..,Rn to agents U1, . . . , Un, respectively, so that . he 
satisfies agents’ requests, and . he maximizes the guilt 
probability differences ∆(I,j) for all  i ,j=1and i≠ j. Assuming 
that the Ri sets satisfy the agents’ requests, we can express 
the problem as a multicriterion optimization problem: 
maximize (….,∆(i ,j),..)  i≠ j.                      ……….. (2) 
If the optimization problem has an optimal solution, it 
means that there exists an allocation D*= (R1*,…, Rn*} 
 such that any other feasible allocation yields 
D*=(R1*,…,Rn*} yields ∆(i,j)≥∆*(i,j) for all i; j. This 
means that allocation Tj* allows the distributor to discern 
any guilty agent with higher confidence than any other 
allocation, since it maximizes the probability Pr {Gi/Ri} 
with respect to any other probability Pr {Gi/Rj} with j ≠i. 
Even if there is no optimal allocation D*, a multicriterion 
problem has Pareto optimal allocations.  

C. Objective Approximation 
  We can approximate the objective of (2) with (3) that does 
not depend on agents’ guilt probabilities, and therefore, on 
p: 
 Maximise (..,|RiRj|/|Ri|,….)  i ≠j.                 …………(3) 
(over  R1,..Rn) 
This approximation is valid if minimizing the relative 
overlap |RiRj|/|Ri| maximizes ∆ (i ,j). 
 The intuitive argument for this approximation is that the 
fewer leaked objects set Rj contains, the less guilty agent Uj 
will appear compared to Ui (since S = Ri). In Fig. 1, we see 
that if S = R1, the difference Pr {G1/S}-Pr {G2/S} decreases 
as the relative overlap|jR2S| /|S| increases.  
Theorem 1: If a distribution D= {R1,….., Rn} that satisfies 
agents’ requests minimizes {RiRj|/|Ri| and |Vt|=|Vt’| for all 
t,tT, then D Maximizes(i,j).The approximate optimization 
problem has still multiple criteria and it can yield either an 
optimal or multiple Pareto optimal solutions. Pareto optimal 
solutions let us detect a guilty agent Ui with high 
confidence, at the expense of an inability to detect some 

other guilty agent or agents. Since the distributor has no a 
priori information for the agents’ intention to leak their data, 
he has no reason to bias the object allocation against a 
particular agent. Therefore, we can scalarize the problem 
objective by assigning the same weights to all vector 
objectives.  
Maximize          i=1 1/|Ri|j=1|Ri  Rj|     ……..  (4a) 
(Over R1… Rn) 
Maximize          max |Ri  Rj| /|Ri|               ……… (4b)          
(Over R1… Rn) 
  Both scalar optimization problems yield the optimal 
solution of the problem of (3), if such solution exists. If 
there is no global optimal solution, the sum-objective yields 
the Pareto optimal solution that allows the distributor to 
detect the guilty agent, on average (over all different agents), 
with higher confidence than any other distribution. The max-
objective yields the solution that guarantees that the 
distributor will detect the guilty agent with certain 
confidence in the worst case. Such guarantee may adversely 
impact the average performance of the distribution. 

III. ALLOCATION STRATEGIES 
  In this section, we describe allocation strategies that solve 
exactly or approximately the scalar versions of (3) for the 
different instances presented in Fig. 2. We resort to 
approximate solutions in cases where it is inefficient to solve 
accurately the optimization problem. In Section (a), we deal 
with problems with explicit data requests, and in Section (b), 
with problems with sample data requests. proofs of theorems 
that are stated in the following sections are available in [14]. 

A.  Explicit Data Requests 
    In problems of class EF, the distributor is not allowed to 
add fake objects to the distributed data. So, the data 
allocation is fully defined by the agents’ data requests. 
Therefore, there is nothing to optimize. In EF problems, 
objective values are initialized by agents’ data requests. Say, 
for example, that T= {t1, t2} and there are two agents with 
explicit data requests such\ that R1= {t1, t2} and R2 = {t1|. 
The value of the sum objective is in this case  
i=1 1/|Ri|j=1|Ri  Rj|=1/2+1/1=1.5. 
The distributor cannot remove or alter the R1 or R2 data to 
decrease the overlap R1R2. However, say that the 
distributor can create one fake object (B= 1) and both agents 
can receive one fake object (b1= b2= 1). In this case, the 
distributor can add one fake object to either R1 or R2 to 
increase the corresponding denominator of the summation 
term. Assume that the distributor creates a fake object f and 
he gives it to agent R1. Agent U1 has now R1= {t1, t2, f} 
and F1={f} and the value of the sum-objective decreases 
to 1/3+1/1=1.33<1.5. 
Algorithm 1. Allocation for Explicit Data Requests (EF) 
Input: R1. . . Rn, cond1; . . . ; condn, b1,. . . , bn, B 
Output: R1. . . Rn, F1. . . Fn 
1: R       Agents that can receive fake objects 
2: for i =1… n do 
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3: if bi > 0 then 
4: RR {i} 
5: Fi        ; 
6: while B > 0 do 
7: i  SELECTAGENT(R, R1. . .Rn) 
8: f  CREATEFAKEOBJECT (Ri, Fi, condi) 
9: Ri  Ri  {f} 
10: Fi  Fi {f} 
11: bi  bi _ 1 
12: if bi = 0then 
13: R R/ {Ri} 
14: B B _ 1 
Algorithm 2. Agent Selection for e-random 
1: function SELECTAGENT (R, R1; . . ., Rn) 
2: i select at random an agent from R 
3: return i 
  In lines 1-5, Algorithm 1 finds agents that are eligible to 
receiving fake objects in O(n) time. Then, in the main loop 
in lines 6-14, the algorithm creates one fake object in every 
iteration and allocates it to random agent. The main loop 
takes O (B) time. Hence, the running time of the algorithm is  
O(n+ B). If B ≥n i=1 bi, the algorithm minimizes every 
term of the objective summation by adding the maximum 
number bi of fake objects to every set Ri, yielding the 
optimal solution. Otherwise, if B < i=1 bi (as in our 
example where B=1 < b1+b2 =2), the algorithm just selects 
at random the agents that are provided with fake objects. We 
return back to our example and see how the objective would 
change if the distributor adds fake object f to R2 instead of 
R1. In this case, the sum-objective would be 1/ 
2+1/2=1<1.33. The reason why we got a greater 
improvement is that the addition of a fake object to R2 has 
greater impact on the corresponding summation terms, since 
1/|R1|-1/|R1|+1=1/6<1/|R2|-1/|R2|+1=1/2. 
The left-hand side of the inequality corresponds to the 
objective improvement after the addition of a fake object to 
R1 and the right-hand side to R2.  
 Algorithm 3. Agent Selection for e-optimal  
1: function SELECTAGENT (R,R1; . . .;Rn) 
2: i argmax (1/|Ri|-1/|Ri|+1)|RiRj| 
3: return i 
  Algorithm 3 makes a greedy choice by selecting the agent 
that will yield the greatest improvement in the sum objective 
the cost of this greedy choice is O (n2) in every iteration. 
The overall running time of e-optimal is O (n+n2B) =O 
(n2B). Theorem 2 shows that this greedy approach finds an 
optimal distribution with respect to both optimization 
objectives defined in (4).  
Theorem 2. Algorithm e-optimal yields an object allocation 
that minimizes both sum- and max-objective in problem 
instances of class EF. 

B. Sample Data Requests 
   With sample data requests, each agent Ui may receive any 
T subset out of (|T|) different ones. Hence, there are 
i=1(|T|) different object allocations. In every allocation, 

the distributor can permute T objects and keep the same 
chances of guilty agent detection. The reason is that the guilt 
probability depends only on which agents have received the 
leaked objects and not on the identity of the leaked objects. 
Therefore, from the distributor’s perspective, different 
allocations. The distributor’s problem is to pick one out so 
that he optimizes his objective.  We formulate the problem 
as a nonconvex QIP that is NP-hard. 
  Note that the distributor can increase the number of 
possible allocations by adding fake objects (and increasing 
|T|) but the problem is essentially the same. So, in the rest of 
this section, we will only deal with problems of class SF, but 
our algorithms are applicable to SF problems as well. 
 

 
 

Fig5. Requesting the data 

 

C. Random 
  An object allocation that satisfies requests and ignores the 
distributor’s objective is to give each agent Ui a randomly 
selected subset of T of size mi. We denote this algorithm by 
S-random and we use it as our baseline. We present S-
random in two parts: Algorithm 4 is a general allocation 
algorithm that is used by other algorithms in this section. In 
line 6 of Algorithm 4, there is a call to function 
SELECTOBJECT () whose implementation differentiates 
algorithms that rely on Algorithm 4. Algorithm 5 shows 
function SELECTOBJECT () for s-random.  
Algorithm 4. Allocation for Sample Data Requests (SF) 
Input: m1, . . ,mn, |T| .  Assuming mi <|T| 
 Output: R1, . . .,Rn 
1: a 0|T|.   a[k]:number of agents who have received 
object tk         
2: R1 . . . Rn  
3: remaining i=1 mi 
4: while remaining > 0 do 
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5: for all i = 1. . . n: |Ri| <mi do 
6: k SELECTOBJECT (i, Ri)   May also use 
additional parameters 
7: Ri  Ri {tk} 
8: a[k]  a[k] + 1 
9: remaining remaining _ 1 
Algorithm 5. Object Selection for s-random 
1: function SELECTOBJECT (i, Ri) 
2: k select at random an element from set 
{K/tkRi} 
3: return k 

 

 
Fig6. Transferring the object to third person 

 

 

D. Overlap Minimization 
  In the last example, the distributor can minimize both 
objectives by allocating distinct sets to all three agents. Such 
an optimal allocation is possible, since agents request in total 
fewer objects than the distributor has. We can achieve such 
an allocation by using Algorithm 4 and SELECTOBJECT () 
of Algorithm 6. We denote the resulting algorithm by s-
overlap. Using Algorithm 6, in each iteration of Algorithm 
4, we provide agent Ui with an object that has been given to 
the smallest number of agents. So, if agents ask for fewer 
objects than |T|, Algorithm 6 will return in every iteration an 
object that no agent has received so far. Thus, every agent 
will receive a data set with objects that no other agent has. 
 
Algorithm 6. Object Selection for s-overlap  
1: function SELECTOBJECT (i, Ri, a) 
2: K{k| k= argmin a[k]} 
3: k select at random an element from set 
{k|kktkRi} 
4: return k 
  The running time of Algorithm 6 is O (1) if we keep in 

memory the set {k| k= argmin k a[k]}. This set contains 
initially all indices {1. . . |T|}, since a[k]} for all 
k =1, .. |T|. After every Algorithm 4 main loop iteration, 
We remove from this set the index of the object that we give 
to an agent. After |T| iterations, this set becomes empty and 
we have to reset it again to {1,..,|T|}, since at this point, 
a[k]= 1 for all k = 1, . . . ; |T|. The total running time of 
Algorithm s-random is thus O (i=1 mi). 
Let M =i=1 mi. If M |T|, algorithm s-overlap yields 
disjoint data sets and is optimal for both objectives (9a) and 
(9b). If M >|T|, it can be shown that algorithm s-random 
yield an object sharing distribution such that: 
 a[k]= M  |T|+ 1 for M mod|T| entries of vector a; 
             M |T| for the rest: 
 
Theorem 3. In general, Algorithm s-overlap does not 
minimize sum-objective. However, s-overlap does minimize 
the sum of overlaps. To illustrate that s-overlap does not 
minimize the sum objective, assume that set T has four 
objects and there are four agents requesting samples with 
sizes m1=m2= 2 and m3 = m4= 1. A possible data allocation 
from s-overlap is R1= {t1, t2}, R2= {t3, t4}; R3= {t1}, R4 = 
{t3}.            ……….. (5)                                       
  Allocation (10) yields: 
1/|Ri||RiRj|=1/2+1/2+1/1+1/1=3 
  With this allocation, we see that if agent U3 leaks his data, 
We will equally suspect agents U1 and U3. Moreover, if 
agent U1 leaks his data, we will suspect U3 with high 
probability, since he has half of the leaked data. The 
situation is similar for agents U2 and U4. However, the 
following object allocation R1= {t1,t2}, R2 ={t1, t2}, 
R3={t3},R4={t4}  ………. (6) 
 Yields a sum-objective equal to 2/ 2+2/2+0+0=2<3 which 
shows that the first allocation is not optimal. With this 
allocation, we will equally suspect agents U1 and U2 if 
either of them leaks his data. However, if either U3 or U4 
leaks his data, we will detect him with high confidence. 
Hence, with the second allocation we have, on average, 
better chances of detecting a guilty agent. 

E.  Approximate Sum-Objective Minimization 
  The last example showed that we can minimize the sum 
objective, and therefore, increase the chances of detecting a 
guilty agent, on average, by providing agents who have  mall 
requests with the objects shared among the fewest agents. 
This way, we improve our chances of detecting guilty  
agents with small data requests, at the expense of reducing 
our chances of detecting guilty agents with large data 
requests. However, this expense is small, since the 
probability to detect a guilty agent with many objects is less 
affected by the fact that other agents have also received his 
data. We provide an algorithm that implements this intuition 
and we denote it by s-sum. Although we evaluate this 
algorithm in Section 8, we do not present the pseudo code 
here due to the space limitations  
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SELECTOBJECT () procedure in Algorithm 7. We denote 
the new algorithm by s-max. In this algorithm, we allocate to 
an agent the object that yields the minimum increase of the 
maximum relative overlap among any pair of agents. If we 
apply s-max to the example above, after the first five main 
loop iterations in Algorithm 4, the Ri sets are: 
R1={t1, t2}; R2 ={t2,},R3 ={t3}; and R4 ={t4}: 
 In the next iteration, function SELECTOBJECT () must 
decide which object to allocate to agent U2. We see that 
only objects t3 and t4 are good candidates, since allocating 
t1 to U2 will yield a full overlap of R1 and R2. Function 
SELECTOBJECT () of s-max returns indeed t3 or t4. 
 
Algorithm 7. Object Selection for s-max 
1: function SELECTOBJECT (i, R1, . . .,Rn,m1, . . .,mn) 
2: min_ overlap1        the minimum out of the maximum 
relative overlaps that the allocations of different objects to 
Ui yield 
3: for k  {k|tk Ri} do 
4: max_ rel_ ov0. the maximum relative overlap between  
Ri and any set Rj that the allocation of tk to Ui yields 
5: for all j = 1… n: j ≠ i and tk  Rj do 
6: abs_ ov|Ri  Rj |+ 1 
7: rel_ ov abs_ ov/min (mi, mj) 
8: max _rel_ ov Max (max_ rel_ ov, rel_ ov) 
9: if max_ rel_ ov   min_ overlap then 
10: min_ overlap max_ rel_ ov 
11: ret _k k 
12: return ret_ k 

IV. BENEFITS 
In Section 7, we presented algorithms to optimize the 
Problem of (3) that is an approximation to the original 
optimization problem of (2). In this section, we evaluate the 
Presented algorithms with respect to the original problem. 
In this way, we measure not only the algorithm performance, 
but also we implicitly evaluate how effective the 
approximation is. 
The objectives in (2) are the ∆difference functions. Note 
that there are n(n-1)objectives, since for each agent Ui, 
there are n-1 differences∆(i, j)for j=1, . . . , n and j ≠ i. 
We evaluate a given allocation with the following objective 
scalarizations as metrics: 
∆:=i , j=1,..n, i≠ j ∆(i, j)/n(n-1)   ……….(7a) 
 
min∆ :=min i , j=1,..n  ,i≠ j ∆ (i, j).   ………(7b) 
 
  Metric ∆ is the average of ∆ (i, j) values for a given 
allocation and it shows how successful the guilt detection is, 
On average, for this allocation. For example, if∆=0:4, then, 
on average, the probability Pr{Gi/Ri} for the actual guilty 
agent will be 0.4 higher than the probabilities of nonguilty 
agents. Note that this scalar version of the original problem 
Objective is analogous to the sum-objective scalarization of 
the problem of (3). Hence, we expect that an algorithm that 
is designed to minimize the sum-objective will maximize _. 

Metric min ∆ is the minimum∆ (i, j) value and it corresponds 
to the case where agent Ui has leaked his data and both Ui 
and another agent Uj have very similar guilt probabilities. If 
min ∆ is small, then we will be unable to Identify Ui as the 
leaker, versus Uj. If min∆ is large, say, 0.4, then no matter 
which agent leaks his data, the probability that he is guilty 
will be 0.4 higher than any other nonguilty agent. This 
metric is analogous to the max-objective scalarization of the 
approximate optimization problem. The values for these 
metrics that are considered acceptable will of course depend 
on the application. In particular, they depend on what might 
be considered high confidence that an agent is guilty. For 
instance, say that Pr {Gi/Ri} = 0.9 is enough to arouse our 
suspicion that agent Ui leaked data. 
   Furthermore, say that the difference between Pr {Gi/Ri} 
and any other Pr{Gj/Ri} is at least 0.3. In other words, the 
guilty agent is (0.9 – 0.6)/0.6 100% = 50% more likely to 
be guilty compared to the other agents. In this case, we may 
be willing to take action against Ui (e.g., stop doing business 
with him, or prosecute him). In the rest of this section, we 
will use value 0.3 as an example of what might be desired in 
values. To calculate the guilt probabilities and differences, 
we use throughout this section p =0.5. Although not reported 
here, we experimented with other p values and observed that 
the relative performance of our algorithms and our main 
conclusions do not change. If p approaches to 0, it becomes 
easier to find guilty agents and algorithm performance 
converges. On the other hand, if p approaches 1, the relative 
differences among algorithms grow since more evidence is 
needed to find an agent guilty. 

V. SAMPLE IMPLEMENTATION CODE 
import java.sql.*; 
import javax.servlet.*; 
import javax.servlet.http.*; 
import javax.servlet.http.HttpSession.*; 
import java.io.*; 
import java.util.*; 
import javax.sql.*; 
public class FakeRegistration extends HttpServlet 

   { 
     HttpSession hs; 

 PrintStream ps,ps1; 
    Connection con; 

PreparedStatement st; 
ResultSet rs; 

      // String str=null; 
String name = null; 

    int pid ; 
String sex= null; 
String  cp= null; 
int bs; 
String exang = null; 
String slope = null; 
int ca; 
int bp; 
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int thalach; 
//String acno = null; 
//String trapass = null; 
RequestDispatcher rd=null; 
int i; 
public void init(ServletConfig sc )throws    

ServletException 
{ 
super.init(sc); 
} 
 
 
public void service (HttpServletRequest 

req,HttpServletResponse res) 
throws ServletException, IOException 
{ 
doPost (req, res); 
} 
public void doGet(HttpServletRequest 

req,HttpServletResponse res) 
throws ServletException,IOException 
{ 
doPost (req, res); 
} 
Public void doPost(HttpServletRequest 

req,HttpServletResponse res)throws 
ServletException,IOException 

{ 
 

PrintWriter out=res.getWriter(); 
res.setContentType("text/html"); 
name = req.getParameter("fname"); 
pid = Integer.parseInt(req.getParameter("fpid")); 
sex = req.getParameter("gender"); 
cp = req.getParameter("select"); 
bs = Integer.parseInt(req.getParameter("fblood")); 
exang = req.getParameter("exang"); 
slope = req.getParameter("select2"); 
ca = Integer.parseInt(req.getParameter("fca")); 
bp= Integer.parseInt(req.getParameter("fbp")); 
     thalach = 

Integer.parseInt(req.getParameter("fthalach")); 
   // acno = req.getParameter("acno"); 
   // trapass = req.getParameter("trapass"); 
 

    try { 
 Class.forName("com.mysql.jdbc.Driver"); 

con = 
DriverManager.getConnection("jdbc:mysql://localhost:3306/
distributor", "root", "password"); 

   //String query = "insert into 
pat_info values( 

            st = con.prepareStatement("insert into Fakerecord 
values('"+name+"','"+pid+"','"+sex+"','"+cp+"','"+bs+"','"+ex
ang+"','"+slope+"','"+ca+"', '"+bp+"', '"+thalach+"')"); 
 i = st.executeUpdate(); 
System.out.println("query executed"); 

if(i!=0){ 
 rd=req.getRequestDispatcher("success.jsp"); 
}  
else 
 { 
 rd=req.getRequestDispatcher("error.jsp"); 
} 
} 
catch (Exception e) 
 { 
rd=req.getRequestDispatcher("error.html"); 
e.printStackTrace(); 
 } 
 rd.forward(req, res); 
 } 
} 

VI. CONCLUSION AND FUTURE WORK 
  In a perfect world, there would be no need to hand over 
sensitive data to agents that may unknowingly or 
maliciously leak it. And even if we had to hand over 
sensitive data, in a perfect world, we could watermark each 
object so that we could trace its origins with absolute 
certainty.  
  Our model is relatively simple, but we believe that it 
captures the essential trade-offs. The algorithms we have 
presented implement a variety of data distribution strategies 
that can improve the distributor’s chances of identifying a 
leaker. We have shown that distributing objects judiciously 
can make a significant difference in identifying guilty 
agents, especially in cases where there is large overlap in the 
data that agents must receive. 
  Our future work includes the investigation of agent guilt 
models that capture leakage scenarios. Another open 
problem is the extension of  our allocation strategies so that 
they can handle agent requests in an online fashion. 
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