
International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 458

AUTOMATION OF NETWORK PROTOCOL
ANALYSIS

keerthi Manchikanti J Shiva Prashanth Vishnu Murthy G
pursuing M.Tech(CSE) Asst. Professor HOD,CSE
cvsr college of engineering cvsr college of engineering cvsr college of engineering

ABSTRACT - This paper “Automation of Network Protocol
Analysis” is mainly aimed to automate the entire process.
Starting from sniffing the network packets till the validation of it
has been taken care. Here we have automated the logging part
through a C program. Whenever packets will be transmitted
from a system, Ethereal/Wireshark will be automatically invoked
and start capturing the network packets. That will be stored in
.pcap format automatically. To validate the contents the logic has
been implemented to check particular pattern of packets or any
specific string. The .pcap format will be converted into a text
format so that the validation can be accomplished through
parsing the entire Ethereal/Wireshark log. Based upon the
parsing logic, pass/fail verdict will be indicated to user. The logic
can always be extended depending upon the project
requirements. The performance of the network is also calculated.

INTRODUCTION

 Wireshark is a free and open-source packet analyzer. It is
used for network troubleshooting, analysis, software and
communications protocol development, and education.
Originally named Ethereal, in May 2006.

 In our approach when packets are transmitted out of a
system in streams or frames, we generally use tools like
Ethereal/Wireshark to sniff the packets and analyze its
contents to check the accuracy of it. These open source tools
(i.e. Ethereal/Wireshark) are known as network protocol
analyzers and they are very useful during development of
software projects that are into networking domain.

 Wireshark is a network packet analyzer. A network
packet analyzer will try to capture network packets and tries to
display that packet data as detailed as possible. You could
think of a network packet analyzer as a measuring device used
to examine what's going on inside a network cable, just like a
voltmeter is used by an electrician to examine what's going on
inside an electric cable (but at a higher level, of course). In the
past, such tools were either very expensive, proprietary, or
both. However, with the advent of Wireshark, all that has
changed.

 Wireshark is perhaps one of the best open source packet
analyzers available today. It allows the user to see all traffic
being passed over the network (usually an Ethernet network
but support is being added for others) by putting the network
interface into promiscuous mode.

 Wireshark can be helpful in many other situations too.
Wireshark is software that understands the structure of
different networking protocols. Thus, it is able to display the
encapsulation and the fields along with their meanings of
different packets specified by different networking protocols.

 Wireshark uses pcap to capture packets, so it can only
capture the packets on the networks supported by pcap. Data
can be captured from the wire from a live network connection
or read from a file that records the already-captured packets.

 Live data can be read from a number of types of network,
including Ethernet, IEEE 802.11, PPP, and loopback. .
Wireshark runs on Unix and Unix-like systems, including
Linux, Solaris, HP-UX, FreeBSD, NetBSD, OpenBSD and
Mac OS X, and on Microsoft Windows. Wireshark is invoked
manually for analyzing the packets.

 Since wireshark should be invoked manually and even
network packet analysis is manual user finds it difficult for
analysis. So our approach is to mainly eliminate the manual
effort where the developers or test engineers analyze the
network packets manually. Here we are automating the entire
process right from capturing the network packets till the
analysis of it.

 This module can save project cost as well as the duration
to a major extent when integrated to the software development
life cycle (SDLC). The logic can always be extended
depending upon the project requirements. Along with
analyzing the packets, we are also analyzing the performance
of the network.

RELATED WORK
 Recent work [1] has proposed protocol reverse
engineering by using clustering on network traces. This
kind of approach is limited by the lack of semantic
information on network traces..

A novel approach to automatic protocol reverse
engineering[2] works by dynamically monitoring the
execution of the application, analyzing how the program is
processing the protocol messages that it receives. This is
motivated by the insight that an application encodes the
complete protocol and represents the authoritative
specification of the inputs that it can Accept. In this approach

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 459

they explained about information about the fields of
individual messages. Then, they aggregate this information to
determine a more general specification of the message format,
which can include optional or alternative fields, and
repetitions.
DICAP: Distributed Packet Capturing Architecture for
High-Speed Network Links in this approach[3] IP traffic
measurements form the basis of several network management
tasks, such as accounting ,planning, intrusion detection, and
charging. High-speed network links ch4llenge traditional IP
traffic analysis tools with their high amount of carried data
that needs to be processed within a small amount of time.
Centralized traffic measurements for high-speed links
typically require high performance capturing hardware that
usually comes with a high cost. Software-based capturing
solutions, such as lib pcap or PFRING, cannot cope with those
high data rates and experience high packet losses .Thus, in this
approach they proposed about a scalable architecture and its
implementation for Distributed Packet Capturing
(DiCAP)based on inexpensive off-the-shelf hardware running
Linux operating system. The prototype designed has been
tested as an implementation and was evaluated against other
Linux capturing tools. The evaluation shows that DiCAP can
perform loss-less IP packet header capture at high speed
packet rates when used alone and that it can highly improve
the performance of lib pcap of PFRING when used in
combination with those.
There are specialized network monitoring cards,called Dag
cards [4] that can be installed in standardPCs in order to
capture packets. Such commercial grade products are mainly
intended for broadband networks and could cost many
thousands of dollars. Onthe other hand it is possible to build
an inexpensivesoftware-based sniffer on a high-end PC to
capture packets on Fast Ethernet, or potentially on a Gigabit
Ethernet network.

There are a number of enhancements in
Winpcapwhich are not present in libpcap. One of these is
thedump to disk capability which allows Winpcap to
writepackets to disk directly from the kernel buffer without
going through the user level application [5].
 TCP/IP (Transmission Control Protocol/Internet
Protocol) is the basic communication language or protocol
of the Internet, and it is a set of protocols developed to allow
cooperating computers to share resources across anetwork.
The TCP/IP protocol suite is made of five layers:
physical, data link, network, transport, and application.
The layers contain relatively independent protocols that
can be mixed and matched depending on the needs of the
system [6].
Apart from limiting the number of exported packet records,
we can also reduce the size of each record to decrease the
overall data volume. This can be achieved by exporting only
selected header fields and payload sections. Thus, fields which
are not required for the analysis can be omitted. More over
,reduced size encoding as specified in [7] can be applied to
encode small integer and float values with fewer octets

thanthe original field length. For example, low port numbers
(0 to255) can be encoded within a single octet instead of two.
The increased use and interconnection of electronic
components in automobiles has made communication
behavior in automotive networks drastically more complex.
Both communication designs at application level and complex
communication scenarios are often under-specified or out of
scope of existing analysis techniques.
In the [8]traditional protocol analyzers in order to capture
communication at the level of abstraction that reflects
application design and show that the same technique can be
used to specify, monitor and test complex scenarios. We
present CFR (Channel Filter Rule) models, a novel approach
for the specification of analyzers and a domain-specific
language that implements this approach. From CFR models,
we can fully generate powerful analyzers that extract design
intentions, abstract protocol layers and even complex
scenarios from low level communication data. We show that
three basic concepts (channels,filters and rules) are sufficient
to build such powerful analyzers and identify possible areas of
application.
The amount of electronics and software in automobileshas
been increasing rapidly over the last two decades.
Modernvehicles contain a growing amount of Electronic
ControlUnits (ECUs) that are in charge of different
subsystems,ranging from motor control to entertainment [9].
Bus systemsconnect these distributed ECUs into
communication networks and thus allow previously
autonomous subsystems to exchange information in order to
provide more advanced functionality. Coping with the system
complexity that resultsfrom increasingly sophisticated and
more and more inter connected subsystems poses one of the
great challenges for the automotive industry today. Problems
caused byfaulty electronics and/or software are quickly
becoming thenumber one reason for car defects. Electronics
and software related product recalls cost car manufacturers
heavily in money and reputation. In addition to that, crucial
subsystemssuch as breaks, steering and airbags require utmost
reliability from software and electronics [10]. Exported packet
records are received by the real-time network analysis frame
workTOPAS[11]and examined by the open-source network
analyzer Wireshark. Monitoring devices are configured with a
Monitor Manager in order to export only data needed to
achieve the analysis goal. Apart from an architectural
description, this concept contains the results of experimental
performance evaluations and a discussion on the advantages
and limitations of our approach. Network monitoring is an
important means for network administrators for supervision
and fault diagnosis. In somecases, simple traffic statistics are
insufficient, and deep packetinspection is necessary to trace
and understand a certainoccurrence or behavior. Network
monitoring and analysis onpacket level is also deployed by
protocol and system engineers in order to test and debug new
protocol implementations.
 NetworkBehavior Analysis (NBA)[12] is a method which
passivelyobserves the incoming and outgoing traffic in a
network for acertain period and forms a benchmark for normal

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 460

traffic.Future behavior is compared to this benchmark to find
anyusual activity in a network. Any unusual and new patterns
areindicated as a threat or intrusions. IDS based on NBA are
veryefficient. However there a variety of NBA Tools in
market tohelp network admin in many ways. But this tool
helps networkadmin to identifY any user in a network. Unlike
other tools, itdoesn't look for malicious code or attacks in
network traffic.

SYSTEM DESIGN

 In our proposed system it consists of client and server
module. Client interacts with server by entering an option.
Based upon the option, the server calls a corresponding
function. The functions implemented are based on three
logics. One for UDP, SIP and QoS parameters each. Another
module is implemented to convert raw data packets to .pcap
format by appending the pcap header.

 UDP and SIP modules implement the parsing logic, the
result (success/failure) of which is sent back to the client. The
QoS module displays the network performance parameters
like delay and speed.

SYSTEM DESIGN DESCRIPTION

 The purpose of the design is to plan the solution of a
problem specified by the system requirements. This phase is
the first step in moving from problem to the solution domain.
In other words, starting with what is needed design takes us to
work how to satisfy the needs. The design of the system is
perhaps the most critical factor affecting the quality of the
software and has a major impact on the later phases,
particularly testing and maintenance.

 System design aims to identify the modules that should be
in the system, the specifications of these modules and to
interact with each other to produce the desired results. At the
end of the system design all the major data structures, file
formats, output formats as well as major modules in the
system and their specifications are decided.

 Client module creates two sockets. Through one socket
data is sent and through the other command. User options are
displayed to the user. The user option is sent to the server
processing. Corresponding to the user options, the data
packets are sent through data socket to the server. It receives
the result from the server.

 Depending on the user option Socket, Sip or Performance
handlers will be called. For socket or sip handler the server
receives the raw data packets. The pcap header is appended to
the raw packets so that the Tshark can recognize it. The pcap
file is then converted to text file using tshark commands. The
text file is used for parsing. If the user option is performance,
performance function will be called in which speed and delay
of the network are calculated.

LAYOUT OF PROTOCOL ANALYSIS SYSTEM

Fig 1: Layout of protocol analysis system

GOALS
 Capture live packet data from a network interface.
 Display packets with very detailed protocol information.
 Open and Save packet data captured.
 Captured network data can be browsed via a GUI, or via

the terminal (command line) version of the utility, tshark.
 Filter packets on many criteria.
 Search for packets on many criteria.
 Hundreds of protocols can be dissected.

ARCHITECTURAL STRATEGIES

 Here we will discuss about the architecture of Network
Protocol Analysis System which includes the following The
modules of the Network Protocol Analysis system, Interfaces,
Context level Data flow diagram.

 The Network Protocol Analysis System Module 1: Client
Module 2: Server

 Client module creates two sockets. Through one socket
data is sent and through the other command. User options are
displayed to the user. The user option is sent to the server
processing. Corresponding to the user options, the data
packets are sent through data socket to the server. It receives
the result from the server.

 Depending on the user option Socket, Sip or Performance
handlers will be called. For socket or sip handler the server
receives the raw data packets. The pcap header is appended to
the raw packets so that the Tshark can recognize it. The pcap
file is then converted to text file using tshark commands. The
text file is used for parsing. If the user option is performance,
performance function will be called in which speed and delay
of the network are calculated

DATA FLOW DIAGRAMS

 A data flow diagram (DFD) is a graphical representation
of the "flow" of data through an information system. A data

SERVER

PERFORMANCE SIP HANDLER SOCKET HANDLER

CLIENT User option

1. user option sent

5. result
 sent to user

3. sip handler called 3. performance handler called
3. socket handler
called

2. check for valid handler option

4. parsing result

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 461

flow diagram can also be used for the visualization of data
processing (structured design). It is common practice for a
designer to draw a context-level DFD first which shows the
interaction between the system and outside entities. DFD’s
show the flow of data from external entities into the system,
how the data moves from one process to another, as well as its
logical storage. This context-level DFD is then "exploded" to
show more detail of the system being modeled. There are only
four symbols:
 Squares representing external entities, which are sources

or destinations of data.
 Rounded rectangles representing processes, which take

data as input, do something to it, and output it.
 Arrows representing the data flows, which can either, be

electronic data or physical items.

Fig 2: Data flow diagram for proposed architecture

Context Diagram: Context diagram of Network Protocol
Analysis System contains following information.

 It contains one process called Network Protocol Analyzer
which accepts data, performs operations on them and
sends back the result to the user.

 It contains one external entity that is user which selects an
option and sends the data to the server.

 It contains two processes, one Pcap Header Function and
Parse Function (one for each option). Pcap Header
Function appends pcap header to raw data packets. Parse
function applies parsing operations on the text file sent by
the server.

CONCLUSION

 The study is limited only to the wired networks as
Wireshark captures packets through the wired medium only.
Since the manual work in analysis is reduced here, this work
can be used in real time systems where a large number of
packets have to be analyzed.Since wireshark should be
invoked manually and even network packet analysis is manual
user finds it difficult for analysis. So our project is aimed to
eliminate the manual effort where the developers or test
engineers analyze the network packets manually. Here we are
automating the entire process right from capturing the network
packets till the analysis of it.In this paper a module can save
project cost as well as the duration to a major extent when

integrated to the software development life cycle (SDLC). The
logic can always be extended depending upon the project
requirements. Along with analyzing the packets, we are also
analyzing the performance of the network.

REFERENCES:
[1] W. Cui, J. Kannan, and H. J.Wang. Discoverer: Automatic
 Protocol Description Generation from Network Traces. USENIX
 Security Symposium, Boston, MA,August 2007.
[2] Automatic Network Protocol Analysis Gilbert Wondracekx,
 Paolo Milani Comparettiz, Christopher Kruegel, and Engin Kirda
[3] DiCAP: Distributed Packet Capturing Architecture for High-
 Speed Network Links Cristian Morariu, Burkhard Still.
[4] Endace Measurement Systems. Available at monitorin-cards/
 (Aug 15, 2007).
[5] F. Risso, L. Degioanni, "An Architecture for High
 Performance Network Analysis," in Proc. eh IEEE
 Symposium on Computers and Communications (ISCC
 2001), (Hammamet, Tunisia, July 2001).
[6] Behrouz A.Forouzan, TCP/IP Protocol Suite [M], Third Edition.
 Beijing: Tsinghua University, 2006.
[7] B. Claise, S. Bryant, G. Sadasivan, S. Leinen, T. Dietz, and B.
 H.Trammell, “Specification of the IP Flow Information Export
 (IPFIX) Protocol for the Exchange of IP Traffic Flow
 Information,” RFC 5101 (Proposed Standard), Jan. 2008.
[8] A Language for Advanced Protocol Analysis
 in Automotive Networks by Tim Reichert, Edmund Klaus,
 Wolfgang Schoch, Ansgar Meroth, Dominikus Herzberg,
 ICSE’08, May 10–18, 2008, Leipzig, Germany.
[9] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner.Software
 engineering for automotive systems: Aroadmap. In FOSE ’07:
 2007 Future of SoftwareEngineering, pages 55–71, Washington,
 DC, USA,2007. IEEE Computer Society.
[10] J. Botaschanjan, L. Kof, C. K¨uhnel, and M. Spichkova.Towards
 verified automotive software. In SEAS ’05: Proceedings of the
 second international workshop onSoftware engineering for
 automotive systems, pages1–6, New York, NY, USA, 2005.
 ACM Press.
[11]Distributed Network Analysis Using TOPAS and Wireshark
 Gerhard M¨unz, Georg Carle Computer Networks and Internet
 Wilhelm Schickard Institute for Computer Science, University of
 Tuebingen, Germany
 [12]Sindhu Kakuru Electrical Engineering Department San Jose
 State University San Jose CA, 95112978-1-61284-486-
 2/111$26.00 ©2011 IEEE

