
International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 424

Template Extraction from Heterogeneous Web
Pages Using Text Clustering

T.L.N.Divya1, G.Loshma2, Dr. Nagaratna P Hegde3

1 M.Tech(CSE), Sri Vasavi Engineering College, Pedatadepalli,Tadepalligudem

2 Associate professor(CSE), Sri Vasavi Engineering College, Pedatadepalli,Tadepalligudem
3 Associate professor(CSE), Vasavi College of Engineering, Hyderabad

Abstract - Now a days most of the information is stored in text
databases. This information consists of large collection of
documents from Heterogeneous web pages. Now we extract
template from these heterogeneous templates, and to extract
template we use different algorithms to find similarity of
underlying template structures in the documents and we cluster
the web documents based on the similarity of underlying
template structure in the documents so that template is extracted
with various clusters. We use different algorithms to find
similarity between the web pages. Previously the algorithms used
are RTDM, Text-Hash and Text-Max. But the time and space
occupied by this algorithms is more. In this paper we are using
WaveK-Means algorithm to find similarity between the web
pages. This algorithm provides better performance compared to
previous algorithms in terms of space and time. The space and
time consumed by this algorithm is less compared to RTDM,
Text-Hash and Text-Max. Our Experimental results with real
life data sets confirm effectiveness and robustness of our
algorithm.

Keywords - Template Extraction, RTDM, Text-Hash, Text-Max,
WaveK-means, Clustering.

I. INTRODUCTION

World Wide Web is the most useful source of information. In
order to achieve high productivity of publishing, the
WebPages in many websites are automatically populated by
using the common templates with contents. The templates
provide readers easy access to the contents guided by
consistent structures. However, for machines, the templates
are considered harmful since they degrade the accuracy and
performance of web applications due to irrelevant terms in
templates. Thus, template detection techniques have received
a lot of attention recently to improve the performance of
search engines, clustering, and classification of web
documents.

 The Web poses itself as the largest data repository
ever available in the history of humankind[1]. Major efforts
have been made in order to provide efficient access to
relevant information within this huge repository of data.
Although several techniques have been developed to the
problem of Web data extraction, their use is still not spread,
mostly because of the need for high human intervention and
the low quality of the extraction results. In this paper, we
present a domain-oriented approach to Web data extraction

and discuss its application to automatically extracting news
from Web sites. Our approach is based on a highly efficient
tree structure analysis that produces very effective results. We
have tested our approach with several important Brazilian on-
line news sites and achieved very precise results, correctly
extracting 87.71% of the news in a set of 4088 pages
distributed among 35 different sites.

 In this paper, we present novel algorithms for
extracting templates from a large number of web documents
which are generated from heterogeneous templates. We
cluster the web documents based on the similarity of
underlying template structures in the documents so that the
template for each cluster is extracted simultaneously. We
develop a novel goodness measure with its fast approximation
for clustering and provide comprehensive analysis of our
algorithm. Our experimental results with real-life data sets
confirm the effectiveness and robustness of our algorithm
compared to the state of the art for template detection
algorithms.

II. RELATED WORK

Document Classification
One approach to solving the metadata extraction problem for
a heterogeneous collection is to partition the collection into a
set of homogeneous collections first and then solve the
extraction problem for each homogeneous collection.
Document classification is used to create equivalence groups
of similar documents. Few researchers have addressed the
problem of how to find the page(s) that will be used to
differentiate the documents.
Existing approaches to classify documents (assuming that one
has the page containing the metadata isolated) into
equivalence groups include one that uses a document model
based upon page layout structure.
The goal of the DOM specification is to define a
programmatic interface for XML and HTML[2]. The DOM
Level 1 specification is separated into two parts: Core and
HTML. The Core DOM Level 1 section provides a low-level
set of fundamental interfaces that can represent any structured
document, as well as defining extended interfaces for
representing an XML document. These extended XML
interfaces need not be implemented by a DOM
implementation that only provides access to HTML
documents; all of the fundamental interfaces in the Core

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 425

section must be implemented. A compliant DOM
implementation that implements the extended XML interfaces
is required to also implement the fundamental Core interfaces,
but not the HTML interfaces. The HTML Level 1 section
provides additional, higher-level interfaces that are used with
the fundamental interfaces defined in the Core Level 1 section
to provide a more convenient view of an HTML document. A
compliant implementation of the HTML DOM implements all
of the fundamental Core interfaces as well as the HTML
interfaces.

This section extends the Level 1 Core API to describe objects
and methods specific to HTML documents. In general, the
functionality needed to manipulate hierarchical document
structures, elements, and attributes will be found in the core
section; functionality that depends on the specific elements
defined in HTML will be found in this section.

The goals of the HTML-specific DOM API are:

 to specialize and add functionality that relates
specifically to HTML documents and elements.

 to address issues of backwards compatibility with the
"DOM Level 0".

 to provide convenience mechanisms, where
appropriate, for common and frequent operations on
HTML documents.

The term "DOM Level 0" refers to a mix (not formally
specified) of HTML document functionalities offered by
Netscape Navigator version 3.0 and Microsoft Internet
Explorer version 3.0. In some cases, attributes or methods
have been included for reasons of backward compatibility
with "DOM Level 0".

The key differences between the core DOM and the HTML
application of DOM is that the HTML Document Object
Model exposes a number of convenience methods and
properties that are consistent with the existing models and are
more appropriate to script writers. In many cases, these
enhancements are not applicable to a general DOM because
they rely on the presence of a predefined DTD. For DOM
Level 1, the transitional and frameset DTDs for HTML 4.0
are assumed. Interoperability between implementations is
only guaranteed for elements and attributes that are specified
in these DTDs.

More specifically, this document includes the following
specializations for HTML:

 An HTML Document interface, derived from the
core Document interface. HTML Document specifies
the operations and queries that can be made on a
HTML document.

 An HTML Element interface, derived from the core
Element interface. HTML Element specifies the
operations and queries that can be made on any
HTML element. Methods on HTML Element include
those that allow for the retrieval and modification of
attributes that apply to all HTML elements.

 Specializations for all HTML elements that have
attributes that extend beyond those specified in the
HTML Element interface. For all such attributes, the
derived interface for the element contains explicit
methods for setting and getting the values.

The DOM Level 1 does not include mechanisms to access and
modify style specified through CSS 1. Furthermore, it does
not define an event model for HTML documents. This
functionality is planned to be specified in a future Level of
this specification.

 HTML Application of Core DOM

 Naming Conventions

The HTML DOM follows a naming convention for
properties, methods, events, collections, and data types. All
names are defined as one or more English words concatenated
together to form a single string. Properties and Methods

The property or method name starts with the initial keyword
in lowercase, and each subsequent word starts with a capital
letter. For example, a property that returns document meta
information such as the date the file was created might be
named "fileDateCreated". In the ECMA Script binding,
properties are exposed as properties of a given object. In Java,
properties are exposed with get and set methods. Non-HTML
4.0 interfaces and attributes

While most of the interfaces defined below can be mapped
directly to elements defined in the HTML 4.0
Recommendation, some of them cannot. Similarly, not all
attributes listed below have counterparts in the HTML 4.0
specification (and some do, but have been renamed to avoid
conflicts with scripting languages). Interfaces and attribute
definitions that have links to the HTML 4.0 specification have
corresponding element and attribute definitions there; all
others are added by this specification, either for convenience
or backwards compatibility with "DOM Level 0"
implementations.

Rule-based Approach

The steps of building a rule-based metadata extraction system
are typically as follows: first, some experts examine samples
of the document collection and define rules for metadata
extraction; then, software developers implement these rules

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 426

either as part of an expert system or as part of an ad hoc rule
engine. The accuracy, inventiveness, and appropriateness of
the rules that experts defined play a critical role in building a
system with high accuracy.

III. PROPOSED APPROACH

List of Modules:

1. DOM and Initial approaches

2. Clustering with MDL cost

3. Optimal template path calculation for clusters

4. MDL cost estimation using Min Hash

5. Clustering with Min Hash

DOM and Initial Approaches:

This module describes about the Document Object
Model (DOM) and initial approaches, they are in the
following,

 DOM: The Document Object Model is a platform-
and language-neutral interface that will allow programs and
scripts to dynamically access and update the content, structure
and style of documents. The document can be further
processed and the results of that processing can be
incorporated back into the presented page.

In the DOM specification, the term "document" is
used in the broad sense - increasingly, XML is being used as a
way of representing many different kinds of information that
may be stored in diverse systems, and much of this would
traditionally be seen as data rather than as documents.
Nevertheless, XML presents this data as documents, and the
DOM may be used to manage this data.

With the Document Object Model, programmers can
build documents, navigate their structure, and add, modify, or
delete elements and content. Anything found in an HTML or
XML document can be accessed, changed, deleted, or added
using the Document Object Model, with a few exceptions - in
particular, the DOM interfaces for the XML internal and
external subsets have not yet been specified.

The DOM defines a standard for accessing
documents, like HTML and XML. The DOM presents an
HTML document as a tree structure. The entire document is a
document node, every HTML element is an element node, the
texts in the HTML elements are text nodes, every HTML
attribute is an attribute node, and comments are comment
nodes. However, we do not distinguish the type of nodes,
since, as defined, any type of node can be a part of a template

in our problem. For instance, the DOM tree of a simple
HTML document d2 in Fig. 2b is given in Fig. 1. For a node
in a DOM tree, we denote the path of the node by listing
nodes from the root to the node in which we use “n” as a
delimiter between nodes. For example, in the DOM tree of d2
in Fig. 1, the path of a node “World” is
“Document\<html>\<body> \< h1>\ in World.”

Fig : 1. DOM Tree of Document d2

Essential Paths and Templates: Given a web document
collection D, we define a path set Pd as the set of all paths in
D. Note that, since the document node is a virtual node shared
by every document, we do not consider the path of the
document node in Pd. The support of a path is defined as the
number of documents in D, which contain the path. For each
document di, we provide a minimum support threshold tdi .
Notice that the thresholds tdi and tdj of two distinct
documents di and dj, respectively, may be different. If a path
is contained by a document di and the support of the path is at
least the given minimum support threshold tdi , the path is
called an essential path of di.

Matrix Representation of Clustering: An approximation or
representation to a matrix A can be thought of as a system
which captures the most “important” information in A.
Obtaining the representation usually involves a tradeoff
among accuracy, the memory space occupied by the
representation, and the time required to obtain the
representation. These three aspects of the representation are
usually in conflict, and must be tailored to fit the desired
application. Unlike the recent low-rank representation
methods , this representation is not used to extract directly the
essential concepts that pervade an entire dataset, in which
each new “concept vector” is forced to be independent
(orthogonal in some cases) of the preceding “concept
vectors[3].”

We next illustrate the representation of a clustering
of web documents. Let us assume that we have m clusters for
a web document set D. A cluster ci , Ti is a set of paths
representing the template of ci and Di is a set of documents
belonging to ci. In our clustering model, we allow a document
to be included in a single cluster only. To represent a
clustering information for D, we use a pair of matrices MT
and MD, where MT represents the information of each cluster
with its template paths and MD denotes the information of

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 427

each cluster with its member documents. We will represent
ME by the product of MT and MD. However, the product of
MT and MD does not always become ME.
Minimum Description Length Principle: In order to
manage the unknown number of clusters and to select good
partitioning from all possible partitions of HTML documents,
we employ Rissanen’s MDL principle. The MDL principle
states that the best model inferred from a given set of data is
the one which minimizes the sum of

1) the length of the model, in bits, and
2) the length of encoding of the data, in bits, when
described with the help of the model.
 We refer to the above sum for a model as the MDL
cost of the model. In our setting, the

model is a clustering C, which is described by partitions of
documents with their template paths (i.e., the matrices MT
and MD), and the encoding of data is the matrix M.

Clustering with MDL cost:
This module describes the clustering of documents using
MDL cost[4]. The input parameter is a set of documents D,
where di is the ith document. The output result is a set of
clusters C, where ci is a cluster represented by the template
paths Ti and the member documents Di. A clustering model C
is denoted by two matrices MT and MD and the goodness
measure of the clustering C is the MDL cost, which is the sum
of TEXT-MDL is an agglomerative hierarchical clustering
algorithm which starts with each input document as an
individual cluster. When a pair of clusters is merged, the
MDL cost of the clustering model can be reduced or
increased. The procedure GetBestPair finds a pair of clusters
whose reduction of the MDL cost is maximal in each step of
merging and the pair is repeatedly merged until any reduction
is not possible. In order to calculate the MDL cost when each
possible pair of clusters is merged, the procedure
GetMDLCost(ci, cj, C), where ci and cj are a pair to be
merged and C is the current clustering, is called in
GetBestPair and C is updated by merging the best pair of
clusters. As we will discuss later in detail, because the scale
of the MDL cost reduction by merging a pair of clusters is
affected by all the other clusters, GetBestPair should
recalculate the MDL cost reduction of every pair at each
iteration. Furthermore, the complexity of GetMDLCost is
exponential on the size of the template of a cluster. Since it is
not practical to use TEXT-MDL with a number of web
documents, we will introduce an approximate MDL cost
model and use MinHash to significantly reduce the time
complexity.

MDL cost estimation using MinHash:
 This module describes the estimation of MDL cost
using MinHash, that are given in the below lines. To compute
the MDL cost of each clustering quickly, we would like to
estimate the probability that a path appears in a certain
number of documents in a cluster. However, the traditional
MinHash was proposed to estimate the Jaccard’s coefficient.

Thus, given a collection of sets X= (S1, Sk), we extend
MinHash to estimate the probabilities needed to compute the
MDL cost. Recall that, if we know SK;D for each pk, we can
decide the optimal Ti and calculate the MDL cost of a
clustering. Note that we estimate the MDL cost, but do not
generate the template paths of each cluster. Thus, Tk of ck is
initialized as the empty set. Instead of the template paths, the
signature of ck is maintained to estimate the MDL cost. If we
consider the length of a signature as a constant, the
complexity of GetHashMDLCost. After finishing clustering, a
post processing is needed to get the actual template paths[5].
We refer to the processing as the template path generation
step.

Clustering with MinHash:
 This module describes the clustering with MinHash,
we merge clusters hierarchically, we select two clusters which
maximize the reduction of the MDL cost by merging them.
Given a cluster ci, if a cluster cj maximizes the reduction of
the MDL cost, we call cj the nearest cluster of ci. By using
Heuristic 1, we can reduce the search space to find the nearest
cluster of a cluster ci. The previous search space to find the
nearest cluster of ci was the same as the number of current
clusters. But, using Heuristic 1, the search space becomes the
number of clusters whose Jaccard’s coefficient with ci is
maximal. The Jaccard’s coefficient can be estimated with the
signatures of MinHash and clusters whose Jaccard’s
coefficient with ci is maximal can be directly accessed in the
signature space. We provide the procedures to find the best
pair using MinHash. In GetInitBestPair[6], we first merge
clusters with the same signature of MinHash. Next, for each
cluster ci, we get clusters with the maximal Jaccard’s
coefficient estimated by the signatures of MinHash and
compute the MDL cost of each pair. In GetHashBestPair, the
steps are similar to those in GetInitBestPair. The complexities
of GetInitBestPair and GetHashBestPair depend on the
number of clusters with the maximal Jaccard’s coefficient[7]t.

IV. EXPERIMENTAL RESULTS

All experiments were performed with the configurations
Intel(R) Core(TM)2 CPU 2.13GHz, 2 GB RAM, and the
operation system platform is Microsoft Windows XP
Professional (SP2)

Text clustering using Text-Hash

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 428

Text clustering using Text-Max

Text clustering using Wavek_Means

Wave k-means

Line chart for time

Bar chart for time

Bar chart for space

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 429

Line chart for space

5. CONCLUSION AND FUTURE WORK

This system executes less time usage for template

extraction compare to existing algorithms like RTDM, Text-
Hash and Text-Max. In this system we used WaveK-Means
algorithm to find similarity between the web pages. This
algorithm provides better performance compared to previous
algorithms in terms of space and time. The space and time
consumed by this algorithm is less compared to RTDM, Text-
Hash and Text-Max. Our Experimental results with real life
data sets confirm effectiveness and robustness of our
algorithm.

Moreover, in future implementation our extraction
approach will be resilient to changes in source document
formats. For example, changes in HTML formatting codes do
not affect our ability to extract and structure information from
a given Web page. Finally the model will contribute
effectively to the emergence of semantic web, by providing
methodology, tools and both global and generic solutions.

REFERENCES

[1] Automatic web news extraction using tree edit distance by D C Reis, P B

Golgher, A S Silva, A F Laender .

[2] http://www.w3.org/TR/REC-DOM-Level-1/.

[3] A. Arasu and H. Garcia-Molina, “Extracting Structured Data from Web

Pages,” Proc. ACM SIGMOD, 2003.

[4] Z. Bar-Yossef and S. Rajagopalan, “Template Detection via Data Mining

and Its Applications,” Proc. 11th Int’l Conf. World Wide Web (WWW),

2002.

[5] A.Z. Broder, M. Charikar, A.M. Frieze, and M. Mitzenmacher, “Min-

Wise Independent Permutations,” J. Computer and System Sciences, vol. 60,

no. 3, pp. 630-659, 2000.

[6] D. Chakrabarti, R. Kumar, and K. Punera, “Page-Level Template

Detection via Isotonic Smoothing,” Proc. 16th Int’l Conf. World Wide Web

(WWW), 2007.

[7] Z. Chen, F. Korn, N. Koudas, and S. Muithukrishnan, “Selectivity

Estimation for Boolean Queries,” Proc. ACM SIGMOD-SIGACTSIGART

Symp. Principles of Database Systems (PODS), 2000.

