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Abstract - Now a days most of the information is stored in text 
databases. This information consists of large collection of 
documents from Heterogeneous web pages. Now we extract 
template from these heterogeneous templates, and to extract 
template we use different algorithms to find similarity of 
underlying template structures in the documents and we cluster 
the web documents based on the similarity of underlying 
template structure in the documents so that template is extracted 
with various clusters. We use different algorithms to find 
similarity between the web pages. Previously the algorithms used 
are RTDM, Text-Hash and Text-Max. But the time and space 
occupied by this algorithms is more. In this paper we are using 
WaveK-Means algorithm to find similarity between the web 
pages. This algorithm provides better performance compared to 
previous algorithms in terms of space and time. The space and 
time consumed by this algorithm is less compared to RTDM, 
Text-Hash and Text-Max. Our Experimental results with real 
life data sets confirm effectiveness and robustness of our 
algorithm. 
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I. INTRODUCTION 
 

World Wide Web is the most useful source of information. In 
order to achieve high productivity of publishing, the 
WebPages in many websites are automatically populated by 
using the common templates with contents. The templates 
provide readers easy access to the contents guided by 
consistent structures. However, for machines, the templates 
are considered harmful since they degrade the accuracy and 
performance of web applications due to irrelevant terms in 
templates. Thus, template detection techniques have received 
a lot of attention recently to improve the performance of 
search engines, clustering, and classification of web 
documents.  
                  
             The Web poses itself as the largest data repository 
ever available in the history of humankind[1]. Major efforts 
have been made in order to provide efficient access to 
relevant information within this huge repository of data. 
Although several techniques have been developed to the 
problem of Web data extraction, their use is still not spread, 
mostly because of the need for high human intervention and 
the low quality of the extraction results. In this paper, we 
present a domain-oriented approach to Web data extraction 

and discuss its application to automatically extracting news 
from Web sites. Our approach is based on a highly efficient 
tree structure analysis that produces very effective results. We 
have tested our approach with several important Brazilian on-
line news sites and achieved very precise results, correctly 
extracting 87.71% of the news in a set of 4088 pages 
distributed among 35 different sites. 
  
                 In this paper, we present novel algorithms for 
extracting templates from a large number of web documents 
which are generated from heterogeneous templates. We 
cluster the web documents based on the similarity of 
underlying template structures in the documents so that the 
template for each cluster is extracted simultaneously. We 
develop a novel goodness measure with its fast approximation 
for clustering and provide comprehensive analysis of our 
algorithm. Our experimental results with real-life data sets 
confirm the effectiveness and robustness of our algorithm 
compared to the state of the art for template detection 
algorithms.  

 
 

II. RELATED WORK 
 

Document Classification 
One approach to solving the metadata extraction problem for 
a heterogeneous collection is to partition the collection into a 
set of homogeneous collections first and then solve the 
extraction problem for each homogeneous collection. 
Document classification is used to create equivalence groups 
of similar documents. Few researchers have addressed the 
problem of how to find the page(s) that will be used to 
differentiate the documents. 
Existing approaches to classify documents (assuming that one 
has the page containing the metadata isolated) into 
equivalence groups include one that uses a document model 
based upon page layout structure. 
The goal of the DOM specification is to define a 
programmatic interface for XML and HTML[2]. The DOM 
Level 1 specification is separated into two parts: Core and 
HTML. The Core DOM Level 1 section provides a low-level 
set of fundamental interfaces that can represent any structured 
document, as well as defining extended interfaces for 
representing an XML document. These extended XML 
interfaces need not be implemented by a DOM 
implementation that only provides access to HTML 
documents; all of the fundamental interfaces in the Core 
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section must be implemented. A compliant DOM 
implementation that implements the extended XML interfaces 
is required to also implement the fundamental Core interfaces, 
but not the HTML interfaces. The HTML Level 1 section 
provides additional, higher-level interfaces that are used with 
the fundamental interfaces defined in the Core Level 1 section 
to provide a more convenient view of an HTML document. A 
compliant implementation of the HTML DOM implements all 
of the fundamental Core interfaces as well as the HTML 
interfaces. 
 

This section extends the Level 1 Core API to describe objects 
and methods specific to HTML documents. In general, the 
functionality needed to manipulate hierarchical document 
structures, elements, and attributes will be found in the core 
section; functionality that depends on the specific elements 
defined in HTML will be found in this section. 

The goals of the HTML-specific DOM API are: 

 to specialize and add functionality that relates 
specifically to HTML documents and elements. 

 to address issues of backwards compatibility with the 
"DOM Level 0". 

 to provide convenience mechanisms, where 
appropriate, for common and frequent operations on 
HTML documents. 

The term "DOM Level 0" refers to a mix (not formally 
specified) of HTML document functionalities offered by 
Netscape Navigator version 3.0 and Microsoft Internet 
Explorer version 3.0. In some cases, attributes or methods 
have been included for reasons of backward compatibility 
with "DOM Level 0". 

The key differences between the core DOM and the HTML 
application of DOM is that the HTML Document Object 
Model exposes a number of convenience methods and 
properties that are consistent with the existing models and are 
more appropriate to script writers. In many cases, these 
enhancements are not applicable to a general DOM because 
they rely on the presence of a predefined DTD. For DOM 
Level 1, the transitional and frameset DTDs for HTML 4.0 
are assumed. Interoperability between implementations is 
only guaranteed for elements and attributes that are specified 
in these DTDs. 

More specifically, this document includes the following 
specializations for HTML: 

 An HTML Document interface, derived from the 
core Document interface. HTML Document specifies 
the operations and queries that can be made on a 
HTML document. 

 An HTML Element interface, derived from the core 
Element interface. HTML Element specifies the 
operations and queries that can be made on any 
HTML element. Methods on HTML Element include 
those that allow for the retrieval and modification of 
attributes that apply to all HTML elements. 

 Specializations for all HTML elements that have 
attributes that extend beyond those specified in the 
HTML Element interface. For all such attributes, the 
derived interface for the element contains explicit 
methods for setting and getting the values. 

The DOM Level 1 does not include mechanisms to access and 
modify style specified through CSS 1. Furthermore, it does 
not define an event model for HTML documents. This 
functionality is planned to be specified in a future Level of 
this specification. 

 HTML Application of Core DOM 

 Naming Conventions 

The HTML DOM follows a naming convention for 
properties, methods, events, collections, and data types. All 
names are defined as one or more English words concatenated 
together to form a single string. Properties and Methods 

The property or method name starts with the initial keyword 
in lowercase, and each subsequent word starts with a capital 
letter. For example, a property that returns document meta 
information such as the date the file was created might be 
named "fileDateCreated". In the ECMA Script binding, 
properties are exposed as properties of a given object. In Java, 
properties are exposed with get and set methods. Non-HTML 
4.0 interfaces and attributes 

While most of the interfaces defined below can be mapped 
directly to elements defined in the HTML 4.0 
Recommendation, some of them cannot. Similarly, not all 
attributes listed below have counterparts in the HTML 4.0 
specification (and some do, but have been renamed to avoid 
conflicts with scripting languages). Interfaces and attribute 
definitions that have links to the HTML 4.0 specification have 
corresponding element and attribute definitions there; all 
others are added by this specification, either for convenience 
or backwards compatibility with "DOM Level 0" 
implementations.  

  
Rule-based Approach 
 
The steps of building a rule-based metadata extraction system 
are typically as follows: first, some experts examine samples 
of the document collection and define rules for metadata 
extraction; then, software developers implement these rules 
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either as part of an expert system or as part of an ad hoc rule 
engine. The accuracy, inventiveness, and appropriateness of 
the rules that experts defined play a critical role in building a 
system with high accuracy. 
 

III. PROPOSED APPROACH 
 
List of Modules: 
 

1. DOM and Initial approaches 

2. Clustering with MDL cost 

3. Optimal template path calculation for clusters 

4. MDL cost estimation using Min Hash 

5. Clustering with Min Hash 

DOM and Initial Approaches: 
  

This module describes about the Document Object 
Model (DOM) and initial approaches, they are in the 
following, 

 DOM: The Document Object Model is a platform- 
and language-neutral interface that will allow programs and 
scripts to dynamically access and update the content, structure 
and style of documents. The document can be further 
processed and the results of that processing can be 
incorporated back into the presented page.  

In the DOM specification, the term "document" is 
used in the broad sense - increasingly, XML is being used as a 
way of representing many different kinds of information that 
may be stored in diverse systems, and much of this would 
traditionally be seen as data rather than as documents. 
Nevertheless, XML presents this data as documents, and the 
DOM may be used to manage this data. 

With the Document Object Model, programmers can 
build documents, navigate their structure, and add, modify, or 
delete elements and content. Anything found in an HTML or 
XML document can be accessed, changed, deleted, or added 
using the Document Object Model, with a few exceptions - in 
particular, the DOM interfaces for the XML internal and 
external subsets have not yet been specified. 

The DOM defines a standard for accessing 
documents, like HTML and XML. The DOM presents an 
HTML document as a tree structure. The entire document is a 
document node, every HTML element is an element node, the 
texts in the HTML elements are text nodes, every HTML 
attribute is an attribute node, and comments are comment 
nodes. However, we do not distinguish the type of nodes, 
since, as defined, any type of node can be a part of a template 

in our problem. For instance, the DOM tree of a simple 
HTML document d2 in Fig. 2b is given in Fig. 1. For a node 
in a DOM tree, we denote the path of the node by listing 
nodes from the root to the node in which we use “n” as a 
delimiter between nodes. For example, in the DOM tree of d2 
in Fig. 1, the path of a node “World” is 
“Document\<html>\<body> \< h1>\ in World.” 

               

Fig : 1. DOM Tree of Document d2 

Essential Paths and Templates: Given a web document 
collection D, we define a path set Pd as the set of all paths in 
D. Note that, since the document node is a virtual node shared 
by every document, we do not consider the path of the 
document node in Pd. The support of a path is defined as the 
number of documents in D, which contain the path. For each 
document di, we provide a minimum support threshold tdi . 
Notice that the thresholds tdi and tdj of two distinct 
documents di and dj, respectively, may be different. If a path 
is contained by a document di and the support of the path is at 
least the given minimum support threshold tdi , the path is 
called an essential path of di.  
 
Matrix Representation of Clustering: An approximation or 
representation to a matrix A can be thought of as a system 
which captures the most “important” information in A. 
Obtaining the representation usually involves a tradeoff 
among accuracy, the memory space occupied by the 
representation, and the time required to obtain the 
representation. These three aspects of the representation are 
usually in conflict, and must be tailored to fit the desired 
application. Unlike the recent low-rank representation 
methods , this representation is not used to extract directly the 
essential concepts that pervade an entire dataset, in which 
each new “concept vector” is forced to be independent 
(orthogonal in some cases) of the preceding “concept 
vectors[3].” 

We next illustrate the representation of a clustering 
of web documents. Let us assume that we have m clusters for 
a web document set D. A cluster ci , Ti is a set of paths 
representing the template of ci and Di is a set of documents 
belonging to ci. In our clustering model, we allow a document 
to be included in a single cluster only.  To represent a 
clustering information for D, we use a pair of matrices MT 
and MD, where MT represents the information of each cluster 
with its template paths and MD denotes the information of 
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each cluster with its member documents. We will represent 
ME by the product of MT and MD. However, the product of 
MT and MD does not always become ME.  
Minimum Description Length Principle: In order to 
manage the unknown number of clusters and to select good 
partitioning from all possible partitions of HTML documents, 
we employ Rissanen’s MDL principle. The MDL principle 
states that the best model inferred from a given set of data is 
the one which minimizes the sum of  

1) the length of the model, in bits, and  
2) the length of encoding of the data, in bits, when 
described with the help of the model. 
 We refer to the above sum for a model as the MDL 
cost of the model. In our setting, the  

model is a clustering C, which is described by partitions of 
documents with their template paths (i.e., the matrices MT 
and MD), and the encoding of data is the matrix M. 
 
Clustering with MDL cost: 
This module describes the clustering of documents using 
MDL cost[4]. The input parameter is a set of documents D, 
where di is the ith document. The output result is a set of 
clusters C, where ci is a cluster represented by the template 
paths Ti and the member documents Di. A clustering model C 
is denoted by two matrices MT and MD and the goodness 
measure of the clustering C is the MDL cost, which is the sum 
of TEXT-MDL is an agglomerative hierarchical clustering 
algorithm which starts with each input document as an 
individual cluster. When a pair of clusters is merged, the 
MDL cost of the clustering model can be reduced or 
increased. The procedure GetBestPair finds a pair of clusters 
whose reduction of the MDL cost is maximal in each step of 
merging and the pair is repeatedly merged until any reduction 
is not possible. In order to calculate the MDL cost when each 
possible pair of clusters is merged, the procedure 
GetMDLCost(ci, cj, C), where ci and cj are a pair to be 
merged and C is the current clustering, is called in 
GetBestPair and C is updated by merging the best pair of 
clusters. As we will discuss later in detail, because the scale 
of the MDL cost reduction by merging a pair of clusters is 
affected by all the other clusters, GetBestPair should 
recalculate the MDL cost reduction of every pair at each 
iteration. Furthermore, the complexity of GetMDLCost is 
exponential on the size of the template of a cluster. Since it is 
not practical to use TEXT-MDL with a number of web 
documents, we will introduce an approximate MDL cost 
model and use MinHash to significantly reduce the time 
complexity. 
 
MDL cost estimation using MinHash: 
 This module describes the estimation of MDL cost 
using MinHash, that are given in the below lines. To compute 
the MDL cost of each clustering quickly, we would like to 
estimate the probability that a path appears in a certain 
number of documents in a cluster. However, the traditional 
MinHash was proposed to estimate the Jaccard’s coefficient. 

Thus, given a collection of sets X= (S1, . . . . Sk), we extend 
MinHash to estimate the probabilities needed to compute the 
MDL cost. Recall that, if we know SK;D for each pk, we can 
decide the optimal Ti and calculate the MDL cost of a 
clustering. Note that we estimate the MDL cost, but do not 
generate the template paths of each cluster. Thus, Tk of ck is 
initialized as the empty set. Instead of the template paths, the 
signature of ck is maintained to estimate the MDL cost. If we 
consider the length of a signature as a constant, the 
complexity of GetHashMDLCost. After finishing clustering, a 
post processing is needed to get the actual template paths[5]. 
We refer to the processing as the template path generation 
step. 

 
Clustering with MinHash: 
 This module describes the clustering with MinHash, 
we merge clusters hierarchically, we select two clusters which 
maximize the reduction of the MDL cost by merging them. 
Given a cluster ci, if a cluster cj maximizes the reduction of 
the MDL cost, we call cj the nearest cluster of ci. By using 
Heuristic 1, we can reduce the search space to find the nearest 
cluster of a cluster ci. The previous search space to find the 
nearest cluster of ci was the same as the number of current 
clusters. But, using Heuristic 1, the search space becomes the 
number of clusters whose Jaccard’s coefficient with ci is 
maximal. The Jaccard’s coefficient can be estimated with the 
signatures of MinHash and clusters whose Jaccard’s 
coefficient with ci is maximal can be directly accessed in the 
signature space. We provide the procedures to find the best 
pair using MinHash.  In GetInitBestPair[6], we first merge 
clusters with the same signature of MinHash. Next, for each 
cluster ci, we get clusters with the maximal Jaccard’s 
coefficient estimated by the signatures of MinHash and 
compute the MDL cost of each pair. In GetHashBestPair, the 
steps are similar to those in GetInitBestPair. The complexities 
of GetInitBestPair and GetHashBestPair depend on the 
number of clusters with the maximal Jaccard’s coefficient[7]t. 
 

IV. EXPERIMENTAL RESULTS 
 
All experiments were performed with the configurations 
Intel(R) Core(TM)2 CPU 2.13GHz, 2 GB RAM, and the 
operation system platform is Microsoft Windows XP 
Professional (SP2) 
 
Text clustering using Text-Hash 
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Text clustering using Text-Max 
 

 
 
Text clustering using  Wavek_Means 
 

 
 
Wave k-means 
 

 
 
 
 
 
 
Line chart for time 
 

 
 
 
Bar chart for time 
 

 
 
Bar chart for space 
 



International Journal of Computer Trends and Technology- volume3Issue3- 2012 
 

ISSN: 2231-2803  http://www.internationaljournalssrg.org  Page 429 
 

 
 
 
Line chart for space 

 
5. CONCLUSION AND FUTURE WORK 

 
This system executes less time usage for template 

extraction  compare to existing algorithms like  RTDM, Text-
Hash and Text-Max. In this system we used WaveK-Means 
algorithm to find similarity between the web pages. This 
algorithm provides better performance compared to previous 
algorithms in terms of space and time. The space and time 
consumed by this algorithm is less compared to RTDM, Text-
Hash and Text-Max. Our Experimental results with real life 
data sets confirm effectiveness and robustness of our 
algorithm.                    

Moreover, in future implementation our extraction 
approach will be resilient to changes in source document 
formats. For example, changes in HTML formatting codes do 
not affect our ability to extract and structure information from 
a given Web page. Finally the model will contribute 
effectively to the emergence of semantic web, by providing 
methodology, tools and both global and generic solutions. 
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