
International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 342

Extended CurlCrawler: A focused and path-
oriented framework for crawling the web with

thumb.
Dr Ela Kumar#, Ashok Kumar$

School of Information and Communication Technology
Gautam Buddha University, Greater Noida(India)

$ AIM & ACT.
Banasthali University,Banasthali(Raj.)-India

Abstract- Information is a vital role playing versatile thing

from availability at church level to web through trends of books.
WWW is now the exposed and up-to-date huge repository of
information available to everyone, everywhere and every time [1]. It
is the thrust arena of engineering endeavor and is evolving without a
grand design blueprint. Finally, an age has come, where information
has become an instrument, a tool that can be used to solve many
problems. The biggest challenge being posed by the Internet is its
ever-growing size with the availability of endless pool of information
hosted on the World Wide Web (WWW). It is problematic to
identify and ping with graphical frame of mind for the desired
information amongst the large set of web pages resulted by the
search engine with reduced chaffing and cross features of the
framework. With further increase in the size of the Internet, the
problem grows exponentially. Crawlers can retrieve data much
quicker and in greater depth than human searchers, so they can
have a crippling impact on the performance of a site [7, 17].
Needless to say that building an effective web crawler to solve your
purpose is not a difficult task, but choosing the right strategies and
building an effective architecture will lead to implementation of
multi-agent framework to outcome highly featured web crawler
application [2, 3].
 This paper is an experimental strives to
develop and implement an extended framework with extended
architecture to make search engines more efficient using local
resource utilization features of the programming. This work is an
implementation experience for use of focused and path oriented
approach to provide a cross featured framework for search engines
with human powered approach. In addition to curl programming,
personalization of information, caching and graphical perception,
main features of this framework are cross platform, cross
architecture, focused, path oriented and human powered.

Keywords and Phrases-Topical, SOAP, Interacting Agent,
WSDL, Thumb, Whois, CachedDatabase, IECapture, Searchcon,
Main_spider, UDDI.
1. Introduction

WWW is immense to obtain information and moreover
information on web is voyaged using search engines like
AltaVista, WebCrawler, Hot Boat etc[1]. Owing to the reason
that search engines are the striking one to sail the web for several
purposes. Optimization of search engine is a raptorial field to
address a state of fast growing rate of amount of information on
the web. At the ground level, a search engine employs Crawlers,
which traverse the web by downloading the documents and

following links from page to page. Since, Crawlers gather data
for indexing; these form the most important part of a search
engine.

A typical web crawler starts by parsing a specified web
page and noting any hypertext links on that page that point to
other web pages. The Crawler then parses those pages for new
links, and so on, recursively. A crawler is a software or script or
automated program which resides on a single machine. The
crawler simply sends HTTP requests for documents to other
machines on the Internet, just as a web browser does when the
user clicks on links. All the crawler really does is to automate the
process of following links [10].

This is the basic concept behind implementing web
crawler, but implementing this concept is not merely a bunch of
programming. Large volume and rate of change on web pages
are two important characteristics of the Web that generate a
scenario in which Web crawling is very difficult. A large volume
of web page implies that web crawler can only download a
fraction of the web pages and hence it is very essential that web
crawler should be intelligent enough to prioritize download.

Another problem of dynamic world is that web pages on
the internet change very frequently, as a result, by the time the
crawler is downloading the last page from a site, the page may
change or a new page has been placed to the site. The difficulties
in implementing efficient web crawler clearly state that
bandwidth for conducting crawls is neither infinite nor free. So, it
is becoming essential to crawl the web in not only a scalable, but
in an efficient way, if some reasonable amount of quality or
freshness of web pages is to be maintained. This ensues that a
crawler must carefully choose at each step which pages to visit
next.

The aim of this paper is to raffle an extended
framework, which will elevate Crawler’s dexterity to surmount
the way the Internet can be used to snag more and more
information and services [2, 3, 4].

This paper presents extended design and
implementation of widened Curl Crawler, featured with cross
platform, cross architecture, focused, path oriented and human
powered in addition to locally resource utilization capacity to
mouth more personalized, graphical and cached driven
information from the web. This crawler is destining to present a

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 343

framework, which will convince the chaffing experience while
searching on the Internet [16].

2. Extended Framework

Building an effective web crawler to solve your purpose
is not a difficult task, but choosing the right strategies and
building an effective architecture will lead to implementation of
highly featured web crawler application [12]. The minimal
scheme outlined above for crawling demands several modules
that fit together are (see Fig.1).

Fig.1 Architecture of different modules of Crawler [15]

1. The URL frontier, containing URLs yet to be fetched in
the current crawl (in the case of continuous crawling, a
URL may have been fetched previously but is back in
the frontier for re-fetching).

2. A DNS resolution module that determines the web
server from which to fetch the page specified by a URL

3. A fetch module that uses the http protocol to retrieve the
web page at a URL.

4. A parsing module that extracts the text and set of links
from a fetched web page.

5. A duplicate elimination module (Indexing module) that
determines whether an extracted link is already in the
URL frontier or has recently been fetched.

2.1 Automated with human powered
approach

A search engine robot's action is called spidering, as it
resembles the multiple legged spiders. The spider's job is to go to
a web page, read the contents, connect to any other pages on that
web site through links, and bring back the information. From one
page it will travel to several pages and this proliferation follows
several parallel and nested paths simultaneously. Spiders
frequent the site at some interval, may be a month to a few
months, and re-index the pages. This way any changes that may
have occurred in your pages could also be reflected in the index.
The spiders automatically visit your web pages and create their
listings. The spider's movement across web pages stores those

pages in its memory, but the key action is in indexing. The index
is a huge database containing all the information brought back by
the spider. The index is constantly being updated as the spider
collects more information. This automated task of spider may be
done explicitly by human power and it may be considered as a
remarkable for the situation where crawler program deficit to
fetch owing to spam or stop words. Such types of systems are
also categorized as directories. Framework developed for
CurlCrawler employs automation with human powered approach
to take advantages of both the approach. In plain words,
implemented framework has two sets of listings based on both
the mechanisms mentioned above (see Fig.2).

Fig.2 Extended framework with automated and human
powered approach
2.2 Focused and Path Oriented

Path-ascending crawling intends the crawler to
download as many resources as possible from a particular Web
site. That way a crawler would ascend to every path in each URL
that it intends to crawl. For example, when given a seed URL of
http://abc.org/a/b/index.html, it will attempt to crawl /a/b/, /a/,
and /. The advantage with Path-ascending crawler is that they are
very effective in finding isolated resources, or resources for
which no inbound link would have been found in regular
crawling. The importance of a page for a crawler can also be
expressed as a function of the similarity of a page to a given
query. In this strategy we can intend web crawler to download
pages that are similar to each other, thus it will be called focused
crawler or topical crawler.
In order to take advantages of both the approach, framework
developed for CurlCrawler employs two sets of listings based on
both the approaches mentioned above. In plain words,
implemented framework .Needless to say if a single crawler is
performing multiple requests per second and/or downloading
large files, a server would have a hard time keeping up with
requests from multiple crawlers. To resolve this problem we are
using robots exclusion protocol, also known as the robots.txt
protocol [13].

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 344

2.3 Pseudo code for proposed web crawler

Here's a pseudo code summary of the algorithm that is
used to implement proposed web crawler:
Ask user or automation module to specify the starting URL on
web and file type that crawler should crawl.
Add the URL to the empty list of URLs to search.
While not empty (the list of URLs to search)
{ Take the first URL in from the list of URLs.
 If the URL protocol is not HTTP then
 break;
 go back to while;
 If robots.txt file exist on site then
 If file includes .Disallow. statement then
 break;
 go back to while;
 Open the URL;
 If the opened URL is not HTML file and not explicitly
requested file then
 Break;
 Go back to while;
 Iterate the HTML file;
 While the html text contains another link {
 If robots.txt file exist on URL/site then
 If file includes .Disallow. statement then
 break;
 go back to while;
 If the opened URL is HTML file or explicitly
requested file then
 If the URL isn't marked as searched then
 Mark this URL as already searched URL.
Insert new record to the list.
 Else
Update existing record in the list.
 }
 }

2.4 Outsourced
 To utilize the component oriented features of this eras
programming and expose it with cross architecture and cross
platform features this work is deployed using web service (see
Fig.4). Web Services are a general model for building
applications and can be implemented for any operation system
that supports communication over the Internet [12,14]. Web
services take advantage of the best of component-based
development. Component-based object models like Distributed
Component Object Model (DCOM), Remote Method Invocation
(RMI), and CORBA's Internet Inter-ORB Protocol (IIOP) have
been around for some time. Unfortunately, they depend on an
object model–specific protocol [13]. Web services extend these
models by communicating with Simple Object Access Protocol
(SOAP) and XML to eradicate the barrier posed by the object
model–specific protocol.

Fig.3 Web service architecture.

Web services work by basically using HTTP and SOAP to make
business data available on the Web. Web services expose
business objects (COM objects, JavaBeans, etc.) to SOAP calls
over HTTP and execute remote function calls (see Fig.3). That
way, Web service consumers are able to invoke method calls on
remote objects by using SOAP and HTTP over the Web.

Fig.4 Framework with outsourced approach

3. Architecture of extended CurlCrawler

 Software Architecture is the set of structures needed to reason
about the system, which encompasses the set of significant
decisions about the organization of the developed framework
including the selection of the structural elements and their
interfaces by which the system is composed and an
architectural style that guides this organization. Software
architecture of developed framework employs different
software elements as described below (see Fig. 5) [6, 8,
16].The abstraction of the developed architecture with
extended features is detailed as stated further (see Fig. 6, Fig.
7, Fig. 8) with modules having keynote priority.

3.1 Architecture of Fetching Module.
3.2 Cached Database Architecture.
3.3 Presentation Logic Architecture.

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 345

Fig.5 Framework with extended features
3.1 Architecture of Fetching Module

Fig. 6 Architecture of Fetching Module[16]

Fetch: An agent that crawls the web for information of URL of
the website, Title of the website, Meta keyword used up to three
or four levels for website, Meta keyword description used up to
three or four levels for website, Website keywords with one word
pattern, Website keywords with two word pattern, Website

keywords with three word pattern, Website context, Links on
website, Links visited on website, Content to be cached, Date
and time on which cached by, Information about hosting server,
Information of registrant, Additional information about website
owner, Additional information about website, Website link filed
anywhere else in our database, Total number of visitors, Website
created on, Website updated on and already crawled or not. All
of this info is indexed and stored to database using indexing
software agent deployed (see Fig. 6) [5,7].
3.2 Cached database architecture

Fig.7 Architecture of Cached Database[16]

Cached Storage: An agent that employs a module named as
Index, a filtering module that provides user perception and
interest to be used to fetch result from database server (see
Fig.7).
3.3 Presentation Logic Architecture

Fig. 8 Architecture of Interacting Agent
Presentation Logic: An interacting agent that gets keyword(s) to
search indexed database and expel result page (see Fig.8)[16].

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 346

4. Performance
 An estimated and approximate performance analysis
can be done to compare the existing search strategies with the
developed one. With the increase in availability of web pages on
the Internet, the major problem faced by the present search
engine is difficulty in information retrieval [11]. It is problematic
to identify the desired information amongst the large set of web
pages resulted by the search engine. With further increase in the
size of the Internet, the problem grows exponentially (see Fig. 9).
The number of web pages given as the result of a user initiated
will definitely grow up to an extent.

Quantity Vs Internet Size

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

Download Quantity
Internet Size

Fig. 9 Download Quantity vs. Internet Size.

This increase in the quantity on one hand, leads to

decrease in the quality (see Fig. 10) on the other. The framework
given in this work, effectively takes into consideration the above
mentioned issues. Being a context driven search strategy, use of
local resources i.e. curl programming features, reduced chaffing
owing to more information like thumb, caching the framework is
a key step for search mechanism with less degree of chaffing.

Quality Vs Internet Size

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

Download Quality
Internet Size

Fig. 10 Download Quality vs. Internet Size

 In terms of performance parameters like quantity,
quality, relevance with the keyword searched and the network
traffic; developed framework holds an edge above the
conventional search strategies. The results are more pertinent to
the user’s interest owing to more focused, relevant, personalized,
cached, path-oriented, cross architecture, cross platform and
graphical.

4.1 Experimental Screenshots

A series of user interfaces of developed framework with
deployed Extended Curl Crawler(see Fig. 11, Fig. 12, Fig. 13,
Fig. 14) while rendering for a keyword “song” is shown below:

Fig. 11 Home Interface

Fig. 12 Thumb Created Result

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 347

Fig. 13 WhoIs Info Result

Fig. 14 Cache Result

4.2 Analysis

This framework is running on an acer machine, a
workstation with 685MHz processor, 12 GB of RAM,840 GB of
local disk, 100 Mbit/sec Speed Internet, Windows Server
2003,IIS 7.5,Tomcat 7.0.23,Asp.Net run time framework
4.0,SQL Server 2008 and XAMPP 1.7.3.

In this paper, experimental statics are presented of 9
days only owing to compare with other existing search systems
like Google, about this request issued are published in literature.
The Google crawler is reported to have issued 26 millions HTTP
requests over 9 days i.e. on an average 33.5 docs/sec and
200KB/sec[14,15]. Performance of any information retrieval
system can be analyzed using parameters like coverage and user
perception that are presented below:
4.2.1 Coverage

Coverage of a search engine points towards a search
engine’s crawl speed and index size. In case of developed
framework, Extended CurlCrawler made 67.3 millions HTTP
requests in 9 days, achieving an average download rate of
87.52docs/sec and 376.45 KB/sec includes explicit mining option
with focused and path-oriented approach. Hence, this work with
local resource utilization is a considerable optimization mark and
represented as below (see Fig. 15):

Fig. 15 Coverage Chart

4.2.2 User Perception

User perception points towards user experience with
developed framework. In this work, key points towards user
perception are:

GUI perception

Out of 67.5 million requests made, 1.17 millions
requests do not return thumb i.e.0.785% and 0.46 millions
requests return a thumb that is not clear up to the identifying
mark i.e. 0.31%(see Fig. 16).

0

10

20

30

40

50

60

70

GUI Perception Chart

Statics(Mill ions) 67.5 1.17 0.46

Requests Made Without Thumb Unreadab le

Fig. 16 GUI Perception Chart

Personalization degree

Coverage Chart

0

20

40

60

80

1 2 3 4 5 6 7 8 9

Days(no.)

Requests
Made(Millions)

Google
CurlCrawler

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 348

Out of 67.5 million requests made, 0.07 millions requests do not
return personalization of information like registrant, hosting info
etc i.e.0.047 %(see Fig. 17).

0

10

20

30

40

50

60

70

Personalization Chart

Statics(Millions) 67.5 67.43 0.07

Requests Made Personalized Without WhoIs

Fig. 17 Personalization Chart

Hence, these are the wrinkled points of this work that

were not expected to be happened.

5. Conclusion

In addition to the information like thumb, cache,
registrant and higher degree of context to provide more
interesting perception from users interacting with, this extended
framework renders the web with focused and path oriented
approach to provide a cross architecture framework for search
engines powered with human opinion approach. . This is a part of
ongoing research work, to utilize advance features of
programming in the web crawling up to maximum extent of
efficiency. Owing to the lengthy size of coding work, this is not
possible to present coding or technical details of all the modules
of developed framework. But work is incomplete without
functioning details of the basic modules i.e. index module and
fetching module.

5.1 Index
 Basic technical details like pseudo code and data
structures are given below:

Individual Data Structures Used:

Name Type Usage
SearchFrm Form To create result page
SearchTxt Textbox To enter query
SearchBtn Submit Button To search result from

database
D1 Div To store corresponding

keyword from database
to implement AJAX
while rendering

Cache Link Button To print cache result

WhoIs Link Button To print personalized
result

Thumb Link Button To display thumb result

Pseudo code:

5.2 Fetch
 Basic technical details like pseudo code and data
structures are given below:
Individual Data Structures Used:

Name Type Usage
url String To store url value
responseTitle String To store fetched title

corresponding to url value
metaContent String To store fetched meta tags

corresponding to url value
urlContents String To store fetched url

contents corresponding to
url value

keyContent String To store fetched keywords
corresponding to url value

whoIsInfo String To store fetched whois
information corresponding
to url value

registrantInfo String To store fetched registrant
information corresponding
to url value

Create header;
Create form with one textbox, one
submit button, one cache and one
thumb link button;
if(type == 'whois')
{
 call functions of module
'whois.php';
}
if(type == 'cache')
{
 call functions of module
'cache.php';
}
if(type == 'searchbtn')
{
 call functions of module
'searchcon.php';
}
Create footer;

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 349

thumbName String To store path of created
thumb corresponding to url
value

Common Data Structures Used:
Name Type Usage Degree
web_contents Table To store

Complete
information

22

Pseudo code:

read url;
if(validateApproach(url))
{
getAllDetailsInDb(url);
}
function getAllDetailsInDb(url)
{
 responseTitle = getTitle(url);
 metaContent = get_meta_tags(url);
 urlContents =
getURLcontents(url);
 if(count(trim(urlContents)) <=
200)
 {
 urlContents =
file_get_contents(url);
 stripContents = urlContents;
 }
 stripContents =
strip_tags(urlContents);
 keyContent =
fetchKeywordContents(url,stripContents)
;
 oneWordTexts = "";
 foreach(keyContent["_1"])
 {
 oneWordTexts =Val;
 }
 twoWordTexts = "";
 foreach(keyContent["_2"])
 {
 twoWordTexts=val;
 }
 $threeWordTexts = "";
 foreach($keyContent["_3"])
 {
 threeWordTexts =Val;
 }
 whoIsInfo = getWhoIsInfo(url);
 thumbName = makeThumbnel(url);
 whoIsNServer = "";
 foreach(whoIsInfo['regrinfo']['do
main']['nserver'])
 {
 whoIsNServer=value;
 }
 registrantInfo

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 350

=whoIsInfo['regyinfo']['registrar'];

 whoIsFullInfo = "";
 foreach(whoIsInfo['rawdata']=>
value)
 {whoIsFullInfo=value;}
 parsedDate = date("Y-m-d H:i:s");
 rsAlreadyQuery =
mysql_query(AlreadyQuery);
 if(rowAlreadyQuery =
mysql_fetch_assoc(rsAlreadyQuery))
 {Update existing record;}
 else
 {Insert new record;}
}

 Finally, the complete extended framework along with
implementation details of various agents used is discussed. An
extended crawler executing in a Multi-Agent environment is
designed and developed to expel a search that is more focused,
path-oriented, relevant, personalized, cached, automated, opinion
mined with human power, cross architecture, cross platform and
GUI driven. An extension to the developed framework is also
going on that uses an additional agent named Learner Agent with
features of Artificial Intelligence, which could observe, analyze
and imitate the user. It could formulate the right set of keywords
and proactively trigger a new query on its behalf [12].

6. References

[1]. Segev, Elad (2010). Google and the Digital Divide: The Biases of Online
 Knowledge, Oxford: Chandos Publishing.
[2].Vaughan, L. & Thelwall, M. (2004). Search engine Coverage bias: evidence
 and possible causes, Information Processing &Management,40(4), 693-707.
[3].Gandal, Neil (2001). "The dynamics of competition in the internet search
 engine market". International Journal of Industrial Organization 19 (7):
 1103–1117.
[4].Kobayashi, M. and Takeda, K. (2000). "Information retrieval on the web".
 ACM Computing Surveys (ACM Press).
[5].Steve Lawrence; C. Lee Giles (1999). "Accessibility of information on the
 web". Nature 400 (6740): 107–9.
[6].Zeinalipour-Yazti, D. and Dikaiakos, M. D. (2002). Design and
 mplementation of a distributed crawler and filtering processor. In Proceedings
 of the Fifth Next Generation Information Technologies and Systems (NGITS).
[7].Cho,Junghoo,"Crawling the Web: Discovery and Maintenance of a Large-
 Scale Web Data", Ph.D. dissertation, Department of Computer Science,
 Stanford University, November 2001.
[8].Shkapenyuk, V. and Suel, T. (2002). Design and implementation of a high
 performance distributed web crawler.In Proceedings of the 18th International
 Conference on Data Engineering (ICDE), pages 357-368, San Jose,
 California. IEEE CS Press.
[9].Edwards, J., McCurley, K. S., and Tomlin, J. A. (2001). "An daptive model
 for optimizing performance of an incremental web crawler". In Proceedings
 of the Tenth Conference on World Wide Web (Hong Kong:Elsevier
 Science).
[10].Shestakov, Denis (2008). Search Interfaces on the Web: Querying and
 Characterizing. TUCS Doctoral Dissertations 104, University of Turku.
[11].Chakrabarti, S., van den Berg, M., and Dom, B.(1999). Focused crawling: a
 new approach to topic-specific web resource discovery. Computer Networks,

 31(11–16):1623–1640.
[12].Gray, N. A. B. (2005). "Performance of Java Middleware - Java RMI,
 JAXRPC, and CORBA". University of Wollongong. pp. 31–39. Retrieved
 January 11, 2011.
[13].Sergey Brin and Lawrence Page. The anatomy of a large-scale pertextual
 Web search engine. In Proceedings of the Seventh nternational World Wide
 Web Conference, pages 107--117, April 1998.
[14].Shestakov, Denis (2008). Search Interfaces on the Web:Querying and
 Characterizing. TUCS Doctoral Dissertations 104, University of Turku.
[15].Z.Smith. The Truth About the Web: Crawling towards Eternity. Web
 Techniques Magazine, 2(5), May 1997.
[16].Ela Kumaret al, / (IJCSIT) International Journal of Computer Science and
 Information Technologies, Vol. 2 (4) , 2011, 1700-1705.
[17].Pant, Gautam; Srinivasan, Padmini; Menczer, Filippo (2004). "Crawling the
 Web". in Levene, Mark; Poulovassilis, Alexandra. Web Dynamics: Adapting
 to Change in Content, Size, Topology and Use. Springer.
 pp. 153–178. ISBN 9783540406761.
[18].Cho, J.; Garcia-Molina, H.; Page, L. (1998-04)."Efficient Crawling Through
 URL Ordering" Seventh International World-Wide Web Conference.
 Brisbane, Australia.

