Performance Comparison of FSA Red & Apriori Algorithm’s in Mutation Analysis

Mayilvaganan M*1, Hemalatha R*2

*1 Associate Professor & Dept.of Computer Science & PSG College of Arts and Science, Coimbatore, India.
*2 Research Scholar (Ph.D) Karapgam University, Dept.of Computer Science, Coimbatore, India.

Abstract-In this paper the attempt has been made to analyze the DNA gene cancer dataset with RBC, WBC and platelet cancer data set. The basic idea behind this proposed method is comparing the 3 large nucleotide DNA dataset with Bloom filter and discovering the matched subsequence. To validate the proposed algorithm, association and classification rule based on the FSA red algorithm with bloom filters and apriori algorithm using hierarchical clustering are compared using data mining technique. Here this algorithm is applied to find no of sequence occurrences and mutation analysis for the 3 nucleotide DNA gene dataset. In order to evaluate the proposed methodology, Comparisons are made based on the Execution time and memory efficiency in finding frequent patterns. The extracted rules and analyzed results are graphically demonstrated. The performance is analyzed based on the different no of instances and confidence in DNA sequence data set.

Keywords: Association Rule and Classification, Zero rule, fsa red and Apriori algorithm.

I. INTRODUCTION

The data from the human genome project is likely to be of significant assistance in medical genetics, including diagnosis of diseases. According to Fredj Tekai, bioinformatics is defined as “the mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information. Classification is a machine learning discipline, and is inspired by pattern recognitions, which is a branch of science. The data classification process involves learning and classification. Association rule mining is the discovery of association relationships or correlations among a set of items. Sequence alignment is a method of aligning sequence RNAs, DNAs and proteins, so, sequence alignment determines locations of similarity between sequences. These places of similarity between two or more sequences, can indicate the relationship between functional, structural, and evolutionary times between sequences [2]. Different solutions are presented for sequence alignment problems, such as the Hidden markov model, Heuristic algorithms, and Dynamic programming. In recent decades, advances in molecular biology and required equipment for this research caused a rapid increase in sequencing the genomes of many organisms of species, in such a way that the genome sequencing projects are common projects in Bioanformatic[1].

II. RELATED WORK

Varities of techniques are presented for sequence alignment criteria, and in this module describe these methods. There are pre planned works which use Dynamic programming, such as the Needleman - Wunsch and the Smith -Waterman. These methods have two ladder. In the first step, the algorithm assigns a substitution matrix for comparing and scoring characters of the input succession, and in the second move, traces back the replacement matrix for estimating an answer for the problem. Order of these methods is exponential.. These methods find the answer of sequence alignment problems by combining a pair of aligned characters that start from the most similar couple and end to the most un similar couple. These methods have two steps [5]:
1) Presenting the relationship between the sequences using a supervision tree.
2) Running Multi Sequence Alignment (MSA), according to the guidance tree for adding sequences to each other. The heuristic methods are efficient to be implemented on large scales(100 - 1000), But in these methods, the answer is not assured to come together to the most favourable solution. Evaluation of this methods is very difficult and biological concepts are vague [6]. The next method is the Hidden Markov model. the Hidden Markov model is based on probabilities which can be considered...
for all possible cases of arrangement of jumps, matches and mismatches to find the most likely aligned sequences or a set of associated sequences. The order of these methods is more worse than other methods[5]. In this paper, we propose an algorithm to align the sequences using Bloom filters that is more efficient and fast.

III. PROPOSED METHODOLOGY - FSA RED ALGORITHM

The idea behind this proposed method is comparing subsequence of incoming sequences with Bloom filter and discovering the matched subsequence. The sequence alignment problem has a large number of comparisons. According to the last successful experiences of using Bloom filter in similar issues such as web search, it seems that using Bloom filter to solving this problem can be an appropriate solution. Algorithm is used for data reduction or pre-processing to minimize the attribute to be analyzed. The goal is to make strong association rules using data mining techniques related to the data which is reduced. The data pre-processing in FSA-Red performed a few of reduction techniques such as attribute selection, row selection and feature selection. Row selection has done by deleting all signed record which related to the attribute which need to be analyzed. Feature selection will remove all the unwanted attribute, ended with attribute selection to eliminate the non value attributes which is no need to be included.

Sequence Alignment of Data for research

The genetic code is the set of rules by which information encoded in genetic material. The data set used for proposed work in DNA sequences and it is obtained from PubChem. Pubchem is an important public, web based information source for chemical and bioactivity information. The information in DNA is stored as a code made up of A,G,C,T chemical codes. A-Adenine, G-Guanine, C-Cytosine, T-Thymine. Human DNA consists of three billion bases and more than 99 percent of those bases are the same in all people. This database contains 40000 gene sequences. BLAST(Basic Local Alignment Search Tool) are the most popular heuristic methods for sequence alignment.

<table>
<thead>
<tr>
<th>Word list of amino acids</th>
<th>C T C T A G C A T A A</th>
</tr>
</thead>
<tbody>
<tr>
<td>G T G C A C C C A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heuristic method of alignment of codons</th>
<th>C T C T A G C A T T A G</th>
</tr>
</thead>
<tbody>
<tr>
<td>G U - G C A C C C A</td>
<td></td>
</tr>
</tbody>
</table>

(insert a character U in the place of T)

In the above heuristic method of alignment the Nucleotide BLAST search was performed with one input nucleotide sequences and compared these against other nucleotides. In the above data set red colour indicate the exact match was found in the nucleotide sequence.

FSA RED ALGORITHM Implementation

Purpose of this phase is discovering the similar subsequence’s between incoming sequence and the most similar sequence in the database, using Bloom filter. For this purpose, first process of this phase creates subsequence’s of incoming sequence in three groups, 2 characters, 3 characters, and 4 characters. Each created subsequence is compared with corresponding Bloom filter. If it be found in the Bloom filter, the subsequence and its final index are added to a queue. After comparison of subsequence’s with specific length, queue will be rated and go to the next group. Finally, after examining all of the sequences of database, best queue will be sent to Phase II.

Algorithm: align \(A_1, A_2 \)

Input: string \(A_1 \) of length \(m \), string \(A_2 \) of length \(n \)

Initialize matrix \(D \) properly;

for \(x=1 \) to \(m \), for \(y=1 \) to \(n \)

max = \(D[x-1][y] + \text{gapScore2}(A_2[y-1]) \)

if max < \(D[x][y-1] + \text{gapScore1}(A_1[x-1]) \)

max = \(D[x][y-1] + \text{gapScore1}(A_2[x-1]) \)

if max < \(D[x-1][y-1] + \text{matchScore}(A_1[x-1], A_2[y-1]) \)

Table 1 heuristic sequence alignment of DNA dataset with respect to RBC, WBC, PLATELET

AGCGGACATCT CGAAAACAAA CTCAACT CCAAATCCTT CACTGTTCCAC ACAAGTAC ACTCCATGTCT TGCTGGATGG

AGCGGACATCT CGAAAACAAA CTCAACT CCAAATCCTT CACTGTTCCAC ACAAGTAC ACTCCATGTCT TGCTGGATGG
max = D[x-1][y-1] + matchScore (A_1[x-1], A_2[y-1])
[x][y] = max endfor 13. Endfor return D[m][n]

Output: value of optimal alignment
Purpose of this phase is aligning sequences based on sub sequences location in both sequences which are in the best queue. Since it is possible that location of subsequence in the two sequences has situations that are in appropriate and too far, so the nucleotide sequence, established conditions for the acceptance subsequence.

PRE-PROCESS PHASE
while 2 ≤ n ≤ 4 do
for i = 0 → m − length + 1 do
CS ← NextSubsequence(i; length)
BloomFilter:Add(CS) end for
Save(BloomFilter) n ++ end while

Table 2: Sample Nucleotide Data Set Sequence

<table>
<thead>
<tr>
<th>A</th>
<th>-1</th>
<th>-1</th>
<th>-1</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>T</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>G</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
</tr>
</tbody>
</table>

Single codon letters
Algorithm -Locating Subsequence In The Sequence Of Database
while 2 ≤ n ≤ 4 do
for i = 0 → m − length + 1 do
CS ← NextSubsequence(i; length)
if thenBloomFilter:Contain(CS)
Queue:Enque(CS)
Score = Scoring(Queue:Count())
if thenScore > BestScore
BestQueu ← Queue
n + + end while

The above table represents the two strings nucleotide DNA data set. If the single codon match is found the alignment score is calculated as 1 otherwise -1.
The following figure 1 represents the single codon and double character heuristic search with the amino acids A,C,G and T respectively. In WBC cancer nucleotide dataset sequence double pair of amino acid sequence such as AA, AC, AG,AT,CA and CG are estimated.

TABLE 3: Nucleotide Sequence of DNA data set

<table>
<thead>
<tr>
<th>String 1</th>
<th>A</th>
<th>C</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>String 2</td>
<td>A</td>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>Alignment Score</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Fig1. wbc cancer single codon data sequence:

Mutation Analysis
A mutation occurs whenever there is a change in the genetic information of an organism, due to a variety of causes. In point mutations, it is important to remember which bases are purines (A/G) and which are pyrimidines (C/T). When a point mutation causes a purine to convert to another purine (for example, C to T), this is known as a transition. When a point mutation changes a purine to a pyrimidine, or vice versa, (i.e., A to T), this is known as a transversion.

Mutation Algorithm
Target ← Queue:Dequeue()
i ← Target:F inalIndex()
for j = i − 2 > Length → i do
CS ← NextSubsequence(j; length)
if Target == CS then
Aligning()
Fig 2: flowchart for mutation analysis

Fig 3: Mutation analysis in RBC cancer nucleotide sequence

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Figures(4), (5) and (6) shows that amount of used memory, efficiency and speed in the proposed algorithm that is less than the apriori algorithm. This is because of the Bloom filter is a compact data structure and matrix is a data structure that growths quickly. Definition of response time is the time required to produce output regardless of the output quality. The implementation results show that the fast sequence alignment algorithm can improve the quality, memory and speedup metrics. Results show that in average efficiency 71%, memory usage 93.3% and response time 0.96% as compared to apriori algorithm method are improved.

Fig 4 FSA RED algorithm efficiency in Wbc data based plots:
V. CONCLUSION AND FUTURE SCOPE

In this paper, the proposed fast sequence alignment algorithm using Bloom filters is used for DNA nucleotide set sequence of cancer affected RBC, WBC and Platelet. Our proposed algorithms included two phases: phase I is related to discovering the similar subsequence’s and creating a queue of similar sequences. In phase II, FSA algorithm aligns the sequences using subsequence’s queue of phase I. The implementation results show that the fast sequence alignment algorithm can improve the quality, memory and speedup metrics. Results show that in running time memory usage and speed are better compared to apriori algorithm. In future the work will be extended in the following areas. I) identifying the root cause of the cancer ii) analyse the future spread over portion of the cancer affected areas.

References