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Abstract - This study examines the relationship between machine learning and quantum computing, emphasizing the potential 

benefits of quantum algorithms for classification, optimization and clustering problems. Through a comprehensive literature 

review of peer-reviewed journal articles and preprints from 2014 to 2024, Quantum K-Means Clustering, Quantum Support 

Vector Machines (QSVMs), and Quantum Approximate Optimization Algorithms (QAOA) and Quantum Annealing are among 

the important quantum algorithms identified in the study. Although the theoretical potential of these algorithms is substantial, 

present hardware constraints, such as noise, de-coherence, and qubit count limitations, make practical implementation difficult. 

The review also highlights the ongoing challenges in quantum error correction and the nascent stage of quantum hardware 

development, which prevent large-scale machine learning tasks from being fully realized. Even so, hybrid quantum-classical 

models are a plausible route forward for near-term utility. These results suggest that to leverage quantum machine learning to 

its full potential, further progress in quantum hardware, error correction codes, and hybrid algorithms is required. Future studies 

should focus on designing more robust quantum error correction methods, further developing hybrid systems and exploring new 

areas of machine learning, such as reinforcement learning and generative models. 

Keywords - Machine Learning, Quantum computing, Quantum algorithms, Quantum Machine Learning, Optimization. 

1. Introduction  
Quantum computing has emerged as one of the most 

disruptive technologies of the 21st century and can potentially 

transform industries ranging from cryptography to 

optimisation and Artificial Intelligence (AI). A type of 

artificial intelligence is machine learning, which leverages 

algorithms that allow systems to learn from data and make 

predictions. While machine learning on classical computers 

has been around for decades, quantum computers promise to 

make these systems considerably more powerful by 

leveraging quantum phenomena such as superposition and 

entanglement. Quantum Machine Learning (QML) is the 

integration of quantum computing and machine learning that 

has the ability to revolutionize the field with much faster and 

more efficient algorithms for analysing data and tackling 

complex problems. Martian laptop to decode the data coming 

from the Martian surface to understand better what happens in 

that dry and harsh environment.  

This study aims to: 

a) Survey the past and present of quantum machine learning 

and its potential for being a game changer.  

b) What are the main quantum algorithms that could support 

machine learning?  

c) Survey challenges and limitations in quantum hardware 

and software about machine learning tasks. 

2. Literature Review 
Quantum machine learning has attracted considerable 

interest during the past few years, with many works 

investigating whether and if we can leverage quantum 

algorithms to run classical machine learning algorithms faster 

or better. Below is a brief outline of the relevant research and 

theories that provide a basis for quantum machine learning. 

2.1. Machine Learning and Quantum Related Algorithms 

2.1.1. Quantum Support Vector Machines (QSVM) 

Support Vector Machines (SVM) have been one of the 

top methods for classification in the machine learning space. 

These classic methods find a hyperplane that best separates 

one class from the other based on its close points on each side. 

SVMs are effective but computational, especially with high-

dimensional data. This is common in real-world applications.  

As a result, Quantum Support Vector Machines (QSVMs) 

were developed, taking advantage of the inherent ability of 

quantum computing to handle big data, which could turn out 

to be a solution for such constraints. In this section, we provide 
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an overview of the general framework of QSVMs, including 

theoretical aspects, applications and related challenges.  

2.1.2. Quantum Support Vector Machines: Theory 

The idea of QSVMs originated in the landmark work of 

Rebentrost et al. (2014), where it was shown that quantum 

computing could provide a speedup over classical SVMs for 

large feature spaces. The main benefit of the QSVMs is that 

due to the unique ability of quantum computing to represent 

data in quantum states, the process of computing the optimal 

separating hyperplane can be accelerated exponentially.  

In classical SVMs, the time complexity of the training 

process scales quadratically with the number of data points, 

particularly when the kernel trick is applied over high-

dimensional feature spaces. However, QSVMs can reduce this 

complexity exponentially by using quantum parallelism. 

Rebentrost et al. (2014), it was indicated that pure quantum-

inspired kernels (QSVMs) were able to use quantum 

algorithms for accelerating the kernel function evaluation. At 

the core of SVMs, the kernel trick maps data points from a 

low-dimensional space to a higher-dimensional space in 

which a linear hyperplane can separate the data points. For 

classical systems, this comes with a high computational 

overhead, particularly as the dimensionality of the data 

grows. Alternatively, a quantum computer may leverage a 

quantum circuit to compute the kernel function exponentially 

faster, allowing QSVMs to train on larger datasets than 

classical VSMs.  

In the following section, we will focus on practical 

implementations and developments. In the original proposal 

by Rebentrost et al. (2014), significant progress has been 

made in QSVM (both algorithmically and practically). An 

important example of this is from the work of Schuld et al. 

(2020), who presented a quantum algorithm for support vector 

machines based on the quantum Fourier transform.  

Relevant work was based on a quantum algorithm that 

offered a potential speedup in the time complexity of kernel 

evaluations that is excellent for high-dimensional datasets, 

thus improving the computation of both the space and time 

complexity of the QSVMs-related learning tasks. The 

theoretical benefits of QSVMs are already well established, 

but their practical implementation is still lacking.  

With their potential to be the ultimate shape for 

embedding that could benefit from maintaining the quantum 

properties of the supplied data mapped to the quantum 

algorithm, a significant challenge lies in ensuring that 

quantum kernels on current quantum machinery are used 

appropriately, often hindered by the gate fidelity and qubit 

count for most quantum systems. Even if a QSVM were 

optimal, the current absence of large-scale, fault-tolerant 

quantum computers still blocks useful, real-world QSVM 

implementations (Biamonte et al., 2017). 

2.1.3. Recent Innovations and Hybrid Quantum-Classical 

Approaches 

Hybrid quantum-classical treatments in machine learning, 

which leverage quantum algorithms together with classical 

models to capitalize on the strengths of both technologies, 

have recently attracted more interest. One such approach that 

is particularly interesting for Quantum Support Vector 

Machines (QSVMs) is to delegate simple jobs to the classical 

computer and let the quantum processor do most of the 

computational heavy lifting in their implementation. For 

example, this noteworthy contribution to hybrid QSVMs 

came from Havlíček et al. (2019), who presented a technique 

to approximatively solve the classical SVM optimization 

problem on quantum computers. In this hybrid approach, 

quantum algorithms are applied for several steps of the 

optimization process, which can be accelerated, such as 

solving the systems of linear equations in calculating the 

decision boundary. Utilizing quantum computers only when 

they provide a speedup for a given task reduces the demand 

for massive quantum logic. 

It allows for the easier realization of QSVMs on the 

anticipated quantum hardware of the coming years. Finally, 

Rebentrost et al. (2020). SVMs are a hybrid quantum-

classical paradigm in which quantum circuits are used to 

determine parameters that provide the best fit for an SVM. 

Only a few QSVM methods have been proposed in the 

literature, and this is partly because quantizing machine 

learning problems and methods into the quantum realm is a 

non-trivial process (Havlíček et al., 2019) and partly because 

the actual implementations of direct quantum measurements 

rely heavily upon quantum technology; this work leads to the 

development of Variation Quantum Machine Learning 

(VQML) (Havlíček et al., 2019) which was selected as VQML 

methods have the potential to be run on near term quantum 

devices with Noisy Intermediate-Scale Quantum (NISQ) 

hardware. 

2.1.4. Performance Comparison and Challenges 

In studies comparing the performance of QSVMs with 

classical SVMs, some studies have shown that quantum 

computers in their current noisy state performance are higher 

than classical SVMs, at least under specific conditions. For 

example, Tang et al. Probabilistic news analysis using 

quantum Support Vector Machines (SVM) (2020 Artificial 

Intelligence ) showed how the kernel evaluations in high-

dimensional data spaces could be faster in the new non-

orthogonal measurement space, compared to classical 

counterparts, yielding significant machine learning speedups 

in the classification of complex data sets. Moreover, kernel 

evaluations with quantum computers help QSVMs to scale 

better by dimensionality than classical SVMs, which show an 

exponential increase in computational complexity with feature 

dimension. However, several challenges remain for building 

the QSVM in practice, particularly due to the limitations of 

the quantum hardware itself. The state-of-the-art quantum 
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processors are still in the early stages of development, with a 

limited number of qubits and high error rates as of 2024. 

Thus, while QSVMs offer a theoretical speedup, these 

quantum systems are too noisy to provide robust results in 

practice. This constraint has led to a pervasive debate in the 

research community on connecting theoretical quantum 

machine-learning algorithms with practical, real-world use 

cases (Preskill, 2018). Furthermore, although QSVMs can 

theoretically provide exponential speedups for some machine 

learning tasks, the particular problems where quantum SVMs 

offer the most gain compared to classical algorithms are yet 

to be firmly established. Nonetheless, various quantum 

computation and optimization algorithms models have been 

extensively studied (Biamonte et al., 2017; Lloyd et al., 

2013). 

2.2. Quantum K-Means Clustering 

K-means clustering is an unsupervised learning technique 

popular in machine learning. It effectively classifies the data 

into k distinct clusters by minimizing the distance between 

data points and the centroids of their respective clusters. K-

means is not only popular and straightforward, but it also 

struggles to scale with high-dimensional data, especially if 

there are many clusters or dimensions. In the domain of data 

science and machine learning, quantum computing holds the 

potential to solve some of these issues by decreasing the time 

complexity of K-means clustering and providing better 

computational power, especially with large datasets. We will 

explore the theoretical aspects, developments, and challenges 

of QK-Means Clustering (QKMC) and how recent 

contributions have been made to the state of the art. 

2.2.1. The basics of Quantum K-Means Clustering 

In the classical K-means algorithm, every data point is 

assigned to its nearest cluster centroid iteratively. This process 

continues until the convergence of centroids according to the 

means. This process repeated until convergence. For small to 

medium-sized datasets, this is a simple but effective way to 

approach the problem, but it leads to computational problems 

for high-dimensional data or very large numbers of data 

points. To tackle these problems, quantum K-means clustering 

uses quantum mechanics to perform the clustering efficiently. 

The classic K-means algorithm consists of an iterative 

assignment of data points to the closest centroids of clusters, 

followed by an update of the centroids to the average of their 

respective members. This is iterated until convergence.  

The algorithm is quick and works well on small and 

medium datasets, but there are several issues with high-

dimensional data or large amounts of data points that make it 

less useful in those scenarios. Quantum K-means clustering is 

a technique that trains significantly based on these difficulties 

using quantum mechanics to abate the clustering process. 

Quantum K-means clustering performs under the umbrella of 

quantum parallelism, using quantum states to represent 

multiple solutions simultaneously. Two main properties of 

quantum computing technology can be applied to improve 

performance distance calculations. Quantum transformers can 

take advantage of quantum superposition and interference to 

perform faster data point distance calculations, which are 

generally expensive in the high-dimensional space distance 

calculation in the classical model with ordinary data points 

and centroids. A preliminary investigation into quantum-

enhanced clustering has been undertaken, with work such as 

that by Gacon et al. (2021) suggesting that evaluation of joint 

(quantum) distances can be done much faster using quantum 

circuits, which can provide an exponential speedup over 

classical distance evaluation methods. The main idea 

introduced is that quantum algorithms can be employed 

instead of using classical algorithms to measure the distance 

because computing the distance is usually the bottleneck in 

classical K-means algorithms w.r.t time complexity. In 

conventional systems, the distance from a data point to a 

centroid is measured using Euclidean or other distance 

measures. But for quantum systems, using quantum Fourier 

transforms or quantum phase estimation can compute these 

distances exponentially faster under certain conditions 

(Rebentrost et al., 2020). 

2.2.2. New Developments of Quantum K-Means Clustering 

Quantum K-means clustering has been receiving 

increased attention in recent years. The first major step 

forward was proposed by Gacon et al. (2021), which proposed 

a quantum algorithm for K-means clustering that was able to 

achieve a speedup over the classical algorithm by decreasing 

the number of steps necessary for the centroid update and 

assignment of data to centroids steps. In this method, the 

quantum K-means algorithm takes advantage of faster 

distance computation as performed by quantum parallelism. In 

general, this can lead to exponential improvements in the time 

it needs to run with high-dimensional data. Additionally, new 

research has been investigating hybrid methods that leverage 

quantum computing alongside classical techniques. 

 An approach from Benedetti et al. (2021) incorporates a 

hybrid quantum-classical algorithm where quantum 

computing was employed to expedite the optimization stage 

in K-means clustering. In this hybrid approach, quantum 

computers realise the distance computation and the 

assignment steps, while classical computers realise the 

convergence and the centroid update. This not only increases 

the speed of the quantum K-means algorithm, but hybrid 

approaches also increase the versatility and scalability of the 

algorithm, allowing it to handle more complex data. Hybrid 

quantum-classical systems exploit the best of both: quantum 

computing performs tasks that benefit from parallelism and 

speed, while classical systems perform other tasks like 

iteration control and large-scale data storage. They provide an 

opportunity to run quantum K-means with current NISQ 

(Noisy Intermediate-Scale Quantum) devices, which are 

limited in qubit numbers and whose devices suffer from 

noise.  
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2.2.3. Quantum K-Means Clustering Challenges 

While quantum K-means has the potential to be more 

efficient than conventional K-means to a certain extent, it does 

face a number of challenges. One of the key barriers is the 

challenge of implementing quantum algorithms on currently 

available quantum hardware. Most quantum algorithms, like 

that which handles quantum K-means clustering, require 

constructing such systems with a large number of error-

tolerant qubits, which are still in the preliminary stages of 

research, Liu et al claim. (2023). Due to the high error rates 

and limited qubit numbers and coherence times of current 

quantum computers, it is computationally expensive to 

implement complex algorithms like QKMC at scale. Another 

challenge is that quantum K-means algorithms have 

limitations in adapting to real data sets. Theoretical models 

have been established that indicate quantum K-means 

clustering can exhibit an exponential speedup; however, such 

speedups are typically restricted to particular problem classes.  

Quantum algorithms, therefore, are better suited for 

high-dimensional datasets often facing the curse of 

dimensionality seen in classical K-means. The potential of 

quantum K-means for lower-dimensional data or simpler 

clustering tasks is still unknown (Liu et al., 2023). Thus, 

additional empirical studies are required to find real-world 

use cases in which quantum K-means clustering outperforms 

classical counterparts significantly. Additionally, the 

scalability of quantum K-means has begun being discussed 

more and more. Because you are still in the NISQ era of 

quantum computing, which limits how large and complex 

problems you can solve with quantum algorithms. As argued 

by Farhi et al. (2020) commented that to obtain meaningful 

outcomes from the quantum K-means, more efforts need to be 

made on quantum circuit optimization, noise resilience of the 

algorithm, and hardware to manipulate large-scale datasets.  

2.2.4. Future Directions and Potential Applications 

Quantum K-means clustering can be applied in many 

different areas, including all fields based on data segregation, 

such as genomics, image recognition, and large-scale data 

analysis, since clustering high dimensional data is a vital 

procedure. As one example, in quantum chemistry, clustering 

large molecular datasets for pattern recognition and 

classification might benefit from quantum-enhanced speedups 

(Kearnes et al., 2019). Similarly, quantum K-means could also 

be useful in solving banking-related problems such as 

quantitative finance, where you can perform efficient large 

datasets of stock trends and quality indicators classification 

using quantum-enhanced methods. The system will use the 

current and near-future state of the art in hybrid quantum-

classical algorithms and will be more widely usable than 

algorithms designed for a specific use-case, as is currently the 

case — developing more effective hybrid quantum-classical 

algorithms that can leverage the strengths of each quantum 

and classical systems, will be an important area of future 

work. These systems, while retaining the computational 

advantages of quantum algorithms, can help to realize 

applications despite quantum devices being limited to a small 

amount of qubits in an NISQ environment. Account of mature 

error-correction methods that can potentially enhance the 

scalability and stability of quantum K-means clustering 

algorithms has become a focus (Liu et al., 2023). Another 

avenue for future research would be exploring integrating 

quantum K-means with other quantum machine learning 

techniques, such as quantum neural networks and quantum 

deep learning architectures. Such integrations might yield 

more powerful quantum machine learning architectures that 

can tackle yet more complex datasets and problems. 

2.3. Quantum Optimization Algorithms 

Quantum optimization algorithms are a class of 

algorithms that exploit the processing power of quantum 

mechanics to solve difficult optimization problems. These 

algorithms check massive solution spaces faster than 

traditional optimization algorithms by leveraging quantum 

properties such as superposition, entanglement and 

interference (Liu et al., 2023). Quantum computing offers the 

advantage of addressing optimization problems for large-scale 

or complex tasks in computationally prohibitive ways for 

classical systems. This section discusses the theoretical 

foundations of quantum optimization algorithms, their latest 

progress, and challenges and applications in various fields.  

2.3.1. Quantum Optimization Algorithms: Theoretical 

Underpinnings 

Optimization problems are important in many fields, from 

finance and logistics to machine learning and artificial 

intelligence. Traditional optimization techniques, such as 

simulated annealing and gradient descent, have been used for 

many years to find good answers to problems with large 

search spaces. However, the time required to determine the 

best solution may be exponential with the problem’s scale, 

especially in high-dimensional, non-linear cases. Quantum 

computing provides one probable solution to these problems 

by applying quantum superposition, parallelism, and quantum 

gates to speed up the search process. The invention of the 

Quantum Approximate Optimization Algorithm (QAOA) by 

(Farhi et al. 2008) and Hsieh et al. (2014) the latter being one 

of the most significant contributions to the field of quantum 

optimization.  

QAOA is a quantum-classical hybrid method, where 

quantum gates search the solution space and quantum states 

build feasible solutions for combinatorial optimization 

problems. To leverage the capacity of quantum computers to 

scan multiple solutions simultaneously, QAOA iterates 

quantum operations with classical optimization methods. In 

the early 2000s, one of the other important optimization tools 

was Quantum Annealing (QA), developed by D-Wave 

Systems. Quantum annealing is the quantum analogue of 

simulated annealing, a probabilistic technique for finding the 

global minimum of a function. In optimization problems with 
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a complex or rugged landscape, quantum annealing could 

potentially reach the global optimum faster than classical 

methods by employing the concept of quantum tunneling to 

breach local minima (Kadowaki et al., 1998). However, there 

are some classes of optimization problems in practice that 

quantum annealing has been proven to provide speedups over 

classical techniques. 

2.3.2. Quantum Optimization Algorithms in Deep Energy 

Extrapolation 

Since introducing the QAOA and Quantum Annealing 

algorithms, we have witnessed significant progress in 

quantum optimization research. Although a significant 

amount of work has been done to develop these algorithms 

over the past few years, this development has increasingly 

focused on the algorithms' scalability, performance, and 

robustness due to the limited capabilities of current quantum 

hardware. “Since the introduction of quantum computers, 

they have been widely studied as potential candidates for 

quantum optimization problems. (2021), who examined 

variational quantum optimization algorithms. These 

algorithms involve using quantum processes alongside 

classical optimization processes to iteratively enhance 

solutions for combinatorial optimization problems.  

Near-term quantum devices cannot implement large 

quantum circuits due to noise and hardware constraints; 

therefore, variational algorithms are especially useful. 

Quantum circuits can efficiently represent solutions to many 

optimisation problems by encoding complex states, making 

them attractive to address such problems in various fields like 

finance, cryptography, and machine learning.  

Further, quantum annealers like those from D-Wave 

have matured in recent years. For instance, the D-Wave 

Advantage quantum system features enhancements in terms of 

qubit connectivity and coherence time, which enables it to 

manage significantly larger and more complicated 

optimization tasks (D-Wave Systems, 2020).  

These developments have positioned quantum annealing 

as a promising approach for real-world optimization 

problems, especially in application domains such as logistics 

and transport, where optimization problems are often large 

and hard for classical algorithms. Recent research has mostly 

been directed at applying quantum optimization algorithms for 

machine learning problems. Such as Wang et al. (2022) over 

quantum optimization for training machine learning models, 

especially ones that are large-scale (in terms of either the 

number of examples or the dimension of feature space). One 

specific application of quantum computing that studies have 

shown could offer significant speedups is Quantum-enhanced 

Optimization, where the quantum optimization algorithm 

efficiently traverses the parameter space toward finding the 

global minima much faster than traditional classical gradient-

based optimization algorithms.  

2.3.3. Obstacles in Quantum Optimization Algorithms 

While the advances in quantum optimization algorithms 

are promising, there are still some significant drawbacks to be 

considered, specifically related to the limitations of quantum 

hardware. Three challenges in the Noisy Intermediate-Scale 

Quantum (NISQ) era are limited qubit sizes, short coherence 

times, and high error rates. Due to these restrictions, a number 

of quantum optimization algorithms, including QAOA and 

quantum annealing, remain unsuitable for large-scale, real-

world problems (Preskill, 2018). Even for some classes of 

optimization problems, quantum algorithms outperform 

classical ones in theory, but the claimed advantages have not 

yet been fully realized in practice. The difference between 

theoretical performance and actual operation on present-day 

quantum appliances is still wider. 

 Numerous studies (Chen et al. 2020) point out that 

optimization in the field of quantum computing still needs a 

lot of enhancement in finding a solution that has a distinct 

advantage over previously used classical algorithms in real-

world problems. In particular, classical optimization 

techniques, like simulated annealing or branch-and-bound 

methods, can still achieve competitive performance in terms 

of accuracy and speed for some problems, especially for 

problems of lower dimensions or simple landscapes. 

Additionally, the selection of a quantum algorithm and its 

utilization in practice are often very specific to the problem at 

hand. For example, QAOA might be more successful for 

certain types of combinatorial optimization problems, yet 

quantum annealing might be better in other situations. The 

real challenge is finding the classes of problems in which 

quantum optimization algorithms are genuinely advantageous 

compared to traditional methods. 

2.4. Quantum Optimization Algorithms: Applications 

Quantum optimization algorithms encompass a multitude 

of applications in the fields that are dependent on the solution 

of big-scale, complex optimization problems. One such field 

is logistics and supply chain optimization, where the problem 

of determining the most efficient routing of goods/inventory 

across multiple locations is a combinatorial optimization 

problem that can take a classical system a considerable 

amount of time to compute. Examples of quantum 

optimization algorithms suggested to solve such problems are 

the Quantum Approximate Optimization Algorithm (QAOA) 

and quantum annealing (King et al., 2022), which promise to 

produce faster and more efficient routing in complex logistics 

systems.  

Optimization Algorithms in Financial Modeling: In 

financial modelling, optimization algorithms are used to 

optimize portfolios, minimize risk , and get optimal trading 

strategies. Quantum computing can potentially change the 

way we approach some aspects of finance, particularly 

regarding optimization problems that rely on fast 

computations over large datasets for real-time decision-
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making in trading or portfolio management (Lloyd et al., 

2018). In addition, quantum optimization algorithms have 

been utilized in machine learning applications, including 

hyperparameter tuning and feature selection. Quantum 

optimization can efficiently traverse the vast search space of 

hyperparameters, yielding better model performance. Wang et 

al. (2022) also showed that quantum optimization algorithms 

could be used to speed up the process of training deep neural 

networks by achieving convergence faster than classical 

methods by optimizing the weights and biases of the network.  

2.4.1. Future Directions 

When it comes to quantum optimization algorithms, their 

future holds promising developments further down the line, 

given the rapid pace of progress in quantum hardware, 

algorithm design, and hybrid quantum-classical methods. 

With advancements in quantum hardware , which are very 

likely to make quantum optimization more practical in the 

future, these algorithms will get widespread usage on large-

scale quantum devices. As we look forward, future 

applications and papers will likely emphasize discovering 

better quantum error correction codes and making such 

processes more efficient and requiring fewer qubits (Kandala 

et al., 2017). Near-term quantum devices would exploit 

quantum optimization in unison with classical techniques in 

hybrid algorithms to address complex problems. 

2.5. Quantum Machine Learning Challenges 

Quantum Machine Learning (QML) may have a huge 

impact on machine learning, but there are many big obstacles 

to its practical use in the future. These include problems of 

quantum hardware, quantum algorithms and quantum de-

coherence.  

2.5.1. Quantum De-coherence and Noise 

Quantum systems are sensitive to environmental 

influences that can disrupt their quantum states and alter their 

behavior by introducing noise and leading to quantum de-

coherence. De-coherence, the phenomenon where quantum 

information leaks into the environment, can greatly reduce the 

precision of quantum computations. However, noise in 

quantum circuits is one of the biggest challenges to scaling up 

quantum systems to tackle large, complex machine-learning 

problems. Quantum error correction techniques are essential 

to address those problems, but they represent one of the main 

roadblocks to implementing quantum algorithms to solve 

problems of practical interest on real devices (Preskill, 2018). 

Some promising developments, like both surface codes and 

error-correcting codes, hold great promise; however, these 

still have a long way to go before they can be implemented at 

scale.  

2.5.2. Hardware Limitations 

The current state of quantum computing hardware is still 

early, possessing only a limited number of qubits, short 

coherence times and high error rates. Shahid has been 

optimizing these models for large scales→; these constraints 

pose a problem for implementing quantum machine learning 

models. As quantum systems scale, there will be a necessity 

to increase the number of qubits employed for practical 

algorithms while retaining quantum coherence, which will 

grow more and more difficult (Arute et al., 2019). Current 

quantum machines (Noisy Intermediate-Scale Quantum, 

NISQ devices) are too unstable for reliable execution of 

complex Quantum ML (QML) algorithms. Addressing these 

hardware constraints will require research to enhance qubit 

quality, extend coherence times, and develop more 

sophisticated error mitigation techniques (Preskill, 2018).  

2.5.3. Algorithm Development 

Although quantum algorithms for machine learning seem 

promising in theory, they are in the early practical 

implementation stage. However, the quantum advantage over 

classical machine learning algorithms has not yet been 

achieved in practice, and many quantum algorithms are still 

in the theoretical phase of their development. The second 

approach is to train the researchers to identify and design 

quantum algorithms that beat their classical counterparts in 

practically relevant settings instead of in some hypothetical 

world model. Moreover, hybrid quantum-classical approaches 

are being investigated as a more tractable solution for near-

term devices, taking advantage of the strengths of both 

quantum and classical computing systems (Lloyd et al., 

2013). The key challenge remains in creating these 

algorithms and ensuring they are deployable on near-term 

quantum technologies. 

2.6. Gaps in Research 

Despite the preliminary results, there is a shortage of real-

world practicality and empirical solutions for quantum 

algorithms that outperform classic methods for all steps of the 

pipeline. There is still much work to be done on hybrid 

quantum-classical systems, error correction, and quantum 

hardware in general.  

3. Methodology 
This work takes a qualitative research approach with an 

extensive literature review to evaluate the current state of the 

art in quantum machine learning. The review extends the 

analysis on primary sources from 2014 to 2024, concentrating 

on peer-reviewed journal articles, conference proceedings, 

and preprints published in significant machine learning and 

quantum computing journals. The literature was selected 

based on the articles' relevant contributions to the discipline 

and their applicability to quantum machine learning. The 

approach used in this review consists of the following steps: 

3.1. Data Collection 

We collected literature from major academic databases, 

including Google Scholar (Google Scholar), arXiv (arXiv) 

and ScienceDirect (ScienceDirect). The search was focused 

on specific terms such as "quantum algorithms for 
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optimization," "quantum machine learning," "Quantum 

Support Vector Machines (QSVM)," and "quantum 

clustering algorithms." We selected studies with theoretical 

and experimental data on quantum algorithms applicable to 

machine learning, hardware implementation, and relevant 

applications.  

3.2. Inclusion and Exclusion criteria 

We selected articles relevant to quantum machine 

learning, were cited in reputable journals and presented novel 

insights into the advancement of the field. Articles that 

concerned only quantum algorithms, quantum hardware and 

the application of quantum mechanics in machine learning 

tasks were exclusively chosen. Studies unrelated to quantum 

computing, as well as studies that were based on outdated 

models of quantum computing (pre-2014), were excluded.  

Excluded articles were those without peer review or 

those that did not adequately explain their methodologies or 

findings.  

3.3.  Analysis Techniques 

Then, a backward selection step is employed to remove 

any irrelevant articles from the dataset based on our selection 

criteria; the remaining articles were then analyzed based on 

relevant aspects like quantum algorithms, hardware 

limitations, and potential applications in machine learning. 

Data were analyzed comparatively to find areas of agreement 

between sources and/or divergence that indicated potential 

for future inquiry. To influence different aspects of work in 

the same area, this analysis derived and overviewed evidence 

of the intersection of quantum computing and machine 

learning in one place. 

Fig. 1 Inclusion and exclusion of literature 
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Search Databases: Google 

Scholar, arXiv, ScienceDirect 

Use Search Terms: “Quantum Machine 

Learning,” “Quantum Algorithms for 
Optimization,” “QSVM,” “Quantum Support 

Vector Machines” 
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4. Findings 
In this literature review on Quantum Machine Learning 

(QML), there are a few core findings relating to the four high-

level topics: quantum algorithms, quantum optimization and 

quantum hardware issues. As such, Quantum Support Vector 

Machines (QSVMs) have the longest history among quantum 

algorithms for classification and clustering, and also it has 

been proposed as a sufficiently promising potential for better 

performance versus classical SVMs of the most representative 

applications in the near term of evolutionary computation in 

addition to quantum computing, as demonstrated in this paper 

and for the competent function of quantum to classical 

algorithms with respect to the computational efficiency of the 

input dimension in the part of all mentioned classification 

tasks. This provides significant acceleration in identifying the 

best-separated hyperplane that solves the classification 

problem (Rebentrost et al., 2014), and such exponential 

speedup with quantum computers has been observed in early 

studies. Nevertheless, the utility of QSVMs is capped by the 

capabilities of present-day quantum hardware.  

Compared to classical clustering, quantum k-means 

clustering has been introduced as an experimental algorithm, 

where the quantum system can handle large data sets more 

efficiently owing to its parallelism and superposition property. 

However, these quantum algorithms' scalability and noise 

impact on current quantum systems hinder their 

implementation for real-world applications (Lloyd et al., 

2017). The results emphasize that although quantum 

algorithms for classification and clustering are theoretically 

beneficial, execution on current hardware prevents their 

widespread use. Quantum systems hold good promise in 

quantum algorithms for optimization, particularly Quantum 

Annealing (QA) and Quantum Approximate Optimization 

Algorithm (QAOA). In fact, it has been shown that by 

exploiting quantum superposition and interference, a QAOA 

can yield better solutions for combinatorial optimization 

problems compared to classical algorithms.  

Its potential applications vary from logistics through 

portfolio optimization (Farhi et al., 2014). Likewise, Quantum 

Annealing , especially in devices such as D-Wave, applies 

quantum tunneling to optimize complex landscapes, which is 

considered beneficial over classical simulated annealing when 

regarding highly rugged solution spaces (Kadowaki et al., 

1998). Yet these quantum optimization algorithms provide a 

very large theoretical speedup for large problems, but practical 

implementation is limited by the currently available quantum 

hardware.  These problems include qubit instability, error 

rates, etc., which can also deter the reliability and scalability 

of these optimization algorithms. The primary challenge to the 

real-world implementation of quantum machine learning 

continues to be the challenges in quantum hardware. 

Quantum systems are very sensitive to noise and de-

coherence from the surrounding environment, which can 

cause errors in quantum calculations and reduce the accuracy 

of machine learning models. While surface codes and other 

types of quantum error correction have made significant 

strides, they still have heavy resource requirements and are not 

scalable to larger quantum systems (Preskill, 2018). In 

addition, the current generation of quantum computers is 

limited by the lack of the number of qubits, short coherence 

times, and high error rates. These constraints render quantum 

devices incapable of reliably running large-scale, complex 

machine-learning algorithms.  

Current Noisy Intermediate-Scale Quantum (NISQ) 

devices do not support quantum machine learning tasks at the 

scale needed for many practical applications (Arute et al., 

2019). Consequently, hardware enhancement continues to be 

an important bottleneck in harnessing the capabilities of 

quantum machine learning. Overall, these potential 

advantages of quantum machine learning lead us to conclude 

that there are strong theoretical advantages of quantum 

machine learning, especially in the area of clustering, 

dimensionality reduction, classification, and a wide variety of 

complex optimization tasks; however, the challenges of 

implementing quantum machine learning in the real world are 

enormous.   

Quantum hardware capabilities such as noise, de-

coherence and the limited number of qubits still hinder the 

scalability and reliability of quantum algorithms. In addition, 

while quantum algorithms have demonstrated the potential to 

outperform classical counterparts, the practicality of these 

algorithms remains constrained by the early-stage nature of 

quantum hardware. One important message from the 

literature is that hybrid quantum-classical methods are 

probably the most viable path to useful quantum machine 

learning applications in the near future, taking advantage of 

the complementary strengths of quantum and classical 

computational systems in complex problem-solving. Further 

progress in quantum error mitigation and hardware robustness 

is also a requirement towards addressing these barriers and 

realizing its potential in quantum machine learning down the 

line. 

5. Discussion 
5.1. Results: Analysis and Interpretation 

A review of the literature on Quantum Machine Learning 

(QML) finds several major challenges to its future promise 

and real-world use. Even with improved error correction 

methods, quantum de-coherence and noise remain significant 

obstacles due to the extreme sensitivity of quantum systems 

to external factors, impacting computational accuracy and 

reliability. There are limits to the range of large-scale machine 

learning problems that can be efficiently addressed with 

existing quantum technology owing to low qubit counts, short 

coherence times and high error rates. Also, while quantum 

algorithms for machine learning are theoretically promising, 

they are still at a very immature stage of development, and the 

hardware limits their practical applicability. To address this 
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gap, hybrid quantum-classical methods can be employed to 

leverage the advantages of the quantum and classical systems 

for a more practical implementation, particularly for near-term 

devices. The findings showed that quantum algorithms have a 

high probability of beating regular machine learning 

algorithms in certain scenarios, particularly for intricate 

problems and high-dimensional data. In theory, quantum 

algorithms like Quantum Support Vector Machines (QSVMs) 

and Quantum K-Means Clustering appear to provide more 

powerful methods for classification and clustering, especially 

when applied to large datasets. Also, quantum optimization 

algorithms, including Quantum Annealing and QAOA, could 

solve combinatorial optimization problems much faster. 

Nonetheless, the limitations of quantum hardware, including 

noise, de-coherence and the number of qubits, present 

challenges to the practical implementation of such quantum 

machine learning algorithms. Theoretical research is no longer 

the limiting factor, but quantum systems are still susceptible 

to computation error, with continued progress in quantum 

error correction still not delivered to the point of enabling 

reliable large-scale computations. This disparity, however, 

between theory and practical implementation pays testament 

to the fact that the complete potential of quantum machine 

learning has not yet been unlocked.  

5.2. Implications of the Study 

This research suggests that the burgeoning field of 

quantum machine learning is very promising, but it will be 

constrained by the current hardware limitations; realising its 

full potential will depend on overcoming these roadblocks. 

The existing quantum systems are still in their infancy, 

meaning they are not of a sufficient size yet to facilitate 

deterministic quantum machine learning algorithms that are 

scalable. Therefore, even though the quantum machine 

learning theory seems appealing, many experiments still need 

to prove it. One of the most hopeful avenues presented by the 

results is hybrid quantum-classical models, which may offer 

a more immediate application of quantum boost to machine 

learning problems. These hybrid strategies derive advantages 

from classical and quantum computing systems, alleviating 

the hardware constraints and offering more implementable 

solutions to actual machine learning challenges.  

5.3. Limitations of the Study 

The main limitation of this study is the absence of 

empirical data that confirms substantial enhancements in 

quantum machine learning algorithms for practical, real-

world problems. If these algorithms show promise in 

theoretical models or small-scale experiments, there is no 

evidence of large-scale and proven implementations of this 

approach, either. Moreover, with quantum computing 

emerging rapidly, significant improvements in hardware and 

algorithms would likely invalidate the results of this paper. 

Essentially, you see the presentation of insights according to 

the current state of quantum hardware and quantum 

algorithms. Yet, the situation might be totally different as the 

quantum machine learning field would be working on 

evolving technologies every double that time.  

5.4. Recommendations for Future Research 

In order to overcome the above limitations and improve 

the applicability of quantum machine learning, years of 

research work will focus on the following 4 aspects: 

1. Creating Quantum Error Correction Algorithms: 

Quantum error correction is a major challenge in making 

quantum algorithms practical for realistic machine 

learning problems.  

2. Novel Hybrid Quantum-Classical Models: Further 

development of hybrid models that effectively combine 

quantum algorithms with classical methods to address 

domain-specific problems should be explored.  

3. New Applications: Explore the potential applications of 

quantum computing in emerging machine learning tasks 

such as reinforcement learning, generative models, and 

deep learning; these tasks hold promise for quantum 

advantages.  

6. Conclusion 
This work has attempted to explain some potential 

quantum algorithm advantages in classification, clustering, 

and optimization tasks, which are at the core of the link 

between quantum computing and machine learning. Quantum 

machine learning is a promising route to achieving 

computational efficiency, and achieving broad success with 

these algorithms will require addressing fundamental issues, 

such as noise, hardware limitations, and error correction, 

associated with today’s quantum devices. 

 And these solutions may at some point enable hybrid 

quantum-classical systems, the most promising and limited of 

which leverages the available quantum hardware, with many 

quantum chunks working more effectively than some huge 

one-off quantum system, he says. Advancements in quantum 

error correction techniques and hybrid systems will be key 

contributions to achieving this goal. In contrast, new quantum 

machine learning applications may unlock the full potential 

of both quantum computing and machine learning. 
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