The Review Research on the Image Retrieval System Methodology

Shashirekha.B1, Dr.K.V.N.Sunitha2
Research Scholar1, Guide2
Dept. of Computer science and engineering1,
Dept. of electrical Electronics and Communication Engineering
Jawaharlal Nehru Technological University, Hyderabad,
BVRIT Hyderabad college of Engineering for women, Nizampet.

Abstract:
The gigantic development in the volume of images and additionally the broad application in different fields, the necessity for improvement of image retrieval strategies have upgraded. The capacity to handle a lot of image information is vital for image investigation and retrieval application. It turns out to be progressively vital to grow new CBIR (Based Image Retrieval) procedures that are powerful and adaptable for real time preparing of huge image accumulations. Based image retrieval system, proposed an answer for a substantial database of images which gives secure, productive and viable hunt and recover the comparative images of Query image from the database. In this paper we give an outline of the major hypotheses and rising strategies for Image Retrieval, distinctive sorts of image retrieval, and also a few augmented work in these territories. Content Based Image Retrieval (CBIR) is a standout amongst the most well-known and fascinating exploration ranges in light of the expansion of video and image information in computerized structure. Quick and precise retrieval of image from vast databases is an essential issue that should be tended to. The HOG technique is utilized to recover the component of image vectors and others. In this paper, the HOG strategy is completely examined and demonstrates its exactness and proficiency of image retrieval with lessened number of steps. Fundamentally, CBIR is on creating advancements to connect the semantic crevice that at present anticipates wide-sending of image -based internet searchers. Image web crawlers presently being used, for example, Google Images and Yahoo! Image inquiry are based on text annotation of images.

Keywords: Image Retrieval, Data Mining, Image Mining, KDD, knowledge discovery database, CBIR.

I. Introduction

In These days, with the hazardous development of the quantity of advanced images accessible on web and the accessibility of image catching gadgets, for example, computerized cameras and image scanners, the extent of computerized items is expanding quickly [1, 2], in this way effective ordering and searching gets to be crucial for substantial image documents. For this reason, numerous universally useful image retrieval systems have been produced. There are three classifications of image retrieval strategies: based, -based, and semantic based. In based systems, the images are physically commented on by descriptors. Explanation to all images physically is illogical due to substantial marking cost and the subjective of human recognition. To defeat the above disservices in based image retrieval system, ‘Based Image Retrieval (CBIR)’ was presented in the mid-1980s, which is based on naturally ordering and retrieval [3, 4]. CBIR intends to hunt images that are perceptually like the query image based on visual of the images without the assistance of comments. Inquires about for the most part centered on the successful low-level representation of images and CBIR typically files images by low-level visual elements, for example, color [5], surface [6], and shape [7]. Color is the most predominant and recognizing visual component that is broadly utilized as a part of CBIR and is invariant to image size and introductions [8, 9]. The algorithms are go about as a noteworthy part in image retrieval from databases. Numerous analysts proposed numerous algorithms and every algorithm has a novel component and downsides as well. In this paper, discrete wavelet change (DWT) algorithm is proposed. DWT algorithm recovers the images from the database with HOG strategy. This technique at first recovers the images with parts called RGB and afterward their elements are separated. Once in a
while information mining regarded as learning disclosure in database (KDD)[3]. KDD is an iterative procedure, comprise a taking after stride appeared in

Fig. 1. Knowledge Data Mining

II. Image Retrieval Methods

The Text-Based image retrieval technique is based on catchphrase and it is anything but difficult to be actualized. The images are physically commented on with watchwords, and after that recovered utilizing based inquiry techniques. Literary comment can be considered as an instantiation of mental image; subsequently it depends absolutely on the individual’s discernment. This technique is both tedious and inclined to mistakes. Consequently, such web crawlers bring about recovering numerous non-important images. For instance, in a web crawler if the client enters as Plane, it can be a plane surface or a plane. Additionally, the way that two outwardly diverse images can pass on the same idea and distinctive ideas might be available in an image, realizes a hole between image retrieval by idea and retrieval by.

Content Based image retrieval (CBIR) is otherwise called query by image-based means the hunt will examine the genuine contents of image. [3][2] In CBIR, the visual of an image is separated consequently. There are numerous elements that make an image; yet four of them are thought to be fundamental components i.e. color, surface, shape and spatial properties. The retrieval of images is absolutely reliant on these elements. Be that as it may, spatial properties are certainly considered. Thus, the fundamental components to consider are color, surface and shape.

A. Image Mining

Image mining is the way toward seeking and finding important data and information in substantial volumes of information. Fig. 1 demonstrates the Typical Image Mining Process. A portion of the techniques used to accumulate information are, Image Retrieval, Data Mining, Image Processing and Artificial Intelligence. These techniques permit Image Mining to have two diverse methodologies. One is to extricate from databases or accumulations of images and the other is to mine a blend of related alphanumeric information and accumulations of images. In example acknowledgment and in image handling, feature extraction is an uncommon type of dimensionality lessening. At the point when the info information is too vast to be in any way prepared and it is suspected to be famously repetitive, then the information will be changed into a decreased representation set of components. Feature extraction includes disentangling the measure of assets required to portray an expansive arrangement of information precisely. A few elements are utilized as a part of the Image Retrieval system. The mainstream amongst them are Color elements, Texture elements and Shape features.

Fig. 2. Image Mining Process

B. Content-Based Image Retrieval System

In a run of the CBIR process, the elements from every image are separated and put away in the database productively. To recover the images, extricate the comparing features from the query
There are numerous color models to express color, for example, the RGB color model, the YUV color model and the HSV color model. The HSV color model is most predictable as it incorporates the human visual model and the HSV color segments of an image, in which R speaks to the red segment, G speaks to the green part and B the blue segment. Consequently, the accompanying recipe is utilized for image transformation from RGB color space to HSV color space.

\[h' = \begin{cases} \frac{b-g}{b-g} \text{ if } g = \text{max} \\ \frac{g-r}{b-g} \text{ if } b = \text{max} \\ \frac{r-b}{r-b} \text{ if } r = \text{max} \\ \end{cases} \]

\[s = \frac{\text{max} - \text{min}}{\text{max} - \text{min}}, \]

\[v = \frac{\text{max}}{\text{max} - \text{min}} \]

max=MAX(r,g,b),min=MIN(r,g,b),ε=ε=\text{max}-\text{min},

\[h \in [0,360], (s,v) \in [0,1.0] \]

B. Color and Shape Feature Representations

The underlying stride of CBIR system is to speak to color segment and shape districts into components vector. There are different approaches to speak to feature of computerized images. In this paper taking after color and shape feature extraction procedures are proposed.

Color Feature

For the underlying procedure of histogram coordinating, we utilize the HSV color space. The HSV color space is favored for control of tone and immersion (to move hues or conform the measure of color) since it yields a more prominent element scope of immersion [10]. Figure 5 represents the single hex cone HSV color model. The highest point of the hex cone relates to \(V = 1 \), or the most extreme force of hues. The point at the base of the hex cone is dark and here \(V = 0 \). Correlative hues are 180° inverse each other as measured by \(H \), the edge around the vertical pivot \(V \), with red at 0°. The estimation of \(S \) is a proportion, running from 0 on the inside line vertical pivot \(V \) to 1 on the sides of the hex cone. Any estimation of \(S \) somewhere around 0 and 1 might be connected with the point \(V = 0 \). The point \(S = 0 \), \(V = 1 \) is white. Halfway estimations of \(V \) for \(S = 0 \) are the grays. Note that when \(S = 0 \), the estimation of \(H \) is insignificant. From an artist's perspective, any color with \(V = 1 \), \(S = 1 \) is an unadulterated shade whose color is characterized by \(H \). Adding white and dark relates to diminishing \(S \) without changing \(V \) and compares to diminishing \(V \) without changing \(S \) individually. Tones are made by diminishing both \(S \) and \(V \).
Dissimilar to general methods of shaping receptacles we separate the color space into parts relying upon recognition. Figure 2 demonstrates the variety of Hue against Saturation plot with steady estimations of Value at its greatest. Note that as appeared by the vertical segments the division of Hue is finished. We can watch that the color in every parcel is verging on connected and appears to be like the eyes. Accordingly we have 6 canisters in the Hue plane.

When this is finished, every pixel will have a place with precisely one associated part. Arrange pixels as either sound or indistinguishable relying upon the span of its associated part. A pixel is rational if the extent of its associated part surpasses an altered quality τ; generally, the pixel is disjointed.

For a given undermined color [4], a portion of the pixels with that color will be sound and some will be indistinguishable. Give us a chance to call the quantity of intelligent pixels of the jth discrete color αj and the quantity of muddled pixels βj. Plainly, the aggregate number of pixels with that color is αj + βj, thus a color histogram would abridge an image as

\[<\alpha_1 + \beta_1, \ldots, \alpha_n + \beta_n>\]

Rather, for every color we figure the pair (αj, βj) which we will call the soundness pair for the jth color. The color intelligibility pair is vector for the image comprises of

Arrangement of intelligence is dictated by a settled worth τ. Every pixel is checked whether intelligent or not. A pixel is sound if its encompassing pixels have the same qualities to shape an expansive coterminous locale. Two images I and I1 can be analyzed utilizing their CCV's, by utilizing the L separation. Let the cognizance sets for the jthcolor pair is (αj, βj) in I and (a1j, b1j) in I1. Utilizing the L separation to look at CCV's, the jth can's commitment to the separation amongst I1 and I is

\[\Delta CCV = (\alpha_j - a_{1j}) + (\beta_j - b_{1j})\]

\[\alpha_j \geq \alpha_{1j} \quad \text{and} \quad \beta_j \leq \beta_{1j}\]

Classification of coherence is determined by a fixed value τ. Each pixel is checked whether coherent or not. A pixel is coherent if its surrounding pixels have the same values to form a large contiguous region. Two images I and I1 can be compared using their CCV's, by using the L distance. Let the coherence pairs for the jth color bucket is (αj, βj) in I and (a1j, b1j) in I1. Using the L distance to compare CCV's, the jth bucket's contribution to the distance between I1 and I is

\[\Delta CCV = (\alpha_j - a_{1j}) + (\beta_j - b_{1j})\]

Shape Feature

Shape is a critical visual element and it is one of the fundamental components used to depict image content. Be that as it may, shape representation and depiction is a troublesome assignment. This is on account of when a 3-D real world article is anticipated onto a 2-D image plane, one measurement of item data is lost. Subsequently, the shape extricated from the image just incompletely speaks to the anticipated article. To make the issue significantly more intricate, shape is regularly adulterated with clamor, absconds, subjective bending and impediment. Further it is not realized what is essential fit as a fiddle. Current methodologies have both positive and negative properties; PC illustrations or science use powerful shape representation which is unusable fit as a fiddle acknowledgment and the other way around. Disregarding this, it is conceivable to discover features regular to most shape portrayal approaches.

C. Features Extraction

Feature extraction is the heart of the content based image retrieval. As we realize that crude image information that can't utilized straightforwardly as a part of most PC vision undertakings. For the most part two explanation for this above all else, the high dimensionality of the image makes it difficult to utilize the entire image. Further reason is a ton of the data inserted in the image is repetitive. In this manner
as opposed to utilizing the entire image, just an expressive representation of the most critical data ought to extricate. The way toward finding the expressive representation is known as feature extraction and the subsequent representation is known as the element vector [1]. Feature extraction can be characterized as the demonstration of mapping the image from image space to the component space. Presently days, discovering great elements that well speak to an image is still a troublesome undertaking. In this paper, a wide assortment of components are utilized for image retrieval from the database. Image content can recognize visual and semantic content. Features for the most part speak to the visual content. Something else is that it ought to relate well with the human perceptual attributes since clients will at long last decide the reasonableness of the recovered images.

D. Relevance Feedback

Relevance feedback (RF) is a regularly strategy to enhance the viability of retrieval systems. Essentially, it is made out of basically three stages initial an underlying hunt is made by the system for a client supplied query design and giving back a little number of image second is the client then demonstrates which of the recovered images are helpful or pertinent then at long last, the system consequently reformulates the first query based upon client's pertinence judgments. This procedure can proceed until the client is fulfilled. RF procedures enhance the semantic whole issue, since it permits the CBIR system to take in client's image Perceptions. RF techniques for the most part manage little preparing tests typically under 20 for every round of cooperation, asymmetry in preparing test, and real time necessity (RF algorithms ought to be sufficiently quick to Support real-time client association) . Another essential matter is worried with the configuration and execution of learning systems. The commonest strategy is use weight based learning approaches, hereditary algorithms, Bayesian probabilistic strategies, and Support Vector Machines.

III. Methodology

Color feature is the hugest one in seeking accumulations of color images of discretionary topic. Color assumes essential part in the human visual recognition instrument. All strategies for speaking to color feature of an image can be arranged into two gatherings: color histograms and measurable techniques for color representation.

The most as often as possible utilized color spaces are as per the following: RGB (red, green, and blue utilized as a part of color screens and cameras), CMY (cyan, red and yellow), CMYK (cyan, fuchsia, yellow, and dark utilized as a part of color printers), Lab (CIE L*a*b, gentility, an and b are two color measurements, from green to red and from blue to yellow) HSI, HSV (tint, immersion, and quality).

The Lab space depends on the worldwide standard of color estimation created by the International Commission on Illumination CIE (Commission International de Eclairage). The HSV space is like spaces HSI, HSL, and HSB. The HSV space is utilized all the more as often as possible on the grounds that the RGB to HSV change is less difficult from the computational stance contrasted with the RGB to Lab change.

The accompanying engineering gives the means to proposed CBIR strategies and algorithm.

![Architecture of Proposed CBIR](image)

Figure 6. Architecture of Proposed CBIR

The each image has its own properties and components. These properties and components are extracted using the following two techniques, such as,

1. Discrete Wavelet Transformation (DWT).
2. Histogram Oriented Gradient (HOG).

Based feature extraction for the images. The following architecture shows the general architecture of future extraction and storage process.
Discrete Wavelet Transformation (DWT)

DWT is generally utilized for multi-scale image investigation. It breaks down an image into four subgroups: an approximated image and flat (DH), vertical (DV), and slanting (DD) tinty gritty images. The definite images measure varieties along the sections (level edges), lines (vertical edges), and diagonals (corner to corner edges) individually.

More than one deterioration level might be used for face acknowledgment assignment to give decreased yet significant data portraying face image. The approximated image is decayed again to wavelet subgroups. A few decay levels might be utilized. The last resultant approximated image is utilized as a component vector. It has three levels, one, level two, and level three of decay individually.

A color space is a model for speaking to hues as far as power qualities. RGB color space is key color space in imaging.

![Input Image and Single Level DWT](image)

a) Input Image b) Single Level DWT

Figure 7. Single Level Decomposition Using DWT

The Figure 7 shows the single level transformation using DWT for input image Lena.

Histogram Oriented Gradient (HOG)

Histogram of Oriented Gradients (HOG) highlight descriptor is utilized as a part of this work to remove the components. It is extremely powerful to speak to objects and is generally utilized as a part of human and face recognition. The initial step is recognizing all interest purposes of the image utilizing the Harris finder. This administrator is based on the auto-relationship lattice that portrays the nearby structure of the image. At that point figure the Gradient Orientation Histogram around the 16 x 16 pixel area of every interest focuses. To start with, the locale is isolated in 4 X 4 subregion. For every sub-area the 8-canister slope introduction h(k), k = 0 to 7 are computed which frames a component vector of size 128 measurement (4 x 4 x 8). The angle situated histogram is figured as takes after:

\[
\text{h}(k) = \sum d_{ij} \in d_k m_{ij} \tag{4}
\]

\[
m_{ij} = \sqrt{dx_{ij}^2 + dy_{ij}^2} \tag{5}
\]

\[
d_{ij} = \arctan \frac{dy_{ij}}{dx_{ij}} - D \tag{6}
\]

\[
dx_{ij} = I_{ij} - I_{i+1,j} \tag{7}
\]

\[
dy_{ij} = I_{ij} - I_{i,j+1} \tag{8}
\]

\[
D = \arctan \frac{\sum dx_{ij} \sum dy_{ij}}{\sum dx_{ij} \sum dy_{ij}} \tag{9}
\]

Where \(I_{ij}\) is the i, j pixel estimation of every sub-locale, \(m_{ij}\) is the Gradient greatness of the pixel i, j, \(d_{ij}\) is the inclination heading at pixel i, j, \(h(k)\) is the kth measurement \(h(k)\) of the angle histogram speaks to the aggregate force of the pixel slope whose bearing lies in the kth course container \(d_k\), k = 0 to 7. The course containers are characterized by the relative point to the overwhelming inclination heading D of the image locale. At long last, brushing all the Gradient introduction Histogram of the interest point's range together to frame an element vector of size 128-measurement.

IV. Experimental Results

The Evaluation is performed to locate the pertinent images for the given information query with lessened number of emphases. The trial is finished by utilizing CORAL image Database.

Corel database contains vast measure of images of different contents going from creatures and open air games to common images. These images are pre-ordered into various classifications of size 100 by space experts. The precision of the image can be computed by the accompanying equation which is communicated in %:

\[
\text{Accuracy} = \frac{N - X}{N} \times 100
\]
Where \(N \) is number of important images in the database which are known not client and \(X \) is the quantity of unimportant images in the database which are known not client.

Both color and shape retrieval calculations are actualized with the database of 570 images. Every one of the images are put away in JPEG group with size \(384 \times 256 \) or \(256 \times 384 \). There are six unique classes; which incorporates 100 stallion, 100 rose, 100 dinosaur, 100 transport, 100 elephants and 70 bicycles. To assess the execution of the image retrieval calculation we utilize the two most surely understood parameters; exactness and recall.

\[
\text{Recall} = \frac{\text{relevant retrieved}}{\text{all relevant}}
\]

\[
\text{Precision} = \frac{\text{relevant retrieved}}{\text{all retrieved}}
\]

The system is executed with 10 images from each of the six classes and figured the normal exactness and normal review parameters for every one of them. The outcomes acquired utilizing shape and color based for various class of images is appeared in Table-I. Retrieval result images with query image of shape and color based are appeared in Figure 3a-b and 4a-b separately. The blend of color and shape for various sorts of images is given in Table-II and relating result images are appeared in Figure 5a-b. In both tables normal exactness of the proposed strategy is about more than 70 % which is much more prominent than the histogram based technique.

Table I Color and Shape Based Precision and Recall Analysis

<table>
<thead>
<tr>
<th>Category</th>
<th>Shape (CCV) Precision</th>
<th>Shape (CCV) Recall</th>
<th>Color (Histogram) Precision</th>
<th>Color (Histogram) Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rose</td>
<td>0.875</td>
<td>0.18</td>
<td>0.76</td>
<td>0.18</td>
</tr>
<tr>
<td>Horse</td>
<td>0.8</td>
<td>0.13</td>
<td>0.91</td>
<td>0.22</td>
</tr>
<tr>
<td>Bus</td>
<td>0.75</td>
<td>0.07</td>
<td>0.69</td>
<td>0.16</td>
</tr>
<tr>
<td>Elephant</td>
<td>0.51</td>
<td>0.06</td>
<td>0.65</td>
<td>0.15</td>
</tr>
<tr>
<td>Bike</td>
<td>0.74</td>
<td>0.09</td>
<td>0.7</td>
<td>0.17</td>
</tr>
<tr>
<td>Dinosaur</td>
<td>0.83</td>
<td>0.2</td>
<td>0.75</td>
<td>0.18</td>
</tr>
<tr>
<td>AVG</td>
<td>0.75</td>
<td>0.121</td>
<td>0.74</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table II Combination of Color and Shape Precision and Recall Analysis

<table>
<thead>
<tr>
<th>Category</th>
<th>Color & Shape (CCV) Precision</th>
<th>Color & Shape (CCV) Recall</th>
<th>Color & Shape (Histogram) Precision</th>
<th>Color & Shape (Histogram) Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rose</td>
<td>0.68</td>
<td>0.18</td>
<td>0.76</td>
<td>0.18</td>
</tr>
<tr>
<td>Horse</td>
<td>0.81</td>
<td>0.1</td>
<td>0.61</td>
<td>0.14</td>
</tr>
<tr>
<td>Bus</td>
<td>0.78</td>
<td>0.06</td>
<td>0.33</td>
<td>0.08</td>
</tr>
<tr>
<td>Elephant</td>
<td>0.76</td>
<td>0.04</td>
<td>0.45</td>
<td>0.1</td>
</tr>
<tr>
<td>Bike</td>
<td>0.59</td>
<td>0.08</td>
<td>0.38</td>
<td>0.08</td>
</tr>
<tr>
<td>Dinosaur</td>
<td>0.69</td>
<td>0.15</td>
<td>0.44</td>
<td>0.1</td>
</tr>
<tr>
<td>AVG</td>
<td>0.72</td>
<td>0.08</td>
<td>0.44</td>
<td>0.1</td>
</tr>
</tbody>
</table>

4.1. DWT based Image Retrieval

The image is recovered from the databases by utilizing query. The client is given the query to the database. The query image extricates every one of the elements of the image, for example, color elements and vector.

The accompanying image is only a query image given by the client.

![Figure 8.1. Query Image](image)

In the wake of actualizing the Discrete Wavelet Transformation, it creates the accompanying result,
In the above result, the two images not extracted fully. Its accuracy percentage is 80% only.

4.2. HOG by DWT Sub band based Image Retrieval:

Here, the HOG technique is executed with DWT calculation and the images are ventures from the database and produce the accompanying result.

Figure 8.3. Output Image before Relevance Feedback using Texture-based Image Retrieval

The above result is acquired by HOG and DWT highlights. The client image query is actualized and looked from the databases based on the HOG and DWT. Be that as it may, the above result is mistake since it can just deliver 88% of exactness.

At that point Figure 8.4. Demonstrates the yield images based on consolidated DWT and HOG after pertinence input. The exactness of images acquired in the second cycle is 98%. In this emphasis itself the most extreme yield is delivered, if greatest exactness is not created implies next cycle should be possible. This procedure can be conveyed till greatest precision is gotten.

Table 1 outlines that the normal number of emphasis for the six datasets is 2 and the greatest precision after significance criticism is 86%.

Table 1. Accuracy and Time Comparison of Hog by DWT Sub Bands based Image Retrieval Before and After Relevance Feedback

<table>
<thead>
<tr>
<th>Query Image</th>
<th>Accuracy (%) without RF</th>
<th>Accuracy (%) with RF</th>
<th>Number of Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaches</td>
<td>72</td>
<td>82</td>
<td>3</td>
</tr>
<tr>
<td>Building</td>
<td>65</td>
<td>74</td>
<td>2</td>
</tr>
<tr>
<td>Dinosaur</td>
<td>93</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>Elephant</td>
<td>82</td>
<td>88</td>
<td>2</td>
</tr>
<tr>
<td>Food</td>
<td>74</td>
<td>85</td>
<td>3</td>
</tr>
<tr>
<td>Rose</td>
<td>88</td>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>Average</td>
<td>79</td>
<td>86</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1 outlines that the normal number of emphasis for the six datasets is 2 and the greatest precision after significance criticism is 86%.

Figure 8.5. Accuracy Comparison of the HOG by DWT Sub Bands based Image Retrieval Before and After Relevance Feedback

The exploratory result demonstrated that the proposed strategy delivers the about greatest exactness for image retrieval.
V. CONCLUSION

With the approach of different web search tools, image searching has turned into a simpler undertaking. In any case, all the web crawlers use based retrieval systems. In spite of the fact that CBIR is an occurrence theme, we can't expect the whole change of existing methods with CBIR. Be that as it may, unquestionably, CBIR can be utilized to supplement the current apparatus to give better results. The CBIR strategies displayed thus utilize low-level elements to produce comes about. The motivation behind this paper was to enhance the exactness (accuracy) of a CBIR application by permitting the system to recover more images like the source image. The new calculations under exploration furthermore the as of late distributed ones appear to be to a great degree intrusive on the image. Likewise each new approach is dependably seen to have certain locales where it works best and poor. The proposed procedure had expanded the normal accuracy from a normal of 44% to a normal of 72%. The quest for the significant data in the vast space of image databases has turned out to be all the more difficult. More précised retrieval procedures are expected to get to the huge image accomplishes being produced, for finding generally comparative images. This paper proposed a strategy for HOG and DWT for removing the elements of the images from the databases utilizing client image query. The image highlights called R, G and B is removed from the databases. At that point separated elements of the database is contrasted and the query image and based on that image is recovered. The precision of the image is measured utilizing execution of the image.

REFERENCES

Dr.K.V.N.Sunitha Currently working as Principal, BVRIT Hyderabad college of Engineering for women, Nizampet, Hyderabad has done her B.Tech ECE from Nagarjuna University, M.Tech Computer Science from REC Warangal. She completed her Ph.D from JNTU, Hyderabad in 2006. She has 21 years of Teaching Experience, worked at various engineering colleges. She received "Academic Excellence Award" by the management of G. Narayanamma Institute of Technology & Science on 18th September 2005. She also received "Best computer Science engineering Teacher award for the year 2007" by Indian Society for Technical Education ISTE. She has been recognized & invited by AICTE as NBA expert evaluator. Her autobiography was included in "Marquis Who is Who in the World " , 28th edition 2011, since August 2012. She has authored three text books, "Programming in UNIX and Compiler design"- BS Publications & "Formal Languages and Automata Theory" by Tata Mc Graw Hill & " Theory of Computation" by TMH in 2011. She is an academic advisory member & Board of Studies member for other Engineering Colleges. She has published more than 65 papers in International & National Journals and conferences. She is a reviewer for many national and International Journals. She is fellow of Institute of engineers, Sr member for IEEE & International association CSIT, and life member of many technical associations like CSI and ACM.