Rational Sampling Rate Converter Design Analysis using Symmetric Technique
Vandita Singh¹, Rajesh Mehra²
¹ ME Scholar, ² Associate Professor
Department of Electronics and Communication Engineering, NITTTR, Chandigarh, UT, India.

Abstract — In this paper we proposed an efficient structure for sampling rate conversion by rational factor of L/M, where L is upsampling factor and M is downsampling factor. In this method, the coefficient symmetry of the linear phase filter is used. In this way, the number of required multiplications per output sample is reduced. For implementation we use linear phase FIR filter. The symmetric FIR filter has shown reduction in multipliers as compared to conventional polyphase implementation.

Keywords — Multirate system, linear phase, FIR filter, rational sampling rate conversion.

I. INTRODUCTION

Sampling rate conversion is a process used to convert sampling rate of a signal from one rate to another. This technique is used in many applications like digital audio, communication systems, speech processing, radar systems, antenna systems etc. Sampling rates can be increased or decreased according to requirement. Increasing the sampling rate known as interpolation and decreasing the sampling rate is decimation. The multirate techniques are used to convert the given sampling rate to desired sampling rate and are called multirate system. The basic blocks of multirate system are interpolators and decimator. Combination of these blocks represent a system in which sampling rate is changed by a rational factor L/M. The block diagram of rational sampling rate converter is as follows:

\[
H(z) = \sum_{k=0}^{N} h_k z^{-k}
\]

(2)

Where

\[
h_{N+k} = h_k \quad k = 0,1,\ldots,N
\]

(3)

H(z) is transfer function of linear phase FIR filter. Most of the cases, linear phase FIR filters are used. They are better than IIR filters because they have no feedback loops and can be implemented in a multirate system easily.

An efficient structure is proposed in [2] for implementing a linear-phase FIR filter of an order N for the sampling-rate conversion. In this method, the coefficient symmetry of the linear-phase filter is used in order to keep number of delays as low as possible. Optimized decimator has been presented to improve the implementation complexity [3]. The proposed decimator is implemented using Matlab as standard FIR, Half Band FIR and Nyquist FIR by using the multistage design techniques. The performance of different decimator designs is compared in terms of error and hardware requirements.

Design of sampling rate converter [4] based on least square method. Resampling realization method is used for better accuracy of signal resampling. Rational sampling rate conversion based on an FIR filter [5] can be used as a constant matrix multiplication which reduces arithmetic complexity compared with using MCM blocks.

GSM based digital down converter is proposed which uses optimal equiripple technique to reduce resource requirement and polyphase decomposition to improve hardware complexity and also reduces the pass band droop as well as increase the attenuation in folding band of CIC filter. A high speed interpolator using embedded LUT structure for software defined radios increases the speed and also save the resources [6]. For satellite data communication architecture for sampling rate converter is proposed in [7]. This design gives low system complexity and reduces power consumption. Polyphase implementation is shown in [8]. In this implementation multiplier are more than proposed one. FPGA based implementation of a multipliers less decimator is presented [9]. In paper [10] Number of required multiplications can be reduced. It partially utilizes the coefficient symmetry for linear phase prototype filter.

In this paper [11] an Interpolator has been designed and simulated. An area efficient method has been
presented to implement an interpolator for wireless communication systems.

Decimator design has been presented for multirate digital signal processing. It is observed from the simulated results that symmetric structure consumes almost 50% less multipliers and MPIS compared to transposed structure. So the symmetric structure based decimator in [12] is suitable to provide cost effective solution. Number of adders can be reduced by using Multiple constant multiplications [13]. This shows that MCM block with all coefficient using symmetric technique can reduce complexity without increasing storage elements. An efficient interpolator is designed for wireless communication systems [14]. For high speed and area efficient design multiplier less technique is used which substitutes multiply-and-accumulate operations with look up table (LUT) accesses.

Another method is used to reduce hardware complexity in [15]. It presents structures for sample rate conversion from compact disc (CD) to digital audio tape (DAT) and from DAT to CD. An efficient interpolator is designed for wireless communication systems [16]. Architecture is designed for sampling rate converter of the demodulator which is used for processing satellite data communication [17]. This design gives low system complexity and reduces power consumption and chip area requirements.

Another approach is presented in [18] which shows an optimized hardware to design & implement GSM based digital down converter for Software Defined Radios. The proposed DDC is implemented using optimal equiprinciple technique is used to implement DDC to reduce the resource requirements.

High throughput Sample Rate Converters (SRC) finds applications Software Defined Radio (SDR) where a large degree of flexibility is required to support varied sample rates [19]. FIR filter is implemented using Transposed & Symmetric structure. The performance of two designs has been compared in terms of hardware requirements. Results show that symmetric structure has reduced hardware requirement as compared to Transposed structure [20].

An efficient multiplier-less technique is also presented in [21]. It is basically designed for wireless applications like SDR and GSM. The Cascaded Integrator Comb decimation filter is used which performs sample rate conversion (SRC) utilizing only additions/subtractions. With the help of embedded LUTs of device, speed is increased. Different symmetrisation schemes are shown in [22]. Comparison shows that discrete time model gives better performance than continues time model. By designing frequency-response masking approach filters building the FB in such a way that the periodic filters are evaluated at the input sampling rate and the masking filters at the output sampling rate, the design and implementation complexity can be reduced when compared with other existing techniques [23]. Now a days VLSI technology is rising very hastily. The challenge of advanced VLSI technology is leakage in power consumption. This can be controlled by using different flip flop layouts [24]-[25].

This paper is divided into different sections as follows. Section II represents basic rational sampling rate converter. For simplicity, the coefficient symmetry of filter H(z) is not used but taken back into consideration in remaining paper. Section III gives design simulation. Design Analysis of the proposed method is given in section IV. Finally conclusion is given in section V.

II. RATIONAL SAMPLING RATE CONVERTER

This section shows, some relations for system in Fig 1. These relations are used in section 3 and 4 for generating an implementation structure for rational sampling rate converter. There are two parts in this section. First, time domain input output relation and second is compact matrix representation of input output relation. Matrix representation is more suitable to generate an efficient implementation [2].

A. Basic input output relations between input and output samples

For sampling rate converter shown in Fig 1, the time domain relations are given as

\[u[n] = \begin{cases} x \left(\frac{n}{L} \right) & \text{for } n = 0, L, 2L, \ldots \\ 0 & \text{otherwise} \end{cases} \]

(4) \[w[n] = \sum_{k=0}^{N} h_k u[n-k] \]

(5) \[y[n] = w[Mn] \]

(6)

Where h'k's are coefficients of the transfer function H(z). The direct combination of (4)-(6) is following:

\[y[n] = \sum_{k=0}^{N} h_k x \left(\frac{Mn - k}{L} \right) \]

(7)

B. Input-output relations in Matrix Form

Based on (7), the (n+KL) th output sample, with k being an integer, is

\[y[n + KL] = \sum_{k=0}^{N} h_k x \left(\frac{M(n + KL) - k}{L} \right) \]

(8)

\[= \sum_{k=0}^{N} h_k x \left(\frac{Mn - k}{L} + KM \right) \]

\[y[n + l] = \sum_{k=0}^{KL} h_{im+(lK_i+\lceil ML/L \rceil)} x \left(\frac{Mn - K_i + \lceil iM/L \rceil}{L} \right) \]

(9)
For the rational sampling rate converter shown in fig (1), L consecutive output samples, \(y[n+1] \) can be expressed as

\[
y_{n,L} = H_{L/(p,q+1)}^* x_{m+p,m-q}
\]

Where \(y_{n,L}, H_{L/(p,q+1)}, p, q \) and \(x_{m+p,m-q} \) are:

\[
y_{n,L} = \begin{bmatrix} y[n] & y[n+1] & y[n+2] & \ldots & y[n+L-1] \end{bmatrix}^T
\]

\[
H_{L/(p,q+1)} = \begin{bmatrix}
h_{pL} & \ldots & h_{pL} & \ldots & h_{pL} \\
h_{pM,L} & \ldots & h_{pM,L} & \ldots & h_{pM,L} \\
h_{2pM,L} & \ldots & h_{2pM,L} & \ldots & h_{2pM,L} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
h_{(L-1)pM,L} & \ldots & h_{(L-1)pM,L} & \ldots & h_{(L-1)pM,L}
\end{bmatrix}
\]

\[
p = \left\lfloor \frac{(L-1)M}{L} \right\rfloor
\]

\[
h_k = 0, \text{ for } k < 0; k > N
\]

\[
x_{m+p,m-q} = \begin{bmatrix} x[m+p] & x[m+p-1] & \ldots & x[m-q] \end{bmatrix}^T
\]

C. Properties of Input Output Matrix \(H_{L/(p,q+1)} \)

This section gives three important properties in the relationships between the elements in the matrix \(H_{L/(p,q+1)} \):

1) The \(p \)th column in the matrix contains following elements.

\[
\tilde{h} = \begin{bmatrix} h_0 & h_M & h_{2M} & \ldots & h_{(L-1)M} \end{bmatrix}^T
\]

2) The \(l \)th row in the matrix \(H_{L/(p,q+1)} \) for \(l = 0,1,\ldots,L-1 \) contains the \(\nu^l \)th polyphase component of the transfer function.

\[
\nu^l = \text{mod}(lM, L)
\]

\[\nu^l \]th polyphase component with \(\nu^{(b)} \) and \(\nu^{(a)} \), they can be represented as

\[
\nu^{(b)} = p - \left\lfloor \frac{\ell M}{L} \right\rfloor
\]

\[
\nu^{(a)} = q - \left\lfloor \frac{(N - \ell M)}{L} \right\rfloor
\]

3) Matrix shown in (13) can be represented, as the coefficients of the Nth order transfer function \(H(z) \), as

\[
H_{L/(p,q+1)} = \begin{bmatrix} h_0^{(H)} & h_1^{(H)} & \ldots & h_{L-1}^{(H)} \end{bmatrix}^T
\]

Where

\[
h_{k}^{H} = \begin{bmatrix} 0 & h_{k}^{(b)} & 0 & h_{k}^{(a)} \end{bmatrix}
\]

III. DESIGN SIMULATION

This section shows how to efficiently utilize the coefficient symmetry of linear phase FIR filters.

A. Rational sampling rate conversion factor 2/3

This section shows rational sampling rate converter by a factor of \(L/M \) with \(L=2, M=3 \) and \(N=11 \). In this case output sampling frequency is decreased by 3/2 with respect to input sampling frequency.

\[
\begin{bmatrix}
y[n] \\
y[n+1] \\
y[n+1] \\
y[n+1]
\end{bmatrix} = \begin{bmatrix} 0 & h_0 & h_2 & h_4 & h_6 & h_8 & h_{10} \\
h_1 & h_2 & h_4 & h_6 & h_8 & h_{11} & 0 \\
0 & h_0 & h_2 & h_4 & h_6 & h_8 & h_{10} \\
0 & h_1 & h_2 & h_4 & h_6 & h_8 & h_{11} \\
0 & h_0 & h_2 & h_4 & h_6 & h_8 & h_{10} \\
0 & h_1 & h_2 & h_4 & h_6 & h_8 & h_{11}
\end{bmatrix} x_{m,l,m-5}
\]

By using coefficient symmetry of filter it can be rewritten as:

\[
\begin{bmatrix}
y[n] \\
y[n+1] \\
y[n+1] \\
y[n+1]
\end{bmatrix} = \begin{bmatrix} 0 & h_0 & h_2 & h_4 & h_6 & h_8 & h_{10} \\
0 & h_1 & h_2 & h_4 & h_6 & h_8 & h_{11} \\
0 & h_0 & h_2 & h_4 & h_6 & h_8 & h_{10} \\
0 & h_1 & h_2 & h_4 & h_6 & h_8 & h_{11}
\end{bmatrix} x_{m,l,m-5}
\]
In order to generate a form that is appropriate for an efficient implementation the aforementioned equation is decomposed into four distinct parts as shown in eq. (24). First two terms can be implemented directly. Third term is called centro-symmetric matrix. It can be implemented by using decomposition shown in eq. (25):

\[
\begin{bmatrix}
 y_n \\
 y_{n+1}
\end{bmatrix}
= h_4x_n m - 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + h_5x_n m - 5 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + h_1x_{n+1} m + 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix}
+ \begin{bmatrix}
h_0 & h_2 & h_5 & h_3 \\
h_3 & h_5 & h_2 & h_0
\end{bmatrix}
\begin{bmatrix}
x_{m,m-1} \\
x_{m-3,m-4}
\end{bmatrix}
\]

(24)

\[
\begin{bmatrix}
h_0 & h_2 & h_5 & h_3 \\
h_3 & h_5 & h_2 & h_0
\end{bmatrix}
\begin{bmatrix}
x_{m,m-1} \\
x_{m-3,m-4}
\end{bmatrix}
= \begin{bmatrix} 1 & 1 & c_1 & c_2 & 0 & 0 \\
1 & -1 & 0 & 0 & d_2 & d_1
\end{bmatrix}
\begin{bmatrix} x_{m,m-4} \\
\end{bmatrix}
\]

(25)

\[
c_0 = (h_0 + h_2) / 2 \\
c_1 = (h_2 + h_5) / 2 \\
d_0 = (h_0 - h_2) / 2 \\
d_1 = (h_2 - h_5) / 2
\]

(26)

\[
x_{m,m-4}^2 = \begin{bmatrix} I_2 & J_2 \\
J_2 & -I_2
\end{bmatrix}
\begin{bmatrix} x_{m,m-1} \\
x_{m-3,m-4}
\end{bmatrix}
\]

(27)

The implementation structure for 2/3 factor is given in Fig. 2. For generating \(y[n]\) and \(y[n+1]\), this structure requires 7 multiplications and 12 additions. This means it requires 3.5 multiplications and 6 additions per output sample. Same system without utilizing the coefficient symmetry, requires 6 multiplications and 5 additions per output sample.

TABLE I

<table>
<thead>
<tr>
<th>N</th>
<th>Cn*</th>
<th>Cn+</th>
<th>Cp*</th>
<th>Cp+</th>
<th>Cd*</th>
<th>Cd+</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>19.16</td>
<td>23.67</td>
<td>22.00</td>
<td>29.33</td>
<td>35.33</td>
<td>34.33</td>
</tr>
<tr>
<td>214</td>
<td>19.167</td>
<td>23.667</td>
<td>22.53</td>
<td>30.33</td>
<td>35.83</td>
<td>34.33</td>
</tr>
<tr>
<td>23</td>
<td>3.167</td>
<td>2.333</td>
<td>4.50</td>
<td>7.00</td>
<td>4.00</td>
<td>3.00</td>
</tr>
<tr>
<td>209</td>
<td>18.667</td>
<td>23.00</td>
<td>19.833</td>
<td>32.667</td>
<td>35.00</td>
<td>34.00</td>
</tr>
<tr>
<td>210</td>
<td>19.167</td>
<td>23.667</td>
<td>20.833</td>
<td>31.00</td>
<td>35.167</td>
<td>34.167</td>
</tr>
<tr>
<td>212</td>
<td>19.167</td>
<td>23.667</td>
<td>20.633</td>
<td>33.733</td>
<td>35.50</td>
<td>34.50</td>
</tr>
</tbody>
</table>

FIG. 2 IMPLEMENTATION STRUCTURE FOR A RATIONAL SAMPLING RATE CONVERTER BY A FACTOR OF 2/3

IV. DESIGN ANALYSIS

This section shows that how proposed method is better than existing ones. As seen in figure 3, the proposed method gives results having low implementation complexity as compare to polyphase implementation. Results show that when the filter order is increased then complexity is decreased. Table I shows that proposed method results in a system with lower implementation complexity compared with polyphase [8] and paper [2].
Addition Complexity Comparison For Case A

- \(C_n^p (\text{Proposed}) \)
- \(C_n^+ (2) \)
- \(C_n^+ (\text{Polyphase}(8)) \)

V. CONCLUSION

In this paper an efficient structure is designed for sampling rate converter having rational factor L/M. The proposed implementation shows reduced number of multiplications per output sample as compare to polyphase implementation. Finally the implementation complexity of proposed approach is evaluated and with the help of some examples, efficiency of the proposed implementation is compared with others.

REFERENCES